
C
od

e
éd

ite
ur

 :
G

01
00

58
3

IS
B

N
 :

97
8-

2-
41

6-
00

58
3-

1

43 €

L’ouvrage de référence sur Arduino
Avec son petit microcontrôleur hautement performant et Avec son petit microcontrôleur hautement performant et

facilement programmable, la carte Arduino a révolutionnéfacilement programmable, la carte Arduino a révolutionné

le mouvement le mouvement Do lt YourselfDo lt Yourself. Se couplant aisément avec . Se couplant aisément avec

d’autres composants (écrans LCD, capteurs, moteurs...), elled’autres composants (écrans LCD, capteurs, moteurs...), elle

est devenue aujourd’hui un élément indispensable dans de est devenue aujourd’hui un élément indispensable dans de

nombreux dispositifs électroniques. Sa simplicité d’utilisa-nombreux dispositifs électroniques. Sa simplicité d’utilisa-

tion, l’étendue de ses applications et son prix modique ont tion, l’étendue de ses applications et son prix modique ont

conquis un large public d’amateurs et de professionnels : conquis un large public d’amateurs et de professionnels :

passionnés d’électronique, designers, ingénieurs, musiciens...passionnés d’électronique, designers, ingénieurs, musiciens...

D’une pédagogie remarquable, cet ouvrage de référence D’une pédagogie remarquable, cet ouvrage de référence

vous fera découvrir le formidable potentiel d’Arduino, en vous fera découvrir le formidable potentiel d’Arduino, en

vous délivrant un peu de théorie et surtout beaucoup de vous délivrant un peu de théorie et surtout beaucoup de

pratique avec ses 27 montages à réaliser. Mise à jour avec pratique avec ses 27 montages à réaliser. Mise à jour avec

les dernières évolutions d’Arduino, cette quatrième éditionles dernières évolutions d’Arduino, cette quatrième édition

entièrement refondue s’est enrichie de nouveaux projets à entièrement refondue s’est enrichie de nouveaux projets à

monter, qui vous familiariseront notamment avec l’Internet monter, qui vous familiariseront notamment avec l’Internet

des objets grâce à l’ESP32, Node-RED et MQTT.des objets grâce à l’ESP32, Node-RED et MQTT.

À qui s’adresse ce livre ?
Aux makers, électroniciens, bricoleurs, bidouilleurs, ingénieurs,Aux makers, électroniciens, bricoleurs, bidouilleurs, ingénieurs,

designers, artistes...designers, artistes...

Dans ce livre, vous apprendrez notamment à :
� créer un séquenceur de lumièrecréer un séquenceur de lumière

� fabriquer un a�cheur LCD

� commander un moteur pas-à-pas

� faire de la musique avec Arduinofaire de la musique avec Arduino

Sur www.editions-eyrolles.com/dl/0100583
Téléchargez le code source des sketches Arduino présentés Téléchargez le code source des sketches Arduino présentés

dans cet ouvrage.dans cet ouvrage.

Électronicien de formation, Erik
Bartmann est aujourd’hui déve-

loppeur pour le principal fournis-

seur européen d’infrastructures

informatiques. Passionné d’électro-

nique depuis toujours, il est l’auteur

de plusieurs ouvrages sur Arduino,

Raspberry Pi et l’ESP8266.

LE
 G

R
A

N
D

 L
IV

R
E

D
’A

RD
U

IN
O

Er
ik

B
ar

tm
an

n

LE GRAND LIVRE
D’ARDUINO
Erik Bartmann

4e édition

4e édition4e édition

27
montages
à réaliser

L’ouvrage de référence sur Arduino
Avec son petit microcontrôleur hautement performant et Avec son petit microcontrôleur hautement performant et

facilement programmable, la carte Arduino a révolutionné facilement programmable, la carte Arduino a révolutionné

le mouvement le mouvement Do lt YourselfDo lt Yourself. Se couplant aisément avec . Se couplant aisément avec

d’autres composants (écrans LCD, capteurs, moteurs...), elle d’autres composants (écrans LCD, capteurs, moteurs...), elle

est devenue aujourd’hui un élément indispensable dans de est devenue aujourd’hui un élément indispensable dans de

nombreux dispositifs électroniques. Sa simplicité d’utilisa-nombreux dispositifs électroniques. Sa simplicité d’utilisa-

tion, l’étendue de ses applications et son prix modique ont tion, l’étendue de ses applications et son prix modique ont

conquis un large public d’amateurs et de professionnels : conquis un large public d’amateurs et de professionnels :

passionnés d’électronique, designers, ingénieurs, musiciens...passionnés d’électronique, designers, ingénieurs, musiciens...

D’une pédagogie remarquable, cet ouvrage de référence D’une pédagogie remarquable, cet ouvrage de référence

vous fera découvrir le formidable potentiel d’Arduino, en vous fera découvrir le formidable potentiel d’Arduino, en

vous délivrant un peu de théorie et surtout beaucoup de vous délivrant un peu de théorie et surtout beaucoup de

pratique avec ses 27 montages à réaliser. Mise à jour avec pratique avec ses 27 montages à réaliser. Mise à jour avec

les dernières évolutions d’Arduino, cette quatrième édition les dernières évolutions d’Arduino, cette quatrième édition

entièrement refondue s’est enrichie de nouveaux projets à entièrement refondue s’est enrichie de nouveaux projets à

monter, qui vous familiariseront notamment avec l’Internet monter, qui vous familiariseront notamment avec l’Internet

des objets grâce à l’ESP32, Node-RED et MQTT.des objets grâce à l’ESP32, Node-RED et MQTT.

À qui s’adresse ce livre ?
Aux makers, électroniciens, bricoleurs, bidouilleurs, ingénieurs, Aux makers, électroniciens, bricoleurs, bidouilleurs, ingénieurs,

designers, artistes...designers, artistes...

Dans ce livre, vous apprendrez notamment à :
� créer un séquenceur de lumièrecréer un séquenceur de lumière

� fabriquer un a�cheur LCD

� commander un moteur pas-à-pas

� faire de la musique avec Arduinofaire de la musique avec Arduino

Sur www.editions-eyrolles.com/dl/0100583
Téléchargez le code source des sketches Arduino présentés Téléchargez le code source des sketches Arduino présentés

dans cet ouvrage.dans cet ouvrage.

Électronicien de formation, Erik
Bartmann est aujourd’hui déve-

loppeur pour le principal fournis-

seur européen d’infrastructures

informatiques. Passionné d’électro-

nique depuis toujours, il est l’auteur

de plusieurs ouvrages sur Arduino,

Raspberry Pi et l’ESP8266.

LE
 G

R
A

N
D

 L
IV

R
E

D
’A

RD
U

IN
O

Er
ik

B
ar

tm
an

n

LE GRAND LIVRE
D’ARDUINO
Erik Bartmann

4e édition

4e édition4e édition

27
montages
à réaliser

http://www.editions-eyrolles.com

LE GRAND LIVRE
D’ARDUINO

Erik Bartmann

4e édition

LE GRAND LIVRE
D’ARDUINO

CHEZ LE MÊME ÉDITEUR

Dans la collection « Serial Makers »

J. Boyer. – Réparer son électroménager et ses autres appareils électriques.
N°0100460, 2022, 432 pages.

R. Sarafan. – Robots DIY.
N°0100473, 2021, 192 pages.

D. Nibart. – 46 activités avec le mBot2.
N°0100628, 2022, 96 pages.

D. Nibart. – 45 activités avec le mBot.
N°0100270, 2021, 88 pages.

D. Nibart. – 30 défis robotiques.
N°0100119, 2021, 64 pages.

D. Nibart. – 50 activités avec la carte micro:bit.
N°0100296, 2021, 80 pages.

J. Boyer. – Réparez vous-même vos appareils électroniques (2e édition).
N°67621, 2018, 408 pages.

C. Platt. – L’électronique en pratique (2e édition).
N°14425, 2016, 328 pages.

M. Berchon. – Le grand livre de l’impression 3D.
N°67770, 2020, 280 pages.

C. Bosqué, O. Noor et L. Ricard. – FabLabs, etc. Les nouveaux lieux de fabrication numérique.
N°13938, 2015, 216 pages.

Erik Bartmann

4e édition

LE GRAND LIVRE
D’ARDUINO

ÉDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

Authorized French translation of the German edition of Mit Arduino die elektronische Welt ent-
decken, 4. Auflage by Erik Bartmann, ISBN 978-3-946496-29-8 © 2021 by Bombini Verlags GmbH.
This translation is published and sold by permission of Bombini Verlags GmbH, which owns or
controls all rights to publish and sell the same.

Traduction autorisée de l’ouvrage en langue allemande intitulé Mit Arduino die elektronische Welt
entdecken, 4. Auflage d’Erik Bartmann (ISBN : 978-3-946496-29-8)

Adapté de l’allemand par Catherine Queruel-Haas et Danielle Lafarge

L’éditeur remercie vivement Jean Boyer pour sa validation technique de l’ouvrage.

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement
le présent ouvrage, sur quelque support que ce soit, sans l’autorisation de l’Éditeur ou du Centre
français d’exploitation du droit de copie, 20, rue des Grands-Augustins, 75006 Paris.

© Planner/shutterstock pour la photo page 203

© Groupe Eyrolles, 2014, 2015
© Éditions Eyrolles 2018, 2022 pour la présente édition, ISBN : 978-2-416-00583-1

	 V

Préface

Cher Erik,

En 2016, je suis tombé sur un
de vos livres, qui portait sur
l’ESP8266, un microcontrô-
leur que ma société Espressif
avait développé et commercia-
lisé deux ans plus tôt. C’était le
premier livre jamais écrit sur
l’ESP8266. Bien que je ne parle
pas allemand et que, par conséquent, je ne puisse pas le lire, j’ai tout de
même compris les affirmations de base que vous avez faites sur l’ESP8266,
en parcourant votre texte. Vos belles et nombreuses illustrations m’ont
aidé à deviner le texte d’accompagnement. Surtout, j’ai aimé que vous
fassiez la promotion du microcontrôleur ESP8266 comme outil du mou-
vement maker dès 2016. Quoi qu’il en soit, votre évaluation de l’époque
s’est avérée correcte : aujourd’hui, dans chaque atelier maker, où que
ce soit dans le monde, on peut trouver un ESP8266 ou son successeur,
l’ESP32, aux côtés d’un Arduino et d’une carte Raspberry Pi.

Comme je l’ai appris plus tard, vous avez également écrit un livre complet
sur Arduino. Depuis sa première publication en 2011, celui-ci a déjà connu
trois éditions et s’est imposé comme un ouvrage de référence sur Arduino
en allemand et en français. Dans ce livre, vous décrivez non seulement
les fonctionnalités du matériel et du logiciel Arduino, mais vous abordez
également les thèmes chers aux makers. Vous expliquez les bases de
l’électronique de manière très claire, vous donnez une introduction à la
programmation et vous montrez dans de nombreux montages tout ce
qui peut être développé avec la plate-forme Arduino.

En outre, vous amenez le maker hors des sentiers battus, en lui présen-
tant des projets pointus comme Node-RED ou MQTT qui stimuleront
sa créativité. Je suis heureux de voir que vous avez également couvert
l’ESP32 avec son propre montage dans votre ouvrage. Je vous souhaite
beaucoup de succès pour cette quatrième édition !

Teo Swee Ann, P-DG d’Espressif

	 VII

Table des matières

Avant-propos. 	 XVII
Arduino pour tous . 	 XVII
Une erreur de conception qui fait date. 	 XVII
Les bienfaits du copier-coller et ses limites. 	 XVIII
Structure de l’ouvrage . 	 XIX
Structure des montages. 	 XX
Mon site Internet . 	 XXI
Prérequis. 	 XXI
Composants nécessaires . 	 XXI
Règles de conduite. 	 XXII

Partie I : Les bases
Chapitre 1 - Arduino : le matériel. 	 3

Les différentes cartes Arduino. 	 3
La carte Arduino Uno. 	 5

Chapitre 2 - Arduino : le logiciel. 	 21
IDE Arduino ou Arduino Create ?. 	 22
Présentation de l’environnement. 	 23
Raccordement de la carte Arduino. 	 25
Testons la communication entre l’ordinateur et Arduino. 	 26
La gestion des bibliothèques. 	 32
La gestion des cartes . 	 33
Le code du sketch dans l’environnement de développement. 	 35
Problèmes courants. 	 36
De l’idée jusqu’au téléchargement dans le microcontrôleur. 	 39

	 VIII	 Table des matières

Chapitre 3 - N’ayons pas peur de la programmation : les bases du codage.. 	 41
Qu’est-ce qu’un programme, ou sketch ?. 	 42
Que sont les structures de contrôle ?. 	 48

Chapitre 4 - La carte Arduino Discoveryboard . 	 59
Composants nécessaires . 	 60
Schéma des connexions. 	 62
L’afficheur sept segments. 	 62

Partie 2 : Les montages
Montage 1 - Hello World – faire clignoter une LED . 	 67

« Hello World » clignote. 	 67
Problèmes courants. 	 73
Qu’avez-vous appris ?. 	 81
Workshop pour faire clignoter une LED. 	 82

Montage 2 - Programmation Arduino de bas niveau. 	 83
Les accès du microcontrôleur. 	 84
Programmation d’un port. 	 85
Registres et instructions C++. 	 91
La résistance pull-up . 	 92
Problèmes courants. 	 94
Qu’avez-vous appris ?. 	 94

Montage 3 - Interrogation d’un bouton-poussoir. 	 97
Manipulation d’une résistance pull-up interne . 	 97
Composants nécessaires . 	 101
Schéma. 	 101
Réalisation du circuit. 	 102
Sketch Arduino. 	 103
Revue de code. 	 103
Qu’avez-vous appris ?. 	 105

Montage 4 - Clignotement avec gestion des intervalles. 	 107
Appuyez sur le bouton-poussoir et il réagit. 	 107
Composants nécessaires . 	 108
Schéma. 	 108
Réalisation du circuit. 	 109

Table des matières 	 IX

Sketch Arduino. 	 109
Revue de code. 	 111
Problèmes courants. 	 115
Qu’avez-vous appris ?. 	 115

Montage 5 - Le bouton-poussoir récalcitrant. 	 117
Une histoire de rebond . 	 117
Composants nécessaires . 	 119
Schéma. 	 119
Réalisation du circuit. 	 120
Sketch Arduino. 	 120
Revue de code. 	 121
Problèmes courants. 	 122
Qu’avez-vous appris ?. 	 122

Montage 6 - Le séquenceur de lumière. 	 123
C’est chacun son tour. 	 123
Composants nécessaires . 	 124
Schéma. 	 125
Réalisation du circuit. 	 125
Sketch Arduino. 	 126
Revue de code. 	 126
Manipulation des registres. 	 133
Problèmes courants. 	 139
Qu’avez-vous appris ? . 	 140

Montage 7 - Extension de port. 	 141
Le registre à décalage. 	 141
Registre à décalage conventionnel . 	 145
Composants nécessaires . 	 145
Schéma. 	 146
Réalisation du circuit. 	 147
Sketch Arduino. 	 147
Revue de code. 	 148
Extension du sketch : première partie . 	 152
Extension du sketch : deuxième partie. 	 156
Problèmes courants. 	 158
Qu’avez-vous appris ?. 	 159

Montage 8 - Comment créer une bibliothèque ? . 	 161
Les bibliothèques. 	 161
Qu’est-ce qu’une bibliothèque exactement ?. 	 162

	 X	 Table des matières

En quoi les bibliothèques sont-elles utiles ?. 	 163
Que signifie programmation orientée objet ? . 	 164
La bibliothèque-dé. 	 172
Qu’avez-vous appris ?. 	 180

Montage 9 - Les feux de circulation. 	 181

Composants nécessaires . 	 181
Phases de signalisation. 	 182
Schéma. 	 182
Réalisation du circuit. 	 183
Sketch Arduino. 	 184
Revue de code. 	 185
Des feux de circulation interactifs. 	 189
Problèmes courants. 	 201
Qu’avez-vous appris ?. 	 201
Cadeau !. 	 202

Montage 10 - Le dé électronique . 	 203

Qu’est-ce qu’un dé électronique ?. 	 203
Composants nécessaires . 	 205
Schéma. 	 205
Réalisation du circuit. 	 206
Code du sketch. 	 207
Revue de code. 	 207
Problèmes courants. 	 219
Montage du dé électronique sur une platine. 	 219
Exercice complémentaire . 	 221
Qu’avez-vous appris ?. 	 221

Montage 11 - Des détecteurs de lumière. 	 223

La résistance variable. 	 224
Composants nécessaires . 	 224
Schéma. 	 225
Réalisation du circuit. 	 226
Sketch Arduino. 	 226
Revue de code. 	 227
Devenons communicatifs. 	 231
Problèmes courants. 	 237
Exercice complémentaire . 	 237
Qu’avez-vous appris ?. 	 238

Table des matières 	 XI

Montage 12 - L’afficheur sept segments. 	 239
Qu’est-ce qu’un afficheur sept segments ?. 	 239
Composants nécessaires . 	 243
Schéma. 	 243
Réalisation du circuit. 	 243
Sketch Arduino. 	 244
Revue de code. 	 245
Problèmes courants. 	 251
Exercice complémentaire . 	 252
Qu’avez-vous appris ?. 	 253

Montage 13 - La température. 	 255
Chaud ou froid ?. 	 255
Composants nécessaires . 	 260
Schéma. 	 260
Réalisation du circuit. 	 261
Sketch Arduino. 	 261
Revue de code. 	 262
Affichage de valeurs analogiques sur l’IDE Arduino . 	 263
Problèmes courants. 	 267
Qu’avez-vous appris ?. 	 267

Montage 14 - Le clavier numérique. 	 269
Qu’est-ce qu’un clavier numérique ?. 	 269
Composants nécessaires . 	 271
Réflexions préliminaires. 	 271
Schéma. 	 274
Réalisation du circuit. 	 275
Sketch Arduino. 	 275
Réalisation du shield . 	 281
Construction d’un shield Arduino. 	 284
Exercice complémentaire . 	 288
Problèmes courants. 	 288
Qu’avez-vous appris ?. 	 288

Montage 15 - Un afficheur alphanumérique . 	 289
Qu’est-ce qu’un afficheur LCD ? . 	 289
Composants nécessaires . 	 290
Schéma. 	 293
Réalisation du circuit. 	 294
Revue de code. 	 294

	 XII	 Table des matières

Jeu : deviner un nombre . 	 297
Définir des caractères personnels. 	 303
Un afficheur LCD multiligne . 	 306
Exercice complémentaire . 	 307
Problèmes courants. 	 308
Qu’avez-vous appris ?. 	 308

Montage 16 - Le moteur pas-à-pas. 	 309
Encore plus de mouvement . 	 309
Composants nécessaires . 	 312
Schéma. 	 313
Réalisation du circuit. 	 313
Revue de code . 	 314
Construire un shield pour moteur. 	 316
Commande de servomoteurs . 	 316
Problèmes courants. 	 318
Qu’avez-vous appris ?. 	 319

Montage 17 - Commande d’un ventilateur . 	 321
Un peu de pratique. 	 321
Composants nécessaires . 	 322
Schéma d’un circuit de commande de moteur . 	 322
Schéma d’un circuit de commande du ventilateur . 	 328
Réalisation du circuit. 	 329
Revue de code. 	 330
Exercice complémentaire . 	 332
Problèmes courants. 	 333
Qu’avez-vous appris ?. 	 333

Montage 18 - Faire de la musique avec Arduino. 	 335
Y a pas le son ?. 	 335
Composant nécessaire. 	 336
Schéma. 	 336
Réalisation du circuit. 	 337
Revue de code. 	 337
Jeu de la séquence des couleurs . 	 340
Problèmes courants. 	 347
Exercice complémentaire . 	 348
Qu’avez-vous appris ?. 	 348

Montage 19 - L’Arduino-Talker. 	 349
Communiquer avec l’Arduino. 	 349

Table des matières 	 XIII

Composants nécessaires . 	 350
Schéma. 	 350
Comprendre le code, étape par étape. 	 352
Problèmes courants. 	 359
Utilisation d’un filtre passe-bas. 	 359
Qu’avez-vous appris?. 	 362

Montage 20 - Communication sans fil par Bluetooth . 	 363
Qu’est-ce que la communication radio ? . 	 363
Composants nécessaires . 	 364
Utilisation d’un adaptateur Bluetooth. 	 366
Ajout d’un nouveau shield BT. 	 370
Réalisation du circuit. 	 370
Le module Bluetooth HC-06. 	 373
Exercice complémentaire . 	 375
Problèmes courants. 	 375
Qu’avez-vous appris ?. 	 376

Montage 21 - Communication réseau . 	 377
Qu’est-ce qu’un réseau ? . 	 377
Composants nécessaires . 	 382
Sketch Arduino. 	 384
Revue de code. 	 386
Exercice complémentaire . 	 390
Problèmes courants. 	 391
Qu’avez-vous appris ?. 	 392

Montage 22 - La carte ESP32. 	 393
Présentation de la carte ESP32. 	 393
Faire clignoter avec le module ESP32. 	 400
Montage : le log de températures. 	 403
Réalisation du circuit. 	 411
Problèmes courants. 	 414
Qu’avez-vous appris ?. 	 415
Workshop sur le log de températures. 	 415

Montage 23 - Numérique appelle analogique . 	 417
Comment convertir des signaux numériques en signaux analogiques ? 	 417
Composants nécessaires . 	 419
Schéma. 	 420
Réalisation du circuit. 	 421
Sketch Arduino. 	 421

	 XIV	 Table des matières

Revue de code. 	 422
Réalisation du shield . 	 422
Commande du registre de port. 	 423
Problèmes courants. 	 428
Exercice complémentaire . 	 428
Qu’avez-vous appris ?. 	 429

Montage 24 - Programmer Arduino avec un langage de programmation par blocs. 	 431
S4A – Scratch for Arduino. 	 431
ArduBlock – Arduino par blocs. 	 438
Open Roberta Lab. 	 441
Node-RED, langage de programmation par blocs pour l’IoT. 	 442
Problèmes courants. 	 443
Qu’avez-vous appris ?. 	 443

Montage 25 - Quand Arduino rencontre Raspberry Pi. 	 445
Réveillons l’Arduino qui sommeille dans tout Raspberry Pi. 	 445
Liaison série entre le Raspberry Pi et l’Arduino. 	 459
Qu’avez-vous appris ?. 	 462

Montage 26 - Programmer pour l’Internet des objets avec Node-RED 	 463
Comment fonctionne Node-RED ?. 	 464
Installation de Node-RED. 	 465
Démarrage de Node-RED. 	 466
Installation de Nodes ou de Flows supplémentaires. 	 468
Préparation de la carte Arduino Uno . 	 471
Node-RED dans le navigateur. 	 471
Le Flow du clignotant. 	 472
Montage avec le capteur de température et d’humidité DHT11. 	 480
Composants nécessaires . 	 480
Schéma. 	 481
Sketch Arduino. 	 482
Envoi par e-mail. 	 486
Le Dashboard . 	 489
Affichage des valeurs de mesure sur un smartphone. 	 493
Exporter le code à partir de Node-RED . 	 494
Problèmes courants. 	 496
Qu’avez-vous appris ?. 	 496

Montage 27 - MQTT . 	 497
Communication M2M avec MQTT . 	 497
Conventions de nommage dans MQTT . 	 498

Table des matières 	 XV

Structure de messagerie MQTT. 	 499
Métacaractères MQTT. 	 499
Installation de MQTT. 	 501
Un test rudimentaire . 	 504
Le module ESP32. 	 507
Problèmes courants. 	 513
Qu’avez-vous appris ?. 	 513

Index. 	 515

	 XVII

Avant-propos

Arduino pour tous
Lorsque j’ai écrit mon premier livre sur Arduino, il n’existait en Allemagne
que deux ou trois distributeurs chez lesquels on pouvait acheter la carte
Arduino, tandis que YouTube affichait près de 800 vidéos quand on entrait
le mot-clé Arduino. À cette époque, les professionnels de l’électronique ne
s’intéressaient guère à ce microcontrôleur et, lorsqu’ils le faisaient, c’était
pour se moquer de ses performances.

Les développeurs d’Arduino, qui se sont penchés en 2005 à l’Institut de
design d’Ivrée en Italie sur la conception d’un microcontrôleur facile à pro-
grammer, ne ciblaient pas à l’origine les professionnels de l’électronique,
mais les étudiants en art ayant peu de connaissances en programmation
et en matériel informatique. Leur préoccupation d’alors était de pouvoir
concrétiser rapidement des idées, de faire du prototypage. L’étudiant pou-
vait ainsi réaliser lui-même un concept artistique sans l’aide d’ingénieurs
ni de programmeurs.

Une erreur de conception
qui fait date
Les créateurs de la carte Arduino, qui n’étaient pas des spécialistes en
matériel informatique, lancèrent le premier microcontrôleur Arduino,
l’Arduino Uno, sous licence libre, transposant ainsi l’expérience du mou-
vement Open Source au domaine du matériel informatique. Les schémas
de connexion étaient en libre accès, de sorte que n’importe qui pou-
vait compléter ou transformer la carte. Ils mirent également l’environ-
nement de programmation Arduino, également appelé IDE (Integrated
Development Environment) sous licence Open Source pour que chacun
puisse utiliser le logiciel librement.

	XVIII	 Avant-propos

Bientôt, la carte Arduino ne fut pas utilisée que par des étudiants de l’uni-
versité italienne, mais s’avéra être une plate-forme de prototypage bien
pratique, pour les passionnés d’électronique d’abord, imités ensuite par
les amateurs du monde entier. Internet a largement contribué au succès
de cette plate-forme en permettant de diffuser facilement les circuits et
les logiciels correspondants et en les rendant utilisables par tous grâce à
la licence en libre accès. Cela donna naissance à un foisonnement d’idées
partout dans le monde, développées par des amateurs fiers de présenter
leurs projets à la communauté internationale. Les idées de projet étaient
reprises par des amateurs à l’autre bout du monde, améliorées et remises
sur le Net.

Durant les années qui suivirent, Arduino et son environnement de déve-
loppement devinrent quasiment un standard au sein des développeurs
amateurs de tous les pays. Une nouvelle plate-forme facile d’accès pour
les amateurs d’électronique était née. Les grands fabricants de matériel
informatique ne s’y trompèrent pas et remarquèrent que la carte Arduino
était de plus en plus utilisée pour toutes les applications possibles de
commande et de mesure. Pour élargir les possibilités de la carte Arduino,
des platines complémentaires appelées Shields furent développées, qui
s’adaptaient exactement à la carte Arduino Uno.

Le jour où l’un des plus grands fabricants de matériel informatique demanda
à son département de développement de se baser, à l’avenir, sur la concep-
tion physique de la carte Arduino pour son matériel, il était devenu évident
que l’Arduino était devenu incontournable dans le monde de la technique.
Petite anecdote au passage : les développeurs d’Arduino qui, comme on l’a
vu, n’étaient pas à l’origine des spécialistes de matériel informatique, ont
construit la carte Arduino Uno avec une erreur de conception. Pour rester
compatible avec le quasi standard, le fabricant de renommée mondiale a
docilement repris cette erreur de conception, que l’on retrouve encore
aujourd’hui sur la carte.

Les bienfaits du copier-coller
et ses limites
Je me suis demandé, lorsque j’ai commencé la rédaction de mon premier
livre d’Arduino, de quoi un bricoleur avait besoin pour réaliser ses projets
avec la carte Arduino. On pouvait déjà à l’époque se procurer des pro-
grammes sur Internet, ou via les communautés et forums Arduino naissants,
les télécharger sur sa propre carte Arduino et faire fonctionner le projet
chez soi, en y ajoutant peut-être quelques interventions ciblées dans le
code. Pour installer du matériel supplémentaire, il suffisait de s’orienter
sur le circuit pour le reproduire.

Avant-propos 	 XIX

Que devrait donc contenir un livre sur Arduino en plus de la description
de la carte et de l’environnement de développement et de la manière de
transférer les programmes du PC vers le microcontrôleur ? Que se passe-t-il
lorsqu’on reproduit un circuit et qu’on y ajoute des composants ? En quête
d’une bonne approche conceptuelle pour mon livre, je me suis demandé
ce qui m’avait vraiment aidé lors de la réalisation de mes montages électro-
niques. La réponse est d’une simplicité confondante : mes connaissances
de base en électrotechnique m’ont permis de transformer des idées en
projets techniques concrets.

Je trouve absolument impressionnant que des personnes qui n’ont rien
d’autre à apporter que l’envie de bricoler puissent, avec Arduino, faire fonc-
tionner un circuit de feux de signalisation sur une planche de connexion
après seulement une demi-heure, sans avoir jamais tenu un microcontrô-
leur dans les mains ou écrit une seule ligne de code. Il suffit en effet de
regarder une vidéo sur YouTube, et éventuellement une description pas
à pas, pour que les LED clignotent au rythme souhaité sur votre table de
bureau. On peut alors s’amuser à modifier le rythme en bidouillant dans
le code à l’endroit approprié, qui est facile à trouver, et le tour est joué.
Mais pour aller plus loin, il faut avoir quelques connaissances de base en
électronique et en électrotechnique. C’est pourquoi j’ai écrit ce livre.

Structure de l’ouvrage
Je pense qu’il est important dans un premier lieu de vous présenter le plus
de choses possible sur le matériel et le logiciel de la carte Arduino pour
que vous fassiez connaissance de toute la palette de fonctions disponibles.
Le chapitre 1, « Arduino : le matériel », vous présente de manière assez
détaillée la carte Arduino et tous ses composants, l’alimentation électrique
et les interfaces. Ce sera également l’occasion de rappeler certains termes
de base, usuels dans l’univers de la microélectronique. Chapitre que vous
pouvez lire… ou pas. Au chapitre 2, « Arduino : le logiciel », vous appren-
drez à contrôler la carte. Vous verrez comment se déroule le flux entre un
ordinateur fixe ou portable et la carte Arduino, et comment est construit
le code Arduino permettant de commander le microcontrôleur.

Quant au chapitre 3, « N’ayons pas peur de programmer : les bases du
codage », celui-ci vous fournira les connaissances de base sur la program-
mation. Ce chapitre, comme les précédents, va parfois très loin, mais en
cas de doute, la règle est la même : vous pouvez le lire, mais vous n’êtes pas
obligé de le faire tout de suite. Les premiers chapitres doivent être consi-
dérés comme des chapitres de référence, que vous pourrez consulter plus
tard au fil de votre lecture ou de la réalisation de vos montages Arduino,
si vous voulez avoir des précisions sur un sujet.

	 XX	 Avant-propos

Au chapitre 4, « La carte Arduino Discoveryboard », je vous présente une
carte de développeur que j’ai développée moi-même. J’ai monté sur une
platine des composants électroniques standards qui reviennent en per-
manence dans les montages Arduino. J’ai soudé ces composants sur la
platine, il me suffit ensuite de raccorder la carte Arduino avant de réaliser
les projets. L’avantage ? Plus besoin de bricoler sur la plaque de prototypage
et la structure du circuit est plus claire. Vous pouvez reproduire la carte
Arduino Discoveryboard tout en vous exerçant au soudage.

Il sera ensuite temps de réaliser vos montages Arduino et vos idées de
génie ! Les projets sont faciles au début mais ils deviennent rapidement
de plus en plus complexes. J’ai ajouté des encadrés de texte aux endroits
qui requièrent des connaissances de base pour éclairer le montage d’un
point de vue un peu plus théorique. Espérons que vos connaissances en
électronique augmenteront au fil des montages et que vous serez capable
à votre tour de modifier mes montages ou même de développer les vôtres.

Structure des montages
Comme je l’ai évoqué, les montages vont par ordre de difficulté croissante.
Ce que vous avez appris dans un montage vous servira pour les montages
suivants. Et si vous avez besoin de connaissances de base, celles-ci vous
seront données à l’endroit approprié. Les montages ont tous la même
structure :

	● analyse du code : je passe en revue le code de programmation étape
par étape et j’explique exactement chaque aspect du programme ;

	● schéma des connexions : le schéma des connexions est la représenta-
tion schématique du montage, le plan de construction pour ainsi dire ;

	● structure des connexions : le circuit enfiché sur une plaque de pro-
totypage ou soudé sur une platine est représenté à l’aide de photos ;

	● dépannage : la recherche systématique d’erreurs est AMHA (à mon
humble avis) l’une des aptitudes particulières que j’aimerais enseigner
à tout futur bricoleur électronique. C’est la raison pour laquelle elle
fait partie intégrante de mes montages ;

	● composants nécessaires : je vous donne un aperçu des composants
nécessaires à la réalisation du montage. Vous pourrez ainsi voir tout
de suite si vous disposez déjà de ces composants ;

	● code de programmation : le code de programmation utilisé pour les
montages est exposé, parfois divisé en plusieurs parties.

Avant-propos 	 XXI

Pour certains montages, je proposerai des solutions Quick & Dirty qui
pourront surprendre à première vue. Mais elles seront suivies d’une variante
améliorée qui devrait vous faire dire : « Tiens, ça marche aussi comme ça
et même pas mal du tout ! Cette solution est encore meilleure ». Si c’est le
cas, alors j’aurai atteint le but que je m’étais fixé. Sinon, ce n’est pas grave.
Tous les chemins mènent à Rome.

Le code des montages présentés dans cet ouvrage est disponible à l’adresse
https://www.editions-eyrolles.com/dl/0100583

Mon site Internet
Sur mon site Internet (en allemand) :

https://erik-bartmann.de/

vous trouverez entre autres des informations supplémentaires sur la carte
Arduino. Le meilleur moment pour un auteur est de recevoir les commen-
taires de ses lecteurs. Je suis parfois vraiment ému lorsqu’un lecteur me dit
à quel point il a apprécié la lecture de mon livre et le temps à bricoler. J’en
suis très heureux et j’encourage chacun à me dire ce qu’il a pensé de mon
livre, ce qu’il a particulièrement apprécié et aussi ce qu’il estime devoir
être amélioré. Écrivez-moi, mon adresse e-mail est :

erik.bartmann@yahoo.de

Prérequis
Le seul prérequis personnel est d’aimer le bricolage et les expériences.
Nul besoin d’être un geek ni un expert en ordinateur pour comprendre
et reproduire les montages de ce livre. Nous commencerons en douceur
afin que chacun puisse suivre. Ne vous mettez pas de pression, le premier
objectif de cet ouvrage est de vous distraire !

Composants nécessaires
Notre carte Arduino est certes bien sympathique, et nous apprécions que
tout y soit si bien pensé et si petit. Mais nous verrons au cours d’une pro-
chaine étape tout ce que nous pouvons y raccorder de l’extérieur. Si vous
n’avez pas l’habitude de manipuler des composants électroniques (résis-
tances, condensateurs, transistors, diodes…), pas d’inquiétude. Chacun
fera l’objet d’une description détaillée, afin que vous sachiez comment il
réagit individuellement et au sein du circuit. Au début de chaque montage,

	XXII	 Avant-propos

j’indiquerai, comme je l’ai dit plus haut, la liste des composants nécessaires
que vous devrez vous procurer. Naturellement, l’élément-clé de tout circuit
sera toujours la carte Arduino, mais je ne la mentionnerai pas forcément
de manière explicite.

À ceux qui se demandent combien coûte une carte Arduino et s’ils peuvent
conserver leur train de vie après un tel achat, je répondrai : « Yes, you
can ! ». Elle est très bon marché, aux alentours de 25 euros. J’utilise la
carte Arduino Uno dans tous les chapitres importants. Les prix des autres
composants que nous utiliserons dans les montages sont également très
abordables.

Figure 1 u
La carte Arduino Uno

– l’originale

Règles de conduite
Lorsque vous êtes dans le feu de l’action et que vous vous concentrez sur
quelque chose qui vous passionne, les effets suivants se produisent :

	● diminution de la consommation de nourriture, ce qui peut entraîner
une perte de poids critique et une perte inquiétante de la réalité ;

	● une hydratation insuffisante pouvant aller jusqu’à la déshydratation et
l’augmentation de la formation de poussières dans l’environnement ;

	● abandon de toutes les mesures d’hygiène comme se laver, prendre une
douche, se brosser les dents, associé à une présence accrue de vermine ;

	● rupture de toutes les relations sociales .

Avant-propos 	 XXIII

N’attendez pas d’en arriver là et ouvrez de temps en temps la fenêtre pour
permettre aux insectes de quitter la pièce et laisser entrer l’air frais et la
lumière du soleil. Pour contrer les effets mentionnés précédemment, vous
pouvez régler votre réveil afin d’être invité à interrompre votre activité à
intervalles réguliers. Après la publication de ce livre, je ne veux pas être
confronté à une vague de plaintes de la part de partenaires en colère ou
d’amis qui ont été négligés. Vous ne pourrez pas me dire que je ne vous
aurai pas prévenu. Il ne me reste plus qu’à vous souhaiter un bon divertis-
sement et une bonne réussite avec votre carte Arduino !

Partie I

Les bases

	 3

Chapitre

1Arduino : le matériel

Comme je l’ai déjà évoqué dans l’avant-propos, le projet Arduino a été
développé à l’Interactive Design Institute d’Ivrée en Italie. C’est dans un bar
situé près de ce lieu que se retrouvaient régulièrement Massimo Banzi et
David Cuartielles, qui développèrent la première carte Arduino en 2005. Le
bar portait le nom d’Arduin d’Ivrée, qui fut roi d’Italie autour de l’an 1000.
Arduino désigne aujourd’hui la plate-forme logicielle et matérielle de ce
projet Open Source.

Le présent chapitre traite de la plate-forme matérielle Arduino. J’y explique
les termes de base et les sujets indispensables pour connaître la tech-
nique du microcontrôleur. Je passe également en revue les composants
qui constituent un microcontrôleur. Comme ces composants se retrouvent
pratiquement dans n’importe quel microcontrôleur, il est important de
les présenter en détail. Traiter des thèmes de base comme la tension ou
le courant me donnera aussi l’occasion de rafraîchir un peu vos connais-
sances en physique.

Les différentes cartes Arduino
Nous travaillerons dans ce chapitre, et dans tout le livre, avec la carte
Arduino Uno. Elle a été la première carte à être développée et produite
par les fondateurs d’Arduino. Par la suite, d’autres cartes Arduino avec des
améliorations techniques sont apparues. Quel genre d’améliorations ? Si
l’on choisit des caractéristiques telles que la fréquence du processeur ou
la mémoire vive disponible comme critères de décision pour l’achat d’une
nouvelle carte Arduino, il y a certainement des cartes qui conviennent
mieux parce qu’elles fonctionnent plus rapidement et qu’elles peuvent
stocker et traiter des programmes plus volumineux. Mais ce n’est pas for-
cément synonyme d’amélioration. Pour faire vos premiers pas, la carte
Arduino Uno est à mes yeux la meilleure solution, parce qu’elle est très
solide et très répandue.

La carte Arduino Yún par exemple est une carte intéressante ; elle offre
en effet un certain nombre d’extensions, comme le système d’exploitation
Linux. Toutefois, cette carte ne s’est pas vraiment imposée au sein des

	 4	 Partie I. Les bases

développeurs amateurs, peut-être parce que le Raspberry Pi était déjà sur
le marché lorsque Arduino Yún a été lancée. Être plus rapide ou avoir plus
de fonctionnalités ne signifie pas obligatoirement être meilleur.

J’aimerais pourtant vous indiquer quelques cartes Arduino notables :

	● Arduino Leonardo ;

	● Arduino Mega 2560 ;

	● Arduino Nano.

Ces cartes se distinguent par leur taille et le nombre de prises, donc de
possibilités de connexion pour communiquer avec le monde extérieur.
Elles présentent en outre des caractéristiques différentes pour ce qui est
du processeur, de la fréquence de cadence et du volume de mémoire.
Néanmoins, elles fonctionnent toutes suivant le même principe, et peuvent
être adressées et programmées avec un seul et même environnement de
développement Arduino. Selon le domaine d’application et les exigences
requises, une carte Arduino est peut-être plus appropriée qu’une autre.
Certains auront besoin d’une carte avec de nombreuses broches E/S et
opteront par exemple pour la carte Arduino Mega ou la Due. D’autres
choisiront la carte Arduino Micro ou Nano, car elles sont toutes petites et
rentrent très bien dans des boîtiers petit format. Elles sont utilisées pour
des applications où l’espace est restreint.

Le génie toute catégorie est selon moi la carte Arduino Uno et elle le
restera pendant encore longtemps. Elle offre une plate-forme idéale pour
ceux qui débutent dans l’univers des microcontrôleurs. La plupart des
tutoriels, projets et discussions sont également accessibles sur Internet.
Lorsque vos montages deviendront de plus en plus ardus, vous n’aurez
aucun problème à acheter un autre modèle de carte Arduino, car les prix
sont vraiment abordables. De nombreux amateurs se procurent plusieurs
cartes différentes au fur et à mesure pour compiler les expériences, ce qui
est à mes yeux tout à fait normal.

Les liens ci-dessous vous permettent d’accéder à des informations détaillées
sur les cartes que j’ai mentionnées :

	● Arduino Uno :	
https://www.arduino.cc/en/Main/ArduinoBoardUno

	● Arduino Mega :	
https://www.arduino.cc/en/Main/ArduinoBoardMega2560

	● Arduino Leonardo :	
https://www.arduino.cc/en/Main/ArduinoBoardLeonardo

	● Arduino Micro :	
https://www.arduino.cc/en/Main/ArduinoBoardMicro

Chapitre 1. Arduino : le matériel 	 5

	● Arduino Nano :	
https://www.arduino.cc/en/Main/ArduinoBoardNano

Il existe de nombreuses autres cartes Arduino et d’extensions, que vous
trouverez aux adresses suivantes :

	● https://www.arduino.cc/en/Main/Products

	● https://www.arduino.cc/en/Main/Boards

La carte Arduino Uno
Commençons par examiner de plus près la carte Arduino. J’ai identifié sur
la figure ci-dessous les principaux composants de la platine.

Microcontrôleur

Entrées
analogiques

Alimentation

Connecteur USB

Connecteur d’alimentation

Entrées-sorties digitales

t Figure 1
La carte Arduino Uno

Nous allons passer en revue ces différents éléments. Tout ne vous paraîtra
peut-être pas encore très clair, mais je vous promets que nous les exami-
nerons en détail un peu plus loin.

Le microcontrôleur
Le microcontrôleur est le cœur de la carte Arduino. Il est quasiment le
centre de calcul de la carte Arduino. La carte Arduino Uno que nous utili-
serons est équipée d’un microcontrôleur Atmel AVR de type ATmega328.
Sur la figure 1 ci-dessus, c’est le gros composant noir muni de nom-
breuses broches. Ce composant est fabriqué par la société américaine
Microchip Technology Inc. et se retrouve dans de nombreuses cartes.

Voici, page suivante, une petite vue d’ensemble des principales caractéris-
tiques techniques de la carte Arduino Uno.

	 6	 Partie I. Les bases

Tableau 1 u
Quelques caractéristiques

intéressantes de la carte
Arduino Uno

Catégorie Valeur

Microcontrôleur ATmega328

Tension de service 5 V

Tension d’entrée
(recommandée)

7 V à 12 V

Tension d’entrée (limites) 6 V à 20 V

Broches E/S numériques 114 (6 sorties commutables en MLI)

Entrées analogiques 6

Courant CC par broche d’E/S 40 mA

Courant CC pour broche 3,3 V 50 mA

Mémoire Flash 32 Ko (ATmega328), dont 0,5 Ko est utilisé par le
chargeur d’amorçage

SRAM 2 Ko (ATmega328)

EEPROM 1 Ko (ATmega328)

Fréquence d’horloge 16 MHz

Vous trouverez des informations détaillées à l’adresse Internet suivante :

https://www.arduino.cc/en/Main/ArduinoBoardUno

Les entrées et sorties
Pour communiquer avec un microcontrôleur, il nous faut établir une
connexion physique, quelle que soit sa forme. Ces entrées et sorties sur
la carte Arduino sont appelées des ports. Comme vous pouvez le voir sur
le tableau 1, nous disposons d’un certain nombre d’entrées et de sorties
pour communiquer avec la carte Arduino. Elles constituent l’interface avec
le monde extérieur et permettent d’échanger des données avec le micro-
contrôleur. Jetons un œil sur la figure ci-dessous :

Figure 2 u
Les entrées et sorties

numériques de la carte
Arduino Uno

Entrées analogiques

Entrées/sorties
numériques

Vous y voyez le microcontrôleur qui peut communiquer avec nous par
le biais de certaines interfaces. Certains ports servent d’entrées, d’autres
d’entrées et de sorties.

Chapitre 1. Arduino : le matériel 	 7

QU’EST-CE QU’UN PORT ?
Un port est un chemin d’accès défini vers le microcontrôleur, une sorte de
porte qui mène à l’intérieur et qui permet de communiquer avec ce dernier.
Les broches d’entrée et de sortie sont généralement organisées en ports et
affectées dans un microcontrôleur à un registre, c'est-à-dire une certaine
plage de mémoire.

Regardez la carte, vous apercevez des réglettes de raccordement noires
sur ses bords supérieur et inférieur. Vous vous demandez sûrement par
exemple quelles entrées et sorties numériques sont utilisées pour les
entrées et les sorties ? Peut-être que certaines ne fonctionnent que comme
des entrées et d’autres que comme des sorties. Cela manquerait de flexibi-
lité. C’est pour cela qu’il existe une bien meilleure solution. Et qu’en est-il
des sorties analogiques ? Il n’y en a pas du tout ici.

Commençons par les broches numériques. Chaque broche est le raccorde-
ment séparé d’un port, qui combine plusieurs broches. Comme les spécifi-
cations l’indiquent, la carte Arduino Uno dispose de 14 broches numériques
d’entrées et de sorties, ou broches E/S, E/S étant l’abréviation d’entrée et
de sortie. On peut alors programmer de manière très flexible quelle broche
parmi les 14 fonctionnera comme entrée ou comme sortie. Ce processus
est appelé configuration.

Passons maintenant aux broches analogiques. Notre carte Arduino ne
dispose pas de sorties analogiques séparées. Cela peut paraître bizarre
au premier abord, mais certaines broches numériques sont détournées
de leur destination première et servent de sorties analogiques. Vous vous
demandez certainement comment cela fonctionne. Voici donc un avant-
goût de ce qui sera expliqué dans le montage n° 1 sur la modulation de
largeur d’impulsion, ou MLI. Il s’agit d’un procédé dans lequel le signal
présente des phases à niveau haut et des phases à niveau bas plus ou
moins longues. Si la phase à niveau haut, dans laquelle le courant circule,
est plus longue que celle à niveau bas, une lampe branchée par exemple
sur la broche correspondante éclairera visiblement plus fort que si la phase
à niveau bas était la plus longue. Plus d’énergie sera donc apportée en un
temps donné sous forme de courant électrique À cause de la persistance
rétinienne de notre œil, nous ne pouvons différencier des événements
changeant rapidement que sous certaines conditions, et un certain retard
se produit aussi lorsque la lampe passe de l’état allumé à celui éteint, et
réciproquement. Cela m’a tout l’air d’être une tension de sortie qui se
modifie, bizarre, non ? Vous comprendrez certainement mieux lorsque
nous aborderons ce chapitre.

En tout cas, ce mode de gestion des ports présente d’emblée un inconvé-
nient. Quand vous utilisez une ou plusieurs sorties analogiques, c’est au

	 8	 Partie I. Les bases

détriment de la disponibilité des ports numériques, il y en a alors d’au-
tant moins à disposition, mais cela ne saurait nous gêner outre mesure,
car nous n’atteignons pratiquement pas les limites de la carte. De ce fait,
nous n’avons pas de restriction sur les montages expérimentaux à tester.
Le terme chargeur d’amorçage (ou bootloader en anglais) apparaît dans les
spécifications de la carte et nécessite une explication.

QU’EST-CE QU’UN CHARGEUR D’AMORÇAGE ?
Un chargeur d’amorçage est un petit programme qui doit être installé une fois
sur le microcontrôleur ATmega328. Déjà installé par le fabricant lorsque vous
achetez une carte Arduino, ce programme a sa place dans une certaine zone de
la mémoire flash du microcontrôleur et assure le chargement du logiciel une
fois la mise sous tension établie. Celui-ci s’exécute alors automatiquement,
sans attendre qu’il soit enregistré dans la mémoire.

La mémoire flash disponible est diminuée de la part attribuée au chargeur
d’amorçage. Normalement, un microcontrôleur reçoit son programme de
travail d’un matériel informatique supplémentaire, par exemple d’un pro-
grammateur In System Programming (ISP). Le chargeur d’amorçage évite
cela, ce qui rend le téléchargement du logiciel vraiment facile. Sitôt dans
la mémoire de travail du contrôleur, le programme de travail est exécuté.
Si jamais vous deviez changer, pour une raison quelconque, votre micro-
contrôleur ATmega328 sur la carte, le nouveau circuit ne saurait pas ce
qu’il doit faire, car le chargeur d’amorçage n’est pas enregistré par défaut.
Cette fonctionnalité peut être installée selon différentes procédures que
je ne peux pas expliquer ici faute de place. Cependant, vous trouverez sur
Internet suffisamment d’informations pour vous permettre d’installer le
chargeur d’amorçage approprié au microcontrôleur.

L’alimentation électrique
Commençons par la tension d’alimentation, car sans elle rien n’est possible.
Il existe différentes possibilités. Quand nous travaillons avec Arduino ou
que nous le programmons, il est indispensable d’établir une connexion
USB avec l’ordinateur. Cette liaison assure deux fonctions :

	● transmettre l’indispensable tension d’alimentation de 5 V ;

	● offrir un canal de communication entre l’ordinateur et la carte Arduino.

Les deux fonctions sont remplies par le port USB argenté, désigné sous
le nom de connecteur USB sur la figure 1. Dans le chapitre suivant, nous
examinerons la prise de plus près, ainsi que son type et la procédure d’ins-
tallation du logiciel requis. Ce chemin d’accès à la carte est employé pour
le développement et le test de programme. Une seconde prise se trouve
juste à côté de la première : c’est la prise d’alimentation, appelée connecteur

Chapitre 1. Arduino : le matériel 	 9

d’alimentation. Elle permet de déconnecter la carte de l’ordinateur une
fois sa programmation effectuée. À quoi cela sert-il ? C’est très simple !
Imaginons que nous construisions un robot motorisé et que la carte Arduino
doive réceptionner des commandes transmises par un émetteur radio et
exécuter les actions correspondantes. Le câble USB limiterait considérable-
ment le rayon d’action du véhicule. Nous avons simplement besoin d’une
alimentation électrique pour la carte et éventuellement pour les moteurs,
car la programmation est terminée. Comme le déclare la NASA au décollage
des fusée : le guidage est interne. La carte Arduino est autonome ! La figure 3
ci-dessous présente une alimentation électrique externe à l’aide d’une pile
9 V, ce qui toutefois ne constitue pas une solution durable.

Arduino Uno

Connecteur 2,1 mm

Pile de 9 V

Connecteur de pile

t Figure 3
La carte Arduino Uno
avec une alimentation
électrique externe
via une pile

La tension d’alimentation doit être comprise
entre 7 et 12 V CC (CC = courant continu). Un
bloc d’alimentation à fiche avec une prise de
2,1 mm à moins de 10 € constitue la meilleure
variante d’alimentation électrique externe. Il doit
par exemple fournir une tension de 9 V CC/1 A :

Il existe aussi une broche Vin, qui peut servir
également à l’alimentation électrique. Vous trou-
verez des informations détaillées aux adresses Internet suivantes :

https://www.arduino.cc/en/Main/ArduinoBoardUno

https://playground.arduino.cc/Learning/WhatAdapter

t Figure 4
Une alimentation
électrique avec bloc
d’alimentation à fiche

	 10	 Partie I. Les bases

COMPRENDRE LES TERMES DE BASE

À propos de l’alimentation électrique
Savez-vous ce qu’est la tension et comment elle est produite ? Nous n’avons
pas non plus abordé la question du courant. Vous avez l’occasion de rafraîchir
ici vos connaissances de base en électronique et de découvrir davantage de
possibilités avec votre carte Arduino.

Grandeurs physiques
Étant donné que sans la présence de tension, les appareils électriques ne
sont rien d’autre que des appareils inutiles, j’aimerais aborder brièvement les
grandeurs physiques. Les grandeurs physiques ou grandeurs fondamentales
électriques sont principalement la tension électrique, le courant électrique,
la résistance électrique et la charge électrique. Pour pouvoir construire vos
propres projets avec la carte Arduino et ne pas vous contenter de les reproduire,
il est indispensable de comprendre le lien entre tension, courant et résistance.
Cet ouvrage n’étant pas conçu comme un manuel d’électronique, mais plutôt
comme un guide pratique sur Arduino, je n’aborderai le sujet que de manière
succincte.

Qu’est-ce que la tension ?
Tous les matériaux qui nous entourent, qu’ils soient solides, liquides ou
gazeux, sont composés d’atomes. Un atome est composé d’un noyau et d’une
enveloppe, le noyau étant constitué de protons chargés positivement et de
neutrons. Dans l’enveloppe de l’atome, les électrons chargés négativement
évoluent autour du noyau. Si le nombre d’électrons est réparti uniformément,
nous ne remarquons en fait rien d’un phénomène électrique, sauf si l’équilibre
électrique est perturbé d’une manière ou d’une autre. Si, par exemple, ces
porteurs de charge négative, représentés par les électrons, sont retirés d’un
corps et ajoutés à un autre corps, il existe alors un état électrique entre les
deux corps qui a rompu l’équilibre de charge qui existait précédemment. Plus
ce déséquilibre est important, plus l’état électrique est important.

On pourrait comparer cela à deux personnes qui ne seraient pas du même avis
et entre lesquelles se formerait alors une certaine tension. Plus les divergences
sont importantes, plus la tension est grande. Et c’est ainsi que le premier
aspect d’un état électrique a été désigné par le terme de tension électrique.

La séparation des charges est un état de repos, donc statique, car rien ne
bouge après la séparation des porteurs de charge. La tension en présence
peut être mesurée. L’unité de mesure de la tension est le volt, dont l’abréviation
est la lettre V.

Jusqu’ici tout est clair, mais à quoi sert cette différence de charge, qui représente
une certaine tension ? L’état statique change brusquement lorsqu’une liaison
plus ou moins conductrice est établie entre les deux corps, liaison que les
électrons peuvent enjamber. Cela peut se produire avec les matériaux les plus
divers, comme le cuivre, l’aluminium ou l’argent.

Chapitre 1. Arduino : le matériel 	 11

La figure 5 montre sur la gauche une répartition uniforme de porteurs de
charge négatifs et positifs. Les deux sont équilibrés et il n’y a donc pas de
différence de potentiel et pas de tension. En revanche, sur la droite, les porteurs
de charge sont séparés. La partie gauche est dominée par les porteurs de
charge négatifs, la partie droite par les porteurs de charge positifs. Cette
différence de potentiel crée une tension.

Un déséquilibre de charge établi tend toujours à s’équilibrer et les électrons
se déplacent d’un corps à l’autre lors d’une liaison, la migration se faisant
du surplus d’électrons vers le manque d’électrons. C’est seulement lorsque
cette possibilité est donnée qu’un flux de courant circule, comme on le voit
sur la figure 6 :

Vous savez déjà qu’il existe différentes formes de tension, appelées tension
continue et tension alternative. La figure 7 page suivante montre ces formes
de tension au cours du temps, la carte Arduino fonctionnant avec une tension
continue (ou courant continu). Cette forme de tension, on parle aussi de courant
continu, est caractérisée par une intensité et une direction qui ne varient pas.
Elle est symbolisée par les lettres DC (Direct Current) ou, en France, par CC
(courant continu). Le courant alternatif est, quant à lui, noté AC (Alternating
Current) ou CA (courant alternatif). D’où le nom du groupe de rock AC/DC. Cette
forme de courant est régalement représentée sur la figure 7.

Aucune différence de potentiel
Aucune tension

Différence de potentiel
Aucune tensionTension

t Figure 6
Circulation d’un flux
de courant

Circulation
du courant

	 12	 Partie I. Les bases

La hauteur de la tension U du courant continu n’évolue pas, tandis que la
valeur de la tension U du courant alternatif varie en permanence et oscille
entre deux valeurs limites, l’une positive et l’autre négative, en formant une
courbe sinusoïdale.

Qu’est-ce que le courant ?
Vous savez maintenant qu’un courant électrique peut passer en présence de
tension. Mais de quoi s'agit-il ? Que se passe-t-il dans un matériau conducteur
comme le cuivre lorsqu’il est traversé par du courant ? La présence d’une
tension et la différence de potentiel qui en résulte font que les électrons
présents sur l’enveloppe la plus externe des atomes sont arrachés et se
déplacent sous forme d’électrons libres comme un nuage à travers le matériau.
Cela s’explique par le fait qu’en libérant les électrons libres, un atome devient
ce que l’on appelle un ion. Un ion est un atome présentant un déséquilibre
entre les électrons et les protons. Vers l’extérieur, l’atome n’est plus neutre.
Un électron arraché laisse derrière lui un vide dans la composition de l’atome,
qui peut être comblé par un autre électron libre.

Ce processus d’arrachement et de remplissage des vides par les électrons
est désigné par le terme de courant électrique. Les deux figures ci-après
représentent le flux de courant à travers un conducteur. La section transversale
du conducteur et la période d’observation pour mesurer le courant jouent un
rôle décisif. On voit sur la première figure six électrons entiers par segment
indiqué. Ce n’est pas beaucoup, comme on le verra plus tard, mais pour le
moment, cela ne joue qu’un rôle secondaire.

Sur la deuxième figure, on voit comparativement moins d’électrons, seulement
quatre par segment indiqué. Le flux de courant est donc plus faible.

Figure 7 u
Circulation d’un flux

de courant

Figure 8 u
De nombreux électrons

circulant à travers
un conducteur

Période de temps

Chapitre 1. Arduino : le matériel 	 13

Le flux électrique peut donc être défini avec le rapport suivant :

Puissance du courant =
Nombre d’électrons

Période de temps

Bien entendu, le diamètre du conducteur joue également un rôle, car plus le
canal de passage des électrons libres est étroit, plus la résistance est grande et
plus le flux de courant est faible. Comme les électrons possèdent une charge,
la somme des électrons à considérer par période de temps peut aussi être
considérée comme une quantité de charge. Cette quantité de charge est
symbolisée et désignée par la lettre Q. On peut maintenant exprimer le tout
de façon plus précise par une formule mathématique :

I =
Δ Q

Δ t

La lettre I symbolise le courant et le petit triangle Δ, appelé delta, est utilisé
en mathématiques pour symboliser les changements ou les différences. Cela
signifie donc que l’intensité du courant est égale à la modification de la quantité
de charge Q par le temps t. Dans l’exemple ci-dessus avec six ou quatre
électrons par intervalle de temps, on peut constater que c’est très, très, très
peu et le calcul suivant se rapproche un peu plus de la réalité. On souhaite
déterminer le nombre d’électrons qui traversent le conducteur pendant un
intervalle de temps d’une seconde sous une intensité de 1 A (A signifie ampère,
soit l’unité de mesure du courant électrique). Mais comment calculer cela ?
Pour ce faire, on inverse la formule indiquée selon la quantité de charge, qui
se présente alors comme suit :

L'équation se présente comme suit avec les valeurs saisies :

Comme on l’a vu, la quantité de charge Q est le nombre n d’électrons et il est
bon de savoir quelle est la charge élémentaire d’un électron pour résoudre
le problème posé. Celle-ci est symbolisée par la lettre e, qui a comme valeur
1,602176 · 10–19 C, où C signifie coulomb, l’unité de mesure d’une charge
électrique. On peut alors remplacer dans la dernière formule ΔQ par le nombre
de charges élémentaires n et on obtient :

Période de temps

t Figure 9
Quelques électrons
circulant à travers
un conducteur

Δ Q = I  ·  Δ t

Δ Q = 1A.s

n · e = 1A.s

	 14	 Partie I. Les bases

On voit très bien ici que 1C (coulomb) peut aussi présenter l’unité A.s, ce qui
apparaît immédiatement dans la formule abrégée. On obtient :

n = = 6,24151 · 1018
1A.s

1, 602176 · 10-19 A.s

Le résultat impressionne par le nombre très élevé d’électrons (6 trillions).

Maintenant que j’ai brièvement évoqué les grandeurs électriques telles que la
tension électrique et le courant électrique, il me manque encore la résistance
électrique. Afin que cela ne devienne pas trop aride et ne soit pas une récitation
de connaissances théoriques, j’aborderai la résistance électrique dans les
chapitres où elle joue un rôle important. C’est par exemple le cas dans le
montage n° 1 sur la commande d’une diode lumineuse, car ce composant
électronique qui fait office de voyant ne doit pas fonctionner sans limitation
de courant. Et cette fonction de limitation du courant est assurée par un
composant électrique précis. Nous y reviendrons plus tard.

Différents types de signaux
Je vous ai déjà montré précédemment les entrées et sorties de la carte
Arduino Uno. Celles-ci sont mises à disposition par des headers (en-têtes
en français) que vous pouvez voir sur la figure ci-après :

Figure 10 u
Les headers de la carte

Arduino Uno

En-tête

En-tête

Vous pouvez connecter aux en-têtes de petits câbles patch ou directement
des composants. Il existe différentes catégories de connexion sur lesquelles
j’aimerais revenir en détail. Mais avant, je dois faire un petit détour pour
expliquer la différence entre signaux analogiques et numériques.

Dans la nature, on trouve des formes de signaux aux tracés continus, comme
la température ou la luminosité. Le tracé du signal d’un son aura une forme
sinusoïdale sur un oscillographe, comme le montre cette figure :

Chapitre 1. Arduino : le matériel 	 15

Il n’y a pas d’interruption au cours du temps, représenté sur l’axe horizontal
t, et les valeurs se succèdent en permanence. Nous aurions du mal à repré-
senter un signal de ce type sur un ordinateur qui ne connaît que les états
actif ou inactif, qui correspondent aux niveaux de tension HIGH (5 V d’une
liaison série TTL) et LOW (0 V). Le tracé pourrait ressembler à celui-ci :

t Figure 12
Une courbe numérique

Sur la carte Arduino comme sur d’autres microcontrôleurs, les variations
de tension analogiques sont soumises à des restrictions sur lesquelles nous
reviendrons plus loin.

Les entrées et sorties numériques
La carte Arduino Uno dispose de diverses entrées et sorties numériques.
Les prises sont désignées par des dénominations que vous pouvez voir
sur la figure ci-dessous :

t Figure 13
Les entrées et sorties
numériques

Les prises sont numérotées de droite à gauche de 0 à 13, certains chiffres
étant précédés d’un tilde. Nous y reviendrons très vite. Il y a aussi deux

t Figure 11
Une courbe sinusoïdale
(analogique)

	 16	 Partie I. Les bases

prises désignées par les lettres RX et TX. Elles ne doivent pas être utilisées
pour la transmission de commandes, car elles sont affectées d’office à
l’interface sérielle. La prise désignée par les lettres GND (Ground) corres-
pond à la masse. Peut-être vous demandez-vous maintenant quels ports
appartiennent à la catégorie des entrées et lesquels aux sorties. La réponse
est simple. Les ports numériques peuvent être configurés librement par
le biais de la programmation et servir aussi bien d’entrées que de sorties.
Si une prise doit servir d’entrée, il faut toujours vérifier que la tension ne
dépasse pas 5 V ! Sinon le microcontrôleur pourrait être définitivement
endommagé.

Les entrées et sorties analogiques
Venons-en aux entrées et sorties analogiques. Les entrées analogiques sont
illustrées sur la figure 14 :

Figure 14 u
Les entrées analogiques

Les dénominations vont de A0 à A5, soit un total de 6 entrées analogiques.
Là aussi, les valeurs de tension doivent être comprises entre 0 V et 5 V. Ne
perdez pas votre temps à rechercher des sorties analogiques, car vous n’en
trouverez pas. Peut-être penserez-vous qu’elles ont été oubliées. Pas tout
à fait. Elles se trouvent à un autre endroit et elles n’ont pas exactement le
comportement que l’on attendrait de leur part.

Nous en arrivons maintenant aux ports numériques dont la dénomina-
tion est précédée d’un tilde. Il s’agit des ports D3, D5, D6, D9, D10 et D11
qui peuvent être configurés en tant que sorties analogiques. Des sorties
numériques devraient donc faire office de sortie analogiques ?! Cela paraît
un peu étrange.

C’est là que la MLI entre en scène. MLI est le pendant français de PWM
(Pulse-Width-Modulation), autrement dit modulation de largeur d’impulsion.
Nous avons ici affaire à un signal numérique et non à un signal analogique.
Cela ne paraît pas très logique à première vue. Un signal MLI est un signal
de fréquence et d’amplitude de tension constantes. La seule chose qui
varie est le rapport cyclique.

Quand la fréquence f est constante, cela signifie que la durée d’une période
T l’est aussi. Le seul aspect qui peut varier est la durée d’impulsion t.

Chapitre 1. Arduino : le matériel 	 17

Plus l’impulsion est large, passant ainsi quasiment d’une droite unidimen-
sionnelle à une surface, plus grande est l’énergie qui est transmise au
consommateur. Examinons quatre possibilités.

Rapport cyclique de 25 %

Rapport cyclique de 75 %

Rapport cyclique de 50 %

Rapport cyclique de 100 %

t Figure 16
Exemples de MLI

Nous examinerons la commande en détail plus loin.

L’alimentation interne
Le connecteur d’alimentation comporte les broches ayant les fonctions
suivantes :

Désignation Fonction t Tableau 2
Broches d’alimentation
en tension

VIN Tension d’entrée de la carte Arduino pour une alimentation
électrique externe 5 V

5 V Sortie 5 V régulée

3V3 Sortie 3,3 V régulée. Le courant maximum est de 50 mA. GND

GND Masse

IOREF Tension de référence des ports d’E/S ou du microcontrôleur

Durée des impulsions
Durée de la période

t Figure 15
Durée d’une impulsion
et durée d’une période
au cours du temps

	 18	 Partie I. Les bases

Le bouton de réinitialisation
Le bouton de réinitialisation permet de redémarrer le microcontrôleur.
Le sketch téléchargé n’est pas supprimé ; il est simplement redémarré.

L’interface sérielle
L’interface sérielle offre une autre possibilité de communication avec la
carte Arduino. Elle est accessible via le port USB et peut être interrogée par
l’intermédiaire d’un programme de terminal, tel que PiTTY. Nous n’avons
pas besoin de logiciel supplémentaire, car le moniteur série inclus dans
l’environnement de développement Arduino suffit. Il affiche des valeurs
pendant la durée d’exécution du sketch, ce qui est non seulement très
utile pour la surveillance de certaines valeurs de capteur, mais aussi pour
une éventuelle recherche d’erreurs. Des fonctions plus avancées, comme
l’échantillonnage ou l’affichage de valeurs mesurées qui sont transmises
à d’autres programmes, peuvent être réalisées via l’interface sérielle. Le
langage de programmation Processing est très utile dans ce contexte.

Informations relatives à l’interface sérielle et au port USB
Froncez-vous les sourcils à la seule mention de l’interface sérielle et de la
communication par ce biais ? En effet, la carte Arduino est uniquement
raccordée à l’ordinateur via un port USB et il faudrait maintenant qu’elle
communique par l’interface sérielle ? Comment est-ce possible ? Cela
s’explique par des raisons historiques : la première carte Arduino était
connectée à l’ordinateur par l’interface sérielle RS232, car il n’y avait pas
de port USB. Les modèles suivants ont été dotés d’une puce FTDI (Future
Technology Devices International) qui permettait d’utiliser un port USB tel
qu’une interface sérielle. Après l’installation du pilote correspondant, un
port COM supplémentaire est alors disponible pour la carte Arduino. À
la place de la puce FTDI (FT232RL), la carte Arduino Uno est dotée d’un
microcontrôleur supplémentaire, l’ATmega8U2. Cette puce, en plus d’être

Bouton de réinitialisation

Connecteur USB

Figure 17 u
Le bouton de

réinitialisation

Chapitre 1. Arduino : le matériel 	 19

librement programmable, présente l’avantage de pouvoir être utilisée uni-
versellement comme périphérique USB, de la même façon qu’un clavier
ou une souris. Vous trouverez des informations sur ce thème et d’autres
aspects intéressants à l’adresse suivante :
https://learn.adafruit.com/arduino-tips-tricks-and-techniques/
arduino-uno-faq

Les différentes mémoires
J’ai cité plus haut divers types de mémoire :

	● flash ;

	● SRAM ;

	● EEPROM.

Il est important de connaître les différences et les domaines d’application de
chacune. Vous trouverez de plus amples informations à l’adresse suivante :
https://www.arduino.cc/en/Tutorial/Memory

La mémoire flash
Un programme, ou sketch dans l’environnement Arduino, doit être stocké
ou enregistré dans le microcontrôleur. Le sketch indique au microcontrô-
leur ce qu’il doit faire et les tâches qui doivent être exécutées. Un pro-
gramme se divise en étapes (ou commandes) qui sont exécutées dans un
ordre précis. La mémoire flash se charge du stockage. Même si la carte
Arduino n’est plus raccordée à l’alimentation électrique, le sketch qui a été
transféré sur le microcontrôleur reste en mémoire. Ces informations sont
à nouveau accessibles après une nouvelle connexion électrique.

La SRAM
SRAM est l’abréviation de Static Random Access Memory. Lorsqu’un sketch
est nécessaire pour traiter par exemple des valeurs de mesure, ces valeurs
doivent être conservées sous une forme quelconque à l’intérieur du micro-
contrôleur. On utilise à cette fin des variables qui occupent de la place dans
certaines parties de la mémoire pour l’échange et la manipulation des don-
nées. Toutefois, ces zones de mémoire sont volatiles, ce qui signifie que les
informations disparaissent en cas de coupure de l’alimentation électrique.
Cela n’a pas d’importance. En effet, le sketch n’utilise ces données que
durant son exécution et elles sont recréées lors d’une nouvelle exécution.
La zone de mémoire étant parfois très limitée sur certains modèles, il est
alors possible de stocker des données dans la mémoire flash plutôt que dans
la SRAM. Vous trouverez de plus amples informations à l’adresse suivante :

https://www.arduino.cc/en/Reference/PROGMEM

https://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-uno-faq

	 20	 Partie I. Les bases

L’EEPROM
EEPROM signifie Electrically Erasable Programmable Read-Only Memory.
Comme pour la mémoire flash, il s’agit d’une mémoire non volatile qui
conserve les données qui y ont été enregistrées même en cas de coupure
de l’alimentation électrique. Elle peut être utilisée pour enregistrer de façon
permanente des données importantes, telles que des valeurs de mesure.
Notez toutefois que les accès en écriture et en suppression à cette zone
de mémoire sont limités à 100 000 cycles. Cette zone de mémoire n’est
donc pas adaptée pour enregistrer des données échantillonnées lors de
brèves mesures cycliques.

Vous venez de recevoir une grande quantité d’informations sur le maté-
riel Arduino. La disposition des composants sur la carte Arduino Uno ne
devrait plus avoir de secrets pour vous. Vous connaissez maintenant le
microcontrôleur Atmega328, le cœur de la carte Arduino. Vous savez éga-
lement comment la carte est alimentée en courant et quelles sont les
entrées et sorties numériques et analogiques. Vous en savez un peu plus
aussi sur les mémoires utilisées sur l’Arduino. Et surtout, vous savez ce que
sont le courant et la tension et comment les représenter par des formules
mathématiques.

Je vais vous montrer au chapitre 2 comment vous allez pouvoir piloter la
carte Arduino à l’aide de son environnement de développement logiciel.

	 21

Chapitre

2Arduino : le logiciel

Quand je parle d’Arduino, il s’agit aussi bien de la carte que du logiciel
dont on se sert pour commander le microcontrôleur. Dans ce chapitre,
vous apprendrez à installer les logiciels indispensables sur votre ordina-
teur. Nous passerons également en revue tout ce que vous devez savoir
pour réussir à faire fonctionner correctement votre premier programme
Arduino. Je vous montrerai la disposition de l’environnement de dévelop-
pement Arduino. Vous apprendrez aussi dans ce chapitre ce qu’il se passe
à l’arrière-plan lorsqu’un programme se déroule sur votre carte Arduino.
Je vous indiquerai enfin tous les composants nécessaires à votre atelier de
développeur amateur.

Il existe théoriquement deux possibilités pour piloter votre carte Arduino.
Vous pouvez recourir à un programme logiciel que vous installez sur votre
ordinateur, l’environnement de développement Arduino en l’occurrence,
ou vous pouvez utiliser Arduino Create, un éditeur basé sur le Web, à ouvrir
avec votre navigateur.

Le plug-in à installer lors de l’utilisation d’Arduino Create basé sur le Web
n’est pas un plug-in de navigateur mais un agent qui fonctionne en arrière-
plan et qui configure son service quasiment indépendamment du navi-
gateur. Tout navigateur utilise cet agent et doit pouvoir ensuite établir
une connexion au cloud ou à Arduino. Cet agent redémarre à chaque
redémarrage du système. Les informations sur le gestionnaire de tâches
sont disponibles sous l’onglet Démarrage. Vous pouvez y voir l’entrée
Arduino_Create_Agent (voir figure 1 page suivante).

	 22	 Partie I. Les bases

Figure 1 u
La configuration

des programmes de
démarrage sous Windows

Pour éviter que cet agent démarre avec Windows, placez l’état sur Désactivé.

IDE Arduino ou Arduino Create ?
Si vous avez opté pour une installation locale de l’environnement de déve-
loppement Arduino, tout votre code, y compris les bibliothèques, se trouve
sur votre ordinateur. Vous avez donc tout sous la main et vous pouvez y
accéder directement sans avoir besoin d’une connexion Internet. Lorsqu’il
y a de nouvelles bibliothèques, autrement dit des programmes Arduino
déjà créés, ou de nouvelles versions de bibliothèques existantes, il relève
de votre responsabilité de mettre à jour votre système ou de les installer.
Vous recevez évidemment des informations sur l’existence d’éventuelles
mises à jour.

À l’inverse, la plate-forme Arduino Create vous propose d’enregistrer vos
codes dans l’Arduino IOT Cloud, qui est une mémoire située quelque part
sur Internet. Une connexion Internet continue est donc obligatoire, car
tout est géré via un accès du navigateur web. L’avantage de cette version
est que vous avez un accès partout dans le monde à toutes les ressources
Arduino, codes et bibliothèques. Les bibliothèques proposées sont ainsi
maintenues à un état actuel par un organe central et vous n’avez plus
besoin de les mettre à jour. Je propose que vous testiez les deux versions.
Vous pourrez ainsi opter pour celle qui vous convient le mieux. Aussi bien
l’IDE Arduino qu’Arduino Create permettent de travailler de façon pratique.
J’utilise dans ce livre l’IDE Arduino, parce que je préfère cette version et
qu’elle ne m’oblige pas à avoir toujours une connexion Internet, bien que
ce soit presque toujours le cas de nos jours. Personnellement, je n’aime
pas les solutions sur le cloud.

Chapitre 2. Arduino : le logiciel 	 23

Présentation de l’environnement
Au démarrage de l’environnement de développement Arduino que vous
avez installé sur votre ordinateur, la fenêtre représentée sur la figure 2
s’ouvre : l’environnement de développement contient différentes zones.
Vous y trouverez une zone d’entrée et une autre de sortie, des éléments
de commande, ou encore des informations à propos des paramètres de
connexion. Nous allons les examiner en détail.

L’éditeur
La zone dans laquelle vous saisissez votre code de programmation s’appelle
l’éditeur. Il prend en charge la fonctionnalité de syntax highlighting, ce qui
signifie que les mots-clés du langage de programmation sont généralement
affichés en couleur.

Ligne d’informations
En dessous de l’éditeur se trouve une zone étroite dans laquelle s’affichent
des informations relatives à la progression d’une opération ou des messages
sur la dernière action exécutée. Vous pouvez voir sur la figure 2 que je viens
de télécharger un sketch sur la carte Arduino.

 Figure 2
Les différentes zones
de l’environnement de
développement Arduino

Barre des menus 
Barre d’icônes 

Ligne d’informations 

 Moniteur série

 Éditeur

 Onglets

 Messages du compilateur

 Informations de connexion

	 24	 Partie I. Les bases

Messages du compilateur
Lorsque le compilateur, c’est-à-dire le programme Arduino interne qui
traduit votre code de programme dans un langage machine compris par
le microcontrôleur, remplit son rôle de traduction du code source, la
zone noire affiche des messages de progression ou signale d’éventuels
problèmes. Enfin, l’utilisation de la mémoire y est aussi indiquée. Pour
que le compilateur soit plus lisible, vous pouvez adapter le flux de langage
avec l’option de menu Fichier | Préférences | Avertissements du compilateur.

L’option est réglée par défaut sur Rien.

Informations de connexion
Dans le bord inférieur de l’environnement de développement, vous pou-
vez voir les informations de connexion, c’est-à-dire la carte actuellement
raccordée à un port COM. C’est utile en cas de problème de connexion ou
pour la résolution d’erreurs.

Onglets
La barre d’onglets permet d’afficher les fichiers de codes sources d’un
même sketch. Nous nous en servirons lorsque nous programmerons nos
propres bibliothèques et catégories. Un seul sketch par environnement de
développement peut être exécuté. Plusieurs sketches différents ne peuvent
pas se trouver dans une instance de l’environnement de développement,
contrairement aux onglets d’un navigateur qui est capable de gérer plu-
sieurs connexions.

Moniteur série
L’icône de la loupe permet d’ouvrir le moniteur série qui se sert de l’inter-
face sérielle pour afficher ou transmettre des informations.

Barre de menus
Comme dans d’autres programmes, la barre de menus permet d’accéder
aux différentes commandes servant à gérer l’application.

 Avertissements du compilateur

Chapitre 2. Arduino : le logiciel 	 25

Barres d’icônes
La barre d’icônes contient quelques boutons essentiels qui sont associés à
des actions que vous employez fréquemment, comme la traduction (com-
pilation) du code source, le téléchargement du code traduit sur le micro-
contrôleur ou l’ouverture et l’enregistrement des sketches.

Raccordement de la carte Arduino
Voyons maintenant comment raccorder la carte Arduino à l’ordinateur. La
carte Arduino Uno possède le port USB suivant :

L’ordinateur a besoin d’un port standard de type A. Vous trouverez partout
un câble pour le raccordement, j’en ai une caisse pleine chez moi. Une fois
la connexion établie, ce port USB remplit deux rôles :

	● il sert à l’alimentation électrique de la carte Arduino ;

	● il sert à la communication entre la carte et l’ordinateur.

Vous trouverez des informations détaillées sur les différents ports USB à
l’adresse Internet suivante :

https://fr.wikipedia.org/wiki/USB

Lorsqu’une carte Arduino flambant neuve est alimentée en électricité, la
LED sur la carte (désignée par un L) s’allume toutes les secondes sur la carte.

Connecteur USB
type B

 Figure 3
Le port USB
de la carte Arduino

LED intégrée
 Figure 4
La LED L sur la carte

	 26	 Partie I. Les bases

C’est ce qui se passe lorsqu’un sketch de base est préinstallé. Nous pouvons
vérifier la communication avec la carte Arduino à l’aide de ce sketch car
l’IDE dispose par défaut de nombreux sketches déjà installés.

Testons la communication
entre l’ordinateur et Arduino
Une fois que la carte Arduino a été reconnue par l’IDE, nous allons tester
la communication entre l’ordinateur et la carte Arduino. J’emploie le mot
« communication » pour désigner le transfert d’un sketch (rappelez-vous :
c’est ainsi que l’on appelle un programme dans l’environnement Arduino)
sur le microcontrôleur. Nous allons donc ouvrir le sketch Blink (clignoter)
dans l’IDE afin de modifier la fréquence du clignotement de la LED. Le pro-
gramme sera ensuite compilé et transmis à la carte Arduino. Les différentes
étapes énumérées ci-après présupposent que l’installation a réussi et que
la carte Arduino a été reconnue au démarrage de l’IDE.

Étape 1 : ouvrir le sketch exemple
Sélectionnez l’option de menu Fichier | Exemples | 01.Basics | Blink pour
ouvrir le sketch dans l’IDE. Il a l’apparence suivante (j’ai supprimé toutes
les lignes de commentaires contenant des informations complémentaires) :

Nous examinerons la signification des différentes lignes de code dans le
montage n° 1. Leur rôle est de commander une diode LED qui se trouve
sur la carte et qui doit clignoter avec un intervalle d’une seconde. Nous
commencerons par vérifier que le sketch a bien été transféré par l’IDE à
la carte Arduino. J’ai mentionné plus haut qu’une carte neuve est livrée

void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the
// voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the
// voltage LOW
 delay(1000); // wait for a second
}

Chapitre 2. Arduino : le logiciel 	 27

avec un sketch Blink préenregistré. Nous allons le modifier de façon à
ce que la LED identifiée L sur la carte se mette à clignoter. Pour ce faire,
nous allons modifier légèrement les deux lignes de code qui contiennent
l’instruction delay.

Étape 2 : modifier le sketch exemple
La valeur qui est indiquée entre parenthèses définit la durée de la pause
dans le traitement du programme. La valeur 1 000 désigne le délai en
millisecondes (ms) sachant que 1 000 ms = 1 seconde. Par conséquent,
lorsque la commande delay est atteinte, l’exécution marque une pause
d’une seconde avant l’exécution de la commande située à la ligne suivante.
Si nous changeons la valeur 1000 en 100, la vitesse de clignotement sera
10 fois plus rapide. Les deux lignes dans lesquelles figure la commande
doivent être modifiées comme suit :

 delay(100);	

Le sketch modifié va – bientôt – pouvoir être transféré sur la carte Arduino.
Je dis bientôt, car il faut encore faire une dernière vérification.

Étape 3 : choisir la bonne carte et le bon port COM
Comme Arduino (je parle maintenant de la société et non de la carte) a
créé de nombreux modèles de cartes, nous devons préciser à l’environ-
nement de développement le nom de la carte utilisée. Il faut également
indiquer le port COM correct. Ces deux réglages s’effectuent à l’aide des
commandes suivantes :

	● Outils | Type de carte ;

	● Outils | Port.

Dans mon cas, il s’agit d’Arduino Uno et de COM5.

Étape 4 : compiler et télécharger le sketch
Nous en arrivons à l’étape de la programmation qui se nomme la compi-
lation. Procédons dans l’ordre. Pour représenter un programme informa-
tique sous une forme plus ou moins lisible par l’homme, on a imaginé des
langages dits évolués comme C/C++, Java et C#, pour ne citer qu’eux. Les
commandes du sketch Blink sont écrites en anglais, comme la majorité
des langages de programmation. L’intitulé de la commande décrit de façon
plus ou moins claire la fonction qu’elle remplit. Ainsi, la commande delay
pourrait être traduite par retard ou avance dont le sens ne nécessite pas
de plus amples explications. Toutefois, le microcontrôleur ne sera pas
plus avancé et nous devons lui donner un coup de pouce. Pourquoi ? Un
microcontrôleur, comme n’importe quel processeur, ne reconnaît que les

	 28	 Partie I. Les bases

commandes exprimées dans sa langue maternelle, le langage machine
ou Native Language, qui varie en fonction des types de microcontrôleurs.
Une séquence de traduction préalable est donc nécessaire pour traduire
notre langage dit évolué (le C++ pour Arduino) en un langage machine
compréhensible par le microcontrôleur. Cette tâche est accomplie par un
compilateur.

QU’EST-CE QU’UN COMPILATEUR ?
Un compilateur est un programme qui traduit le code source d’un langage
évolué comme C++ dans un langage que le processeur ou le microcontrôleur
est en mesure de comprendre.

L’environnement de développement Arduino dispose, comme on l’a déjà
évoqué, de plusieurs petites icônes avec des actions cachées. Le tableau
ci-dessous vous indique les deux icônes les plus importantes et leurs fonc-
tions. Les autres icônes sont bien sûr importantes, mais ne sont pas aussi
essentielles que celles-ci :

Icône Fonction

Vérification du code source par compilation

Transmission au microcontrôleur lorsque la compilation est
terminée

La première icône vérifie la syntaxe du code source, le texte affiché dans
l’éditeur d’un environnement de développement. Qu’entend-on par « véri-
fier la syntaxe » ? Chaque langage possède différentes règles de syntaxe.
Leur non-respect engendre des malentendus tant lors de la communication
entre êtres humains qu’avec les processeurs. Si les commandes ne sont
pas écrites ou formulées correctement, le compilateur signale imman-
quablement une erreur et interrompt le processus de traduction avec un
message d’erreur correspondant. La figure 5 ci-contre montre ce qu’il se
passe lorsque vous avez cliqué sur l’icône Vérifier.

Au début, la compilation démarre en affichant la progression à l’aide d’une
barre de progression verte. Si aucune faute de syntaxe n’a été trouvée, le
processus se termine avec le message indiquant que la compilation est
finie. Le chargement du code machine vers le microcontrôleur de la carte
Arduino Uno ne s’est pas encore opéré. Cependant, si une erreur a été
détectée dans le code du sketch, le processus de compilation s’interrompt
avec un message d’erreur correspondant.

La deuxième icône analyse également le code source avec les mêmes pro-
cédures que pour la vérification, avec pour différence toutefois que le
code machine est téléchargé sur le microcontrôleur de la carte Arduino

Tableau 1 u
Quelques icônes

importantes pour
commencer

Chapitre 2. Arduino : le logiciel 	 29

Uno après une compilation sans erreur. Le déroulement du processus est
représenté sur la figure 6 :

Vérifier

Compilation du croquis

Compilation terminée

Sans erreur Avec erreur

Annulation

Téléversement
non demandé

low was not declared in this scope

Téléverser

Compilation du croquis

Téléversement terminé

Sans erreur Avec erreur

Annulation

Téléversement
du code demandé

Téléversement
demandé

Téléversement low was not declared in this scope

Au début, la compilation démarre en affichant la progression à l’aide d’une
barre de progression verte. Si aucune faute de syntaxe n’a été trouvée, le
processus de téléchargement sur le microcontrôleur démarre et affiche
également une barre de progression verte. Une fois le téléchargement

 Figure 5
Déroulement après un clic
sur l’icône Vérifier

 Figure 6
Déroulement après un clic
sur l’icône Téléverser

	 30	 Partie I. Les bases

réussi, un message indique que le téléchargement est terminé. En pré-
sence d’une erreur dans le code du sketch, le processus de compilation
s’interrompt avec un message d’erreur correspondant, comme dans le cas
de la vérification.

Il est également possible de choisir immédiatement le téléchargement
sans passer par la compilation préalable, car une compilation préalable y
est également exécutée. Pendant le processus d’upload (téléchargement),
certaines LED sur la carte Arduino s’allument. Regardons cela de plus près :

Trois LED se trouvent à gauche du nom de la carte. Celle qui est désignée
par un L indique l’état de la broche numérique 13. Un peu plus bas, vous
pouvez voir deux autres LED désignées par les lettres TX (Transmettre) et
RX (Recevoir). Il s’agit de l’affichage d’état de l’interface sérielle qui relie
la carte Arduino à l’ordinateur. Lors du téléchargement, des informations
en langage machine sont transmises via cette interface. La carte signale
l’exécution de ce processus par le clignotement irrégulier de ces deux
LED. Quand le transfert est terminé, quelle qu’en soit la raison, les diodes
s’éteignent. Cela permet de contrôler visuellement le processus de télé-
chargement. Une fois le téléchargement réussi, la diode L clignote plus
rapidement, ce qui indique que la modification du sketch a bien été prise
en compte. Sur le côté droit de la figure 7, vous pouvez voir une autre LED
dénommée ON. Elle s’allume lorsque la carte est sous tension.

LE CODE MACHINE DE LA CARTE ARDUINO
Cet encadré n’a pas de rapport direct avec la programmation de la carte
Arduino, mais il est important que vous compreniez les étapes qui se déroulent
en arrière-plan. Je vous ai déjà un petit peu parlé de l’environnement de
développement, du compilateur et des langages de programmation C/C++.
Comment se déroule la compilation et qu’est-ce qui est au juste transféré sur
le microcontrôleur de la carte Arduino ?

Figure 7 u
Trois LED importantes

sur la carte Arduino

LED intégrées

LED intégréesLED transmission (TX)
LED réception (RX)

Chapitre 2. Arduino : le logiciel 	 31

?

Nous pouvons diviser ce déroulement en quelques étapes logiques :

Étape 1
Une vérification du code du sketch est faite par l’environnement de
développement, afin de garantir que la syntaxe C/C++ est correcte.

Étape 2
Le code est ensuite envoyé au compilateur (dont le nom est AVR-GCC), qui le
transcrit en un langage lisible par le microcontrôleur : c’est le langage machine.

Étape 3
Le code compilé fusionne avec certaines bibliothèques Arduino qui apportent
les fonctionnalités de base, ce qui aboutit à la création d’un fichier au format
Intel HEX. Il s’agit d’un fichier texte qui contient des informations binaires pour
le microcontrôleur. Ci-dessous un court extrait du premier sketch :

Le microcontrôleur comprend ce format, car c’est son Native Language, c’est-
à-dire sa langue maternelle.

Étape 4
Le chargeur d’amorçage (bootloader) transmet le fichier Intel HEX via la liaison
USB à la mémoire flash du microcontrôleur. Ledit processus de téléversement,
donc la transmission sur la carte, est assuré par le programme avrdude, qui fait
partie intégrante de l’installation Arduino. Vous le trouverez dans le répertoire
Program Files (x86)\Arduino\hardware\tools\avr.

 Figure 9
Extrait d’un fichier
Intel-HEX

 Figure 8
Que se passe-t-il
en arrière-plan lors
du transfert du sketch
sur la carte Arduino ?

	 32	 Partie I. Les bases

La gestion des bibliothèques
L’environnement de développement dispose d’un grand nombre de biblio-
thèques qui peuvent être installées sur votre ordinateur. Elles peuvent être
utilisées à différentes fins. Des mises à jour sont régulièrement proposées.
Un message s’affiche pour vous en informer :

Lorsque vous cliquez sur le lien indiqué Bibliothèques, une nouvelle fenêtre
s’affiche, dans laquelle les nouvelles mises à jour peuvent être sélection-
nées. La liste des bibliothèques installées est mise à jour, ce qui est repré-
senté par la barre de progression ci-dessous :

Pour installer une nouvelle bibliothèque, passez la souris sur la bibliothèque
correspondante. Deux messages s’affichent en règle générale. Une liste
vous propose les versions disponibles pour une installation ultérieure, le
bouton Installer s’affiche :

Une mise à jour est disponible pour certaines bibliothèquesFigure 10 u
Message avertissant

de la présence de mise
à jour des bibliothèques

Figure 11 u
La liste des mises

à jour disponible

Figure 12 u
Installation d’une

nouvelle bibliothèque

Chapitre 2. Arduino : le logiciel 	 33

Une bibliothèque déjà installée est identifiée par l’inscription verte
INSTALLED, et si une mise à jour est disponible, le bouton Mise à jour
apparaît au passage de la souris :

La gestion des bibliothèques est également accessible par l’option de menu
Outils | Gérer les bibliothèques qui permet d’ouvrir la fenêtre ci-dessous.

La gestion des cartes
L’environnement de développement Arduino peut non seulement program-
mer et contrôler des cartes Arduino, mais aussi celles d’autres fabricants,
par exemple les cartes ESP32 et ESP8266 très connues et appréciées. Le
gestionnaire de cartes disponible sous l’option de menu Outils | Cartes |
Gestionnaire de cartes sert justement à intégrer ces cartes dans l’environ-
nement de développement.

 Figure 14
Le bouton Mise
à jour s’affiche.

 Figure 14
Ouvrir la fenêtre de gestion
des bibliothèques

	 34	 Partie I. Les bases

Si je veux par exemple ajouter la compatibilité à la carte megaAVR à mon
environnement de développement Arduino, je tape en haut à droite le
terme megaAVR et le pack d’installation correspondant s’affiche. Il peut
ensuite être installé.

Cette recherche peut aussi s’appliquer à la gestion des bibliothèques. Vous
êtes peut-être intéressé par les cartes ESP32 et ESP8266 et vous avez cher-
ché le terme ESP32. Malheureusement, le terme recherché ne donne pas
de résultats et la liste reste vide. Pas de panique ! L’explication est que de
nombreuses cartes de fournisseurs tiers fournissent des informations et
des fichiers d’installation dans un répertoire maison. Comment commu-
niquer ces chemins d’accès à l’environnement de développement Arduino ?
C’est très simple ! Dans l’option de menu Fichier | Préférences, ouvrez la
fenêtre de dialogue correspondante. Celle-ci se présente comme sur la
figure 17 page suivante. J’y ai déjà entré le chemin d’accès requis pour la
compatibilité ESP32.

Figure 15 u
Ouvrir la fenêtre

de gestion des cartes

Figure 16 u
Ajouter une nouvelle carte

Chapitre 2. Arduino : le logiciel 	 35

Le chemin d’accès à utiliser pour la compatibilité à la carte ESP32 est :

https://dl.espressif.com/dl/package_esp32_index.json

Pour ajouter la compatibilité de la carte ESP8266, ajoutez à l’URL précé-
dente le chemin d’accès suivant (séparé par une virgule) :

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Les deux cartes sont ensuite prêtes à être installées dans l’environnement de
développement Arduino. Il existe une source d’extension non officielle pour
des cartes de fournisseurs tiers, que vous trouverez à l’adresse ci-dessous :

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-
boards-support-urls

De très nombreuses cartes pouvant être programmées avec l’IDE Arduino y
figurent. Avant de commencer, copiez les chemins d’accès affichés sur cette
page dans les préférences Arduino dans la ligne que je vous ai indiquée.

Le code du sketch dans
l’environnement de développement
Certes, je n’ai ni la place ni la prétention de vous proposer ici une for-
mation de base en programmation C/C++. Toutefois, j’aimerais apporter
quelques précisions sur l’emploi de ce langage dans l’environnement de
développement. Le langage de programmation C/C++ fait la différence
entre les majuscules et les minuscules : en anglais, on dit qu’il est case
sensitive. Par conséquent, vérifiez la façon dont les commandes sont écrites.
Prenons l’exemple de la commande digitalWrite. Elle se compose de
deux mots (digital et Write). En programmation, la création d’un mot par

 Figure 17
Les Préférences d’Arduino

	 36	 Partie I. Les bases

l’assemblage de termes dont l’initiale est en majuscule (sauf pour le pre-
mier mot) se nomme le camel case. Le code suivant sera donc considéré
comme incorrect :

 digitalwrite	

Les erreurs de ce type sont détectées par l’environnement de développe-
ment Arduino et elles sont signalées. Un mot qui fait partie d’une com-
mande est généralement affiché en couleur. S’il a été mal écrit, il n’apparaît
pas en couleur et ne se distingue pas du reste du code qui reste noir. Dans
l’environnement de développement, on voit que la commande de la ligne 8
est correcte et qu’elle présente un caractère de couleur correspondant.
Comme la commande a été mal écrite à la ligne 9, elle n’a pas été détectée
et elle est donc affichée en noir.

Problèmes courants
Il est inévitable que tôt ou tard, vous vous heurtiez à des problèmes.
Personne n’est à l’abri, moi-même y compris. Mais je sais par expérience
qu’il existe des sources d’erreurs récurrentes.

La carte est-elle sous tension ?
La carte ne sera pas alimentée si le câble USB est défectueux. Dans ce
cas, la LED ON ne s’allumera pas. La carte ne sera pas non plus reconnue
par le système et elle ne sera pas proposée sous la forme d’un port COM.

Ai-je bien choisi la carte et le port COM ?
Si la carte et le port COM n’ont pas été correctement choisis, le téléchar-
gement dure très longtemps avant qu’un message d’erreur n’apparaisse
en rouge dans la partie inférieure de l’environnement de développement :

Il n’est pas possible d’accéder au port COM3 configuré précédemment.
Arduino propose une page de résolution des erreurs à l’adresse suivante :

https://arduino.cc/en/pmwiki.php?n=Guide/Troubleshooting#toc1

Figure 18 u
Message d’erreur Arduino

Chapitre 2. Arduino : le logiciel 	 37

CHOISIR LE BON PORT COM
Si vous rencontrez des problèmes lors de la sélection du bon port COM, vous
disposez d’une solution très simple. Regardez la liste des ports COM proposés
dans l’option de menu Outils | Port. Débranchez ensuite le câble USB de la carte
Arduino et regardez quel port n’est plus indiqué dans la liste. Rebranchez le
câble pour voir quel port a été ajouté. L’environnement de développement
Arduino indique tous les ports disponibles presque immédiatement après la
modification.

CE QUE VOUS DEVRIEZ AVOIR SOUS LA MAIN DANS VOTRE
ATELIER DE BRICOLAGE ARDUINO
Passons maintenant au matériel que nous allons utiliser pour tous les
montages décrits dans cet ouvrage. Pour que les composants électroniques
et électriques puissent être connectés correctement à la carte Arduino, deux
types d’éléments sont indispensables : d’une part, des plaques de prototypage,
ou breadboards, sur lesquelles les composants sont enfichés et, d’autre part,
un nombre suffisant de câbles qui sont indispensables pour la connexion
électrique entre les différents composants. Nous utilisons à cette fin des
cavaliers flexibles qui se branchent facilement aussi bien sur la plaque de
prototypage que sur la carte Arduino.

 Figure 19
Différentes plaques
de prototypage et de
cavaliers flexibles

	 38	 Partie I. Les bases

La figure 19 de la page précédente présente deux plaques de prototypage
répandues qui existent en différentes tailles, formes et couleurs. Je vous
recommande d’acheter une ou plusieurs plaques de différentes dimensions,
car elles sont vraiment abordables. Investissez un peu plus en cas de doute
dans une plaque supplémentaire, cela en vaut vraiment la peine. Les cavaliers
flexibles, appelés également câbles patch, sont également bon marché. Il
existe également de très jolies variantes combinées à une carte Arduino et
une plaque de prototypage sur un support fixe sous forme de combinaison,
comme l’illustre la figure 20. De cette façon, la carte Arduino et la plaque
de prototypage sont indissociables, ce qui facilite dans une certaine mesure
la mise en circuit. Par ailleurs, la figure 20 montre une carte Arduino Uno
proposée comme clone et donc un peu moins chère que la carte originale.
Les clones sont des copies proposées par d’autres sociétés. Et comme la carte
Arduino Uno a été publiée avec une licence de matériel Open Source, chacun
est libre de copier la carte et de la modifier. La carte n’a pas besoin d’être une
carte originale car l’Open Source autorise aussi ce genre de cartes.

Une solution très élégante est l’utilisation d’une carte faite maison, que j’ai
baptisée Arduino Discoveryboard. Je vous présente cette carte en détail au
chapitre 4 et vous montre comment la construire vous-même. L’Arduino
Discoveryboard vous fera gagner beaucoup de temps, que vous pourrez alors
consacrer à la construction des montages. Mais comme je l’ai déjà dit : vous
n’êtes pas obligé de le faire tout de suite.

Un multimètre est également pratique pour mesurer des tensions, des courants
et des résistances, ou simplement pour vérifier des connexions électriques.

Il existe d’autres instruments très intéressants que je ne peux pas tous vous
présenter ici. Je vous ai présenté les incontournables qui ne sont pas très
nombreux et que tout bricoleur devrait avoir sous la main. Le multimètre fait
partie de ces instruments qui font gagner un temps précieux pour résoudre
les erreurs. Que ce soit pour mesurer des tensions ou des courants comme
contrôleur de continuité ou pour déterminer une résistance, vous devriez
toujours avoir un multimètre sous la main.

Figure 20 u
Combinaison d’une carte
Arduino et d’une plaque

de prototypage

Chapitre 2. Arduino : le logiciel 	 39

De l’idée jusqu’au téléchargement
dans le microcontrôleur
Dans ce chapitre, nous avons appris à installer le logiciel nécessaire au déve-
loppement d’un programme, puis à transférer un sketch sur le microcontrô-
leur après sa saisie dans l’environnement de développement Arduino. Cette
procédure ne se limite pas à ce que nous avons pu entrevoir avec ce premier
coup d’œil. Reprenons les différentes étapes en détail.

Au début, il y a toujours une idée qui naît et mûrit dans le cerveau. Comme
le microcontrôleur ne peut évidemment pas lire les pensées, nous avons
besoin d’outils. Nous nous servons d’un éditeur de texte qui fait partie
de l’environnement de développement pour transposer nos pensées en
actions qui sont formulées sous forme de commandes. Cette formulation
emploie un vocabulaire qui est composé d’éléments du langage de pro-
grammation C++. Ces éléments sont affichés à l’aide d’un compilateur
(AVR-GCC) qui est chargé de leur traduction dans un langage pouvant être

Idée  Figure 22
De l’idée à sa mise
en œuvre

Avrdude

Mémoire AVRÉditeur Système
de fichiers

CompilateurDoigt

Cerveau

ArduinoLangage machineCode
source C++

 Figure 21
Un multimètre

	 40	 Partie I. Les bases

compris par le microcontrôleur. La transcription de ce langage machine est
réalisée par un programme nommé Avrdude qui se charge de la transmis-
sion du code au microcontrôleur Atmega328, monté sur la carte Arduino.

Au cours de ce chapitre, vous avez découvert les outils logiciels que vous
devez maîtriser afin de programmer la carte Arduino, soit par le biais
du navigateur basé sur le Web soit par l’application distincte sur votre
ordinateur. Je vous ai montré comment raccorder la carte à votre ordi-
nateur et comment un sketch préinstallé fait immédiatement clignoter
la LED intégrée. En changeant le code, vous avez pu modifier la cadence
de clignotement. Je vous ai également indiqué quelques sources d’erreurs
récurrentes dans le cas où vous rencontriez des problèmes de connexion
entre l’ordinateur et la carte Arduino.

Le chapitre 3 aborde en profondeur les bases de la programmation.

	 41

Chapitre

3N’ayons pas peur
de la programmation :
les bases du codage

Dans le chapitre 2 sur le logiciel Arduino, nous avons déjà un peu abordé la
programmation. Je vous ai montré un premier programme, appelé sketch,
sans préciser ce que programmer signifie. Je vais maintenant expliciter
les notions de base de la programmation : l’algorithme, les variables, les
constantes et les différents types de données. Et comme si cela ne suffi-
sait pas, je vais vous donner en plus des explications sur les structures de
contrôle et les fonctions. À la fin de ce chapitre, vous devriez connaître à peu
près la palette de fonctions dont vous disposez pour écrire un programme.

Vous connaîtrez uniquement les bases du langage de programmation
C++, dans lequel ont été créés les sketches Arduino. Si vous avez envie
d’approfondir ce langage ou si vous souhaitez trouver des informations
complémentaires, vous pouvez lire l’ouvrage Programmer en C++ moderne
de Claude Delannoy (Éditions Eyrolles).

Pour programmer, vous avez évidemment besoin d’une machine, que ce
soit un ordinateur ou un microcontrôleur comme la carte Arduino. Il est
clair que ce genre d’appareil ne dispose pas d’une intelligence propre.
Sans instructions données par un programme, il n’est rien d’autre qu’un
matériel inutile, qui consomme tout au plus du courant. Matériel et logiciel
sont dépendants l’un de l’autre et ne peuvent fonctionner qu’ensemble.
Les programmes disent au matériel ce qu’il doit faire. Et le programmeur
dit au logiciel ce que celui-ci doit dire au matériel.

	 42	 Partie I. Les bases

Qu’est-ce qu’un programme,
ou sketch ?
Pour ce qui est de la programmation, nous avons affaire en règle générale
à deux éléments.

Élément de programmation 1 : l’algorithme
Pour que le sketch puisse exécuter de manière autonome une tâche défi-
nie, un algorithme est créé, lequel contient un certain nombre d’étapes
indispensables à la réussite du sketch.

QU’EST-CE QU’UN ALGORITHME ?
Un algorithme est la description d’une action en vue de régler un problème
et se compose d’un nombre important d’étapes devant se dérouler dans un
certain ordre.

Un algorithme est une règle de calcul qui fonctionne à la manière d’une
liste de contrôle. Imaginez que vous vouliez construire un boîtier en bois
pour y loger votre carte Arduino, pour que cela soit un peu plus beau, plus
ordonné et plaise également à vos amis. N’achetez pas de bois sans avoir
préparé un plan répondant par exemple aux questions suivantes :

	● Quelles sont les dimensions de la caisse ?

	● De quelle couleur doit-elle être ?

	● Où des ouvertures doivent-elles être pratiquées pour installer par
exemple des interrupteurs ou des lampes ?

Après avoir réuni le matériel, passez à la fabrication proprement dite, en
procédant étape par étape dans un certain ordre :

	● fixation des plaques de bois ;

	● mise à dimension des plaques de bois ;

	● ponçage des bords avec du papier de verre ;

	● perçage de certaines plaques de bois, appelées à recevoir des ports ;

	● vissage des plaques de bois entre elles ;

	● mise en peinture du boîtier ;

	● insertion de la carte Arduino et câblage des interrupteurs ou des
lampes.

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 43

Telles sont les étapes par lesquelles il faut passer pour arriver à vos fins. Il
en va de même pour l’algorithme.

Élément de programmation 2 : les données
Vous avez très certainement soigneusement noté les dimensions sur le
plan, de manière à pouvoir les consulter pendant la construction. Il faut
faire en sorte que tout coïncide à la fin. Ces dimensions sont comparables
aux données d’un sketch. L’algorithme utilise des valeurs temporaires qui
l’aident dans son travail de prise en charge des différentes étapes. Il utilise
pour cela une technique qui lui permet de stocker des valeurs et de les
rappeler par la suite. Les données sont en effet sauvegardées dans des
variables et disponibles à tout moment dans la mémoire. Vous en saurez
bientôt plus. Nous y reviendrons plus tard.

QUE SONT LES DONNÉES ?
Les informations saisies et les valeurs mesurées sont généralement désignées
comme étant des données. Elles peuvent se présenter sous forme de texte
ou de valeurs numériques.

Qu’est-ce que le traitement des données ?
On entend par traitement des données l’utilisation d’un algorithme qui se sert
de données en entrée pour en obtenir d’autres, modifie celles-ci par diffé-
rents calculs et produit des résultats en sortie. Ce principe est appelé IPO.

	● Input (entrée)

	● Processing (processus)

	● Output (sortie)

 Figure1
Le principe IPO

	 44	 Partie I. Les bases

Que sont les variables ?
Nous avons déjà vu que des données étaient sauvegardées dans des
variables. Ces dernières jouent un rôle central dans la programmation et
sont utilisées dans le traitement des données pour stocker des informations
de toutes sortes.

QU’EST-CE QU’UNE VARIABLE ?
En programmation, une variable est un élément associant un nom à une valeur
modifiable, à laquelle il est possible d’accéder pendant le déroulement d’un
calcul et qui est maintenue en réserve dans la mémoire.

Une variable occupe dans la mémoire une certaine place qu’elle garde
libre. L’ordinateur ou le microcontrôleur gère cependant cette mémoire
(de travail) selon ses propres méthodes. Tout ceci se fait au moyen de
désignations codées que tout un chacun a certainement du mal à rete-
nir. C’est pour cette raison que vous pouvez doter les variables de noms
évocateurs qui renvoient en interne aux adresses de mémoire concer-
nées.
Sur la figure 2, la variable nommée ledPin pointe sur une adresse de départ
dans la mémoire de travail. Elle peut également être considérée comme
une sorte de référence renvoyant à quelque chose de particulier. La ligne
suivante d’un sketch montre l’utilisation d’une variable nommée ledPin :

 int ledPin = 13; // Variable déclarée + initialisée avec broche 13

à laquelle la valeur numérique 13 a été attribuée. Plus loin dans le sketch,
cette variable est évaluée et continue d’être utilisée. Le terme int est
l’abréviation du mot Integer. Il s’agit d’un type de donnée utilisé dans le
traitement des données pour caractériser des nombres entiers, ce qui nous
amène au point suivant.

Figure 2 u
Variable ledPin pointant

sur une zone de la mémoire
de travail

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 45

Que sont les constantes ?
J’ai lu quelque part sur Internet qu’une variable constante est une variable
dont la valeur ne peut plus être modifiée après initialisation. Relisez cette
phrase et réfléchissez à ce qui suit :

	● constant : non modifiable, qui persiste dans l’état où il se trouve ;

	● variable : modifiable, non limité à une possibilité.

La première phrase semble être paradoxale. Qu’est-ce que cela peut vou-
loir dire ? La deuxième partie de la phrase est juste : une constante après
son initialisation ne peut plus être modifiée pendant le déroulement du
programme. Une constante est identifiée comme étant constante par le
mot-clé const.

const int a = 17;

Les lignes de code ci-dessous seraient ainsi inadmissibles et entraîneraient
un message d’erreur, étant donné que le contenu d’une constante ne doit
plus être modifié :

const int a = 17; // Constante
void setup() {
a = 18; // Non autorisé !
}
...

Les types de données
Voyons maintenant les différents types de données et essayons de savoir
ce qu’est exactement un type de données et pourquoi il en existe plu-
sieurs types. Le microcontrôleur gère ses sketches et ses données dans sa
mémoire. Cette mémoire est une zone structurée qui est gérée par des
adresses et qui enregistre ou restitue des informations, lesquelles sont
stockées sous la forme de 1 et de 0.

QU’EST-CE QU’UN TYPE DE DONNÉES ?
Un type de données décrit une certaine quantité d’objets de données (variables),
qui ont tous la même structure. Chaque variable doit avoir un certain type de
données.

La plus petite unité de mémoire logique est le bit, qui peut justement
enregistrer les deux états 1 ou 0. Imaginez celle-ci comme une sorte d’in-
terrupteur électronique, qui peut être allumé ou éteint. Comme un bit
ne peut représenter que deux états, il est logique et nécessaire d’utiliser
plusieurs bits pour enregistrer des données. Un ensemble de 8 bits forme

	 46	 Partie I. Les bases

1 octet et permet d’enregistrer 28 = 256 états différents. S’agissant d’un
système binaire, la base 2 est utilisée. Avec 8 bits, on peut donc couvrir
un domaine de valeurs compris entre 0 et 255.

Voici pour commencer une liste des principaux types de données, auxquels
vous serez confrontés à l’avenir :

Type de
données

Plage
de valeurs

Largeur
de données

Exemple

void aucune zéro void setup() {}

octet 0 à 255 1 octet byte valeur = 42;

unsigned int 0 à 65.535 2 octets unsigned int secondes = 46547;

int –32.768 à
32.767

2 octets int ticks = -325;

long –231 à 231–1 4 octets long valeur = -3457819;

float –3.4 * 1038 à
3.4 * 1038

4 octets float valeur de mesure = 27.5679;

double voir float 4 octets double valeur de mesure = 27.5679;

boolean true ou false 1 octet boolean flag = true;

char -128 à 127 1 octet char mw = ’m’;

String variable variable String nom = “Erik Bartmann”;

Array variable variable int pinArray[] = {2, 3, 4, 5};

La plupart des types de données indiqués ici sont également utilisés dans
ce livre.

Que sont les fonctions ?
Une fonction est, dans la plupart des langages de programmation, la
désignation d’une construction permettant de structurer le code source
de sorte que ces parties du programme, qui peuvent être qualifiées de
sous-programmes, puissent être réutilisées dans le programme principal
et ouvertes plusieurs fois à différents endroits. Pour la programmation
orientée sur les objets, sur laquelle je reviendrai, il existe des constructions
comparables qui portent le nom de méthodes. À cela s’ajoute également le
terme d’encapsulage, qui se rapporte également aux fonctions. Un encapsu-
lage est le récapitulatif ou la dissimulation de données ou d’informations,
l’accès s’effectuant via une interface définie. Cette interface est représentée
par l’ouverture de la fonction. Par exemple, si vous souhaitez représenter
plusieurs fois dans un sketch la valeur moyenne de deux chiffres, les lignes
de code suivantes sont normalement presque toujours nécessaires, bien que
j’aie formulé tout cela de manière un peu complexe pour rendre le sens de
la fonction plus claire. Il existe des fonctions qui fournissent à l’appelant

Tableau 1 u
Type de données avec

plages de valeurs
correspondantes

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 47

une valeur de retour, comme c’est le cas ici. Il y a aussi des fonctions qui
exécutent une tâche sans renvoyer à l’appelant une valeur de retour.

float a = 5.4, b = 7.36;
float somme = a + b;
float moyenne = somme / 2;

Pour calculer la moyenne de deux chiffres, ceux-ci sont additionnés et
le résultat est divisé par deux. Maintenant, si vous souhaitez créer cette
moyenne à plusieurs endroits dans le sketch, vous devrez insérer à ces
endroits les deux lignes ci-dessous. Mais cela devient plus facile avec la
définition d’une fonction. Celle-ci pourrait être :

float moyenne(float a, float b)
{ return (a + b)/2;
}

Regardons cela de plus près car beaucoup de choses entrent en jeu :

float moyenne (float a, float b) {

 return (a+b)/2

}
La première ligne d’une fonction est désignée sous le nom de signature
et constitue la ligne de déclaration d’une fonction. La définition d’une
fonction se trouve entre accolades. Si une fonction doit retourner quelque
chose à l’appelant, le type de données de retour, float ici, doit se trouver en
tête d’instruction. Cela implique cependant la présence obligatoire d’une
instruction return dans la définition, celle-ci assurant au final le retour
d’une valeur, ce qui permet de quitter la fonction après son appel. On peut
transmettre à une fonction aucune, une ou plusieurs valeurs à son appel.
Dans le cas présent, deux valeurs de type de données float sont attendues,
qui doivent être transmises à l’appel de la fonction aux paramètres a et b
indiqués. Ces paramètres fonctionnent comme des variables locales, qui
sont retirées de la mémoire une fois que la fonction est terminée, car elles
ne sont plus nécessaires. Les deux fonctions prépondérantes dans l’envi-
ronnement de développement Arduino sont naturellement les fonctions
setup et loop, qui sont indispensables :

void setup() {/* ... */}
void loop() {/* ... */}

Type de la valeur
de retour

Nom
de la fonction

Liste
des paramètres


  Déclaration

     de la fonction


  Définition

     de la fonction

	 48	 Partie I. Les bases

Vous voyez que les deux disposent du type de données de retour void,
dont la traduction est vide, parce qu’elles ne fournissent pas de valeur
en retour. Vous ne voyez pas non plus de liste de paramètres, ce qui se
caractérise par un vide entre les parenthèses. Il est également possible de
ne pas transmettre de valeurs à l’appel de la fonction. Il y aurait bien sûr
beaucoup d’autres choses à dire sur les fonctions, mais cela est un sujet pour
d’autres montages ou parties de tutoriels sur le langage de programmation
C++ et serait trop fastidieux à expliquer dans ce livre.

Que sont les structures
de contrôle ?
Les instructions ont déjà été abordées au chapitre 2. Elles informent le
microcontrôleur de ce qu’il doit faire. Mais un sketch se compose générale-
ment de toute une série d’instructions qui doivent être traitées de manière
séquentielle. La carte Arduino présente un certain nombre d’entrées ou de
sorties auxquelles vous pouvez raccorder divers composants électriques ou
électroniques. Si le microcontrôleur est censé réagir à certaines influences
extérieures, vous branchez par exemple un capteur sur une entrée. La forme
de capteur la plus simple est un commutateur ou un bouton-poussoir.
Quand le contact est fermé, une LED est censée s’allumer. Le sketch doit
donc être en mesure de prendre une décision. Si le commutateur est fermé,
la LED est alimentée (LED allumée) ; si le commutateur est ouvert, la LED
est privée d’alimentation (LED éteinte).

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 49

QU’EST-CE QU’UNE STRUCTURE DE CONTRÔLE ?
Les structures de contrôle sont des instructions dans les langages de
programmation impératifs. Elles sont utilisées pour commander le déroulement
d’un programme et le dévier dans une certaine direction. Une structure de
contrôle peut ainsi être une déviation ou une boucle. Son exécution est la
plupart du temps commandée par des expressions logiques (booléennes).

Jetons d’abord un coup d’œil sur l’organigramme qui nous montre comment
se déroule l’exécution du sketch sur certains circuits, dans la mesure où il
ne s’agit plus d’un parcours linéaire. Le sketch se trouve à la croisée des
chemins quand une structure de contrôle est atteinte et doit voir ce qu’il
est censé faire. Il doit évaluer une condition pour prendre une décision.

L’instruction if-then (si-alors)
Techniquement, nous utilisons l’instruction if-then (si-alors). Il s’agit d’une
décision si alors.

Si la condition a été vérifiée, il s’ensuit l’exécution d’une, voire de plusieurs
instructions. Voici encore un court exemple :

if(boutonStatut == HIGH)
 digitalWrite(ledPin, HIGH);

Si plusieurs instructions sont exécutées dans une instruction if, vous devez
constituer un bloc d’instructions avec les paires d’accolades. Il sera alors
exécuté en tant qu’unité d’instructions complète :

if(boutonStatut == HIGH)
{
 digitalWrite(ledPin, HIGH);
 Serial.println(“Niveau HIGH atteint.”);
}

Début

Test
Faux

Vrai

Instruction(s)

Fin

 Figure 3
Organigramme d’une
structure de contrôle
si-alors

	 50	 Partie I. Les bases

L’instruction if-else (si-alors-sinon)
Il existe aussi une forme élargie de la structure de contrôle si-alors. Il s’agit
d’une décision si-alors-sinon qui résulte d’une instruction if-else. La figure
suivante présente l’organigramme :

L’exemple de code suivant vous montre la syntaxe de l’instruction if-else.

if(boutonStatut == HIGH)
 digitalWrite(ledPin, HIGH);
else
 digitalWrite(ledPin, LOW);

L’instruction conditionnelle (switch-case)
Lorsque plusieurs interrogations se succèdent, il est bien évidemment pos-
sible de donner plusieurs instructions if-then-else à l’aide d’une construc-
tion. Il existe cependant une version plus facile, avec une écriture simplifiée
qui est ainsi plus lisible : l’instruction switch-case (figure 5).

La syntaxe se présente comme suit :

switch(var)
 { case label1:
// Instruction(s)
 break;
case label2:
// Instruction(s)
 break;
default:
// Instruction(s) break;
}

Figure 4 u
Organigramme d’une
structure de contrôle

si-alors-sinon

Début

Test
Faux

Vrai

Instruction(s)

Fin

Instruction(s)

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 51

Les paramètres suivants sont autorisés :

	● var : une variable avec les types de données autorisés int et char ;

	● label1, label2 : des constantes avec les types de données autorisés
int et char.

Vous devez impérativement veiller à ce qu’après l’exécution d’une ins-
truction, la boucle soit interrompue avec l’instruction break, sinon les
marqueurs de saut suivants seront aussi vérifiés et les instructions qu’ils
contiennent pourraient être exécutées. Le dernier texte source d’instruction
break après l’instruction default n’est pas obligatoire.

Opérateurs
Bien sûr, dans les structures de contrôle et les conditions à tester, il n’y a
pas que la vérification de l’égalité. Le tableau ci-après vous montre tous
les opérateurs de comparaison du langage C++ :

Opérateur de
comparaison

Signification Exemple

== est égal à if(a==b) {...}

<= est inférieur ou égal à if(a<=b) {...}

>= est supérieur ou
égal à

if(a>=b) {...}

< est inférieur à if(<b) {...}

> est supérieur à if(a>b) {...}

!= n’est pas égal à if(a!=b) {...}

Début

Fin

Test cas 1
Vrai

Faux
Vrai

Test cas 2

Faux
Vrai

Test cas 3

Faux
Vrai

Défaut (optionnel)

Instruction(s) break

Instruction(s) break

Instruction(s) break

Instruction(s) break

 Figure 5
Organigramme d’une
structure switch-case

 Tableau 2
Opérateurs
de comparaison

	 52	 Partie I. Les bases

Il existe également des liaisons par l’intermédiaire d’opérateurs logiques,
qui autorisent plusieurs conditions devant être testées :

Opération
logique

Fonction Signification Exemple

! PAS
(NOT)

Inversion de l’état logique.
Le résultat est vrai (true) si
l’opérande est faux (false).

if(!a) {...}

&& ET (AND) Le résultat est vrai (true) si
les deux opérandes sont vrais.

if((a<=b)&&(c==5)) {...}

|| OU (OR) Le résultat est vrai (true) si l’un
des deux opérandes est vrai.

if((a>=b)||(c<=6)) {...}

Les boucles
Dans un sketch, l’exécution de plusieurs étapes récurrentes peut s’avérer
nécessaire pour calculer des données. Si ces étapes sont similaires, il n’est
pas nécessaire de les écrire en grand nombre les unes en dessous des
autres et de les faire exécuter de manière séquentielle. Une structure de
programme spéciale a été créée à cet effet, permettant d’exécuter une
partie de programme composée d’une ou plusieurs étapes, maintes fois
répétées. Cette structure s’appelle une boucle.

QU’EST-CE QU’UNE BOUCLE ?
Une boucle, appelée loop en anglais, est une structure de contrôle dans un
langage de programmation. Elle répète un bloc d’instructions défini, appelé
le corps de boucle tant que la condition de la boucle logique est vérifiée. Les
boucles, dont la condition est toujours vérifiée ou dans lesquelles aucune
condition n’a été définie, sont appelées des boucles sans fin.

Voyons comment une boucle est construite. Il existe deux sortes de boucles :

	● les boucles avec condition de sortie en tête ;

	● les boucles avec condition de sortie en queue.

Ces deux familles de boucles possèdent une instance qui contrôle si la
boucle doit être itérée, et de quelle manière elle doit l’être. À cette instance
est rattachée une seule instruction ou tout un bloc d’instructions (corps
de boucle), qui est piloté et traité par l’instance.

Boucles avec condition de sortie en tête
Dans les boucles avec condition de sortie en tête, l’instance de contrôle
se situe, comme son nom l’indique, au début de la boucle. L’exécution de
la première itération de la boucle dépend de l’évaluation de la condition.
Pour les boucles dont la condition se situe en tête, les instructions placées

Tableau 3 u
Opérations logiques

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 53

au sein de la boucle peuvent ne pas être exécutées si la condition est fausse
dès l’entrée dans la boucle.

L’utilisation du pluriel dans le titre de cette section indique qu’il existe
plusieurs types de boucles avec conditions de sortie en tête, utilisées dans
différentes situations.

La boucle for
La boucle for est toujours utilisée quand on connaît déjà le nombre d’ité-
rations de la boucle avant même de l’appeler. Examinons l’organigramme
qui sert de représentation graphique du programme.

Une variable appelée variable de contrôle est utilisée dans la boucle. Dans
la condition, elle est soumise à une évaluation qui décide si et combien de

Exécution du sketch

Instance de contrôle

Tête de boucle

Bloc d’instructions

Corps de boucle

 Figure 6
Principe d’une boucle
avec condition de sortie
en tête

 Figure 7
Organigramme
d’une boucle for

Début

Initialisation de la
variable de contrôle

Test
Faux

Vrai

Réinitialisation de la
variable de contrôle

Fin

Instruction(s)

	 54	 Partie I. Les bases

fois la boucle doit être itérée. La valeur de cette variable est généralement
modifiée au début de la boucle à chaque nouvelle itération, si bien que la
condition d’interruption doit être remplie au bout d’un moment dans la
mesure où vous n’avez pas fait de faute de raisonnement. Voici un court
exemple, sur lequel nous reviendrons bientôt :

for(int i = 0; i < 7; i++)
 pinMode(ledPin[i], OUTPUT);

La boucle while
La boucle while est utilisée quand on ne sait qu’au moment de l’exécution
si et combien de fois la boucle doit être itérée. Si, pendant une itération
de boucle, une entrée du microcontrôleur par exemple est constamment
interrogée ou surveillée alors qu’une action est censée être exécutée à une
certaine valeur, cette boucle vous rendra bien service. Voyons maintenant
à quoi ressemble l’organigramme :

Sur cette boucle, la condition d’interruption se trouve également en tête.
En revanche, la variable indiquée dans la condition n’est pas modifiée.
Elle doit l’être dans le corps de boucle, faute de quoi nous aurions affaire
à une boucle sans fin dont nous ne pourrions pas sortir tant que le sketch
s’exécute. Voici encore un court exemple d’une boucle while :

while(i > 1) { // Instance de contrôle
 Serial.println(i);
 i = i - 1;
}

Quand vous travaillez avec des valeurs ou des variables du type float, par
exemple dans l’instance de contrôle, il peut être très risqué d’attendre un
résultat précis à cause de l’imprécision de float. La condition d’interruption
risque de ne jamais être remplie et le sketch se retrouvera prisonnier d’une
boucle sans fin. Au lieu de l’opérateur == pour évaluer l’égalité, utilisez de
préférence les opérateurs <= ou >=.

Figure 8 
Organigramme

d’une boucle while

Début

Vrai

Faux
Test

Instruction(s)

Fin

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 55

Boucle avec condition de sortie en queue
Venons-en maintenant à la boucle avec condition de sortie en queue. On
l’appelle ainsi parce que l’instance de contrôle est hébergée en fin de
boucle.

On l’appelle boucle do… while. La condition étant évaluée seulement à la
fin de la boucle, on peut déjà en déduire qu’elle sera exécutée au moins
une fois.

Cette boucle est peu utilisée, mais je tenais tout de même à la citer par
souci d’exhaustivité. La syntaxe ressemble à celle de la boucle while, mais
vous remarquez que l’instance de contrôle est placée en fin de boucle.

do {
 Serial.println(i);
 i = i - 1;
} while(i > 1); // Instance de contrôle

Vous utiliserez les différentes formes de boucle lorsque vous écrirez vos
sketches.

Exécution du sketch

Bloc d’instructions

Queue de boucle

Corps de boucle

 Figure 9
Principe d’une boucle
avec condition de sortie
en queue

Instance de contrôle

Début

Vrai

Faux

Fin

 Figure 10
Organigramme
d’une boucle do-while

Test

Instruction(s)

	 56	 Partie I. Les bases

Commentez vos codes !
Quand on traite un problème en programmeur et que l’on code, il peut
être utile de prendre çà et là quelques notes. Il nous vient parfois une
fulgurance ou une idée géniale et, quelques jours plus tard, nous avons
du mal, et c’est souvent le cas pour moi, à nous souvenir exactement de
notre raisonnement. Qu’est-ce que j’ai bien pu programmer et pourquoi
m’y suis-je pris ainsi et pas autrement ? Chaque programmeur peut bien
sûr avoir sa propre stratégie de prise de notes : bloc-notes, dos de prospec-
tus publicitaires, documents Word, etc. Toutes ces méthodes présentent
cependant des inconvénients non négligeables.

	● Où ai-je bien pu mettre mes notes ?

	● S’agit de la dernière version actualisée ?

	● Je n’arrive pas à me relire !

	● Comment remettre ces notes à un ami qui s’intéresse également à
ma programmation ?

Le problème vient de la séparation du code de programmation et des
notes, qui ne forment alors plus un tout. Si les notes sont perdues, vous
aurez vraiment beaucoup de mal à tout reconstruire. Imaginez maintenant
votre ami, qui n’a absolument aucune idée de ce que vous vouliez faire
avec votre code. Mais il existe une autre solution : vous pouvez laisser des
remarques et consignes dans le code, et ce, à l’endroit précis où elles sont
pertinentes. Vous avez ainsi sous la main toutes les informations qui vous
sont nécessaires.

Commentaires sur une ligne
Voici un exemple pris dans un programme :

 int ledBrocheRougeAuto = 7;
 // La broche 7 commande la LED rouge (feu tricolore) int
 ledBrocheJauneAuto = 6;
 // La broche 6 commande la LED jaune (feu tricolore) int
 ledBrocheVertAuto = 5;
 // La broche 5 commande la LED verte (feu tricolore)
...

Ici, des variables sont déclarées et initialisées avec une valeur. Des noms
évocateurs ont certes été choisis, mais je trouve utile de laisser encore
quelques brèves remarques complémentaires. Derrière la ligne d’instruc-
tion est ajouté un commentaire, introduit par deux barres obliques (slash).
Pourquoi ces barres sont-elles nécessaires ? C’est simple. Le compilateur
essaie bien entendu d’interpréter et d’exécuter tous les prétendus ordres
qui lui sont donnés. Prenons par exemple le premier commentaire :

Chapitre 3. N’ayons pas peur de la programmation : les bases du codage 	 57

 La broche 7 commande la LED rouge (feu tricolore)	

Il s’agit des divers éléments d’une phrase que le compilateur ne comprend
pas puisque ce ne sont pas des instructions. Cette notation entraînerait
une erreur pendant la compilation du code. Mais les deux // masquent
cette ligne et informent le compilateur que tout ce qui suit les deux traits
obliques ne le concerne pas et qu’il peut sans crainte ne pas en tenir compte.
C’est une sorte de pense-bête pour le programmeur, qui n’est même pas
capable de retenir les choses les plus simples au-delà d’une certaine durée
(> 10 minutes). Soyez un peu indulgent avec lui ! Ce mode d’écriture permet
d’introduire un commentaire d’une seule ligne.

Commentaires sur plusieurs lignes
Si, en revanche, vous voulez écrire plusieurs lignes, comme une descrip-
tion succincte de votre sketch, placer deux barres obliques devant chaque
ligne peut s’avérer fastidieux. Aussi la variante à plusieurs lignes suivante
a-t-elle été créée.

/*
 Auteur: Erik Bartmann
 Scope: Commande feux tricolores
 Date: 10.12.2020 HP:	 https://erik-bartmann.de/
*/

Ce commentaire présente une combinaison de signes introductifs /* et
une combinaison de signes conclusifs */. Tout ce qui se trouve entre les
deux tags (un tag étant une marque utilisée pour identifier des données
qui ont une importance particulière) est considéré comme étant du com-
mentaire et ignoré par le compilateur. Tous les commentaires s’affichent
en gris dans l’environnement de développement Arduino, de façon à être
immédiatement reconnaissables.

Voilà donc le clavier sur lequel vous devrez jouer à l’avenir pour écrire
des sketches. Dans ce chapitre, je vous ai exposé de manière assez abs-
traite je l’avoue quelle méthode était utilisée pour expliquer clairement
à une machine ce qu’elle doit faire. Vous allez maintenant appliquer ces
connaissances dans les différents montages. Vous pourrez ainsi étendre
votre savoir grâce à la mise en pratique de ces méthodes. Je vous conseille
de relire de temps en temps ce chapitre pour bien vous familiariser avec
ces informations.

	 59

Chapitre

4La carte Arduino
Discoveryboard

Au cours du chapitre précédent, vous avez appris des connaissances utiles
sur la programmation, connaissances qui vous aideront sûrement à l’avenir
à réaliser vos idées. J’aimerais vous présenter au cours de ce chapitre une
possibilité pratique qui consiste à installer sur une platine des composants
électriques et électroniques dont nous aurons toujours besoin et que vous
pourrez utiliser plus tard pour vos projets et vos montages Arduino. Cette
platine n’est pas obligatoire. Toutefois, elle vous simplifiera grandement la
tâche dans certaines situations pour réaliser vos montages électroniques.

Si vous n’avez pas beaucoup d’expérience en matière de soudure, je vous
recommande de commencer par les montages les plus simples décrits
dans ce livre afin de vous familiariser avec la technique et l’assemblage de
composants électriques et électroniques, puis de monter la carte Arduino
Discoveryboard. L’effort supplémentaire que vous devrez accomplir au
départ vous fera gagner beaucoup de temps par la suite, car vous n’aurez
pas besoin d’assembler constamment les mêmes composants.

La figure de la page suivante représente la platine terminée dont je vais vous
présenter la construction en détail dans ce montage. Elle réunit différents
composants qui sont soudés sur une plaque d’essai, ce qui vous permettra
de les avoir tous sous la main. Je l’ai appelée Arduino Discoveryboard.

	 60	 Partie I. Les bases

L’idée m’est venue de fabriquer cette carte lorsque j’ai eu besoin pour la
nième fois de plusieurs potentiomètres pour réguler les entrées analo-
giques de la carte Arduino dans le but de réaliser le moniteur analogique.
Chaque fois, il fallait que je retourne toute ma réserve de composants pour
y retrouver les potentiomètres nécessaires aux diverses expériences afin de
les raccorder à l’alimentation, puis de relier les contacts flottants aux entrées
analogiques A0 à A5. Cela ne pose pas vraiment de problème en soi. Mais
il est fastidieux à la longue de recommencer sans cesse les mêmes opéra-
tions. Lorsqu’à cela s’ajoutent des interrupteurs ou des boutons-poussoirs,
vous comprendrez à quel point il est préférable que tout soit réuni au
même endroit. Seuls prérequis : une main sûre et les composants énu-
mérés ci-après. N’essayez pas forcément de reproduire la Discoveryboard
présentée ici. Inspirez-vous-en pour créer votre Discoveryboard person-
nelle en disposant à votre guise sur une platine les composants que vous
utilisez souvent.

Composants nécessaires
Pour la carte Arduino Discoveryboard, nous aurons besoin des composants
suivants :

Composant

3 boutons-poussoirs
miniatures
(avec bouchon de couleur)

 Plaque de
 prototypage miniature

 Afficheur 7 segments
 à 4 caractères

 Bargraphe LED
 à 10 segments


4 boutons-poussoirs

avec résistance de rappel


Afficheur OLED I²C


3 potentiomètres

Alimentation
 en tension 

Figure 1 
La carte Arduino
Discoveryboard

Tableau 1 u
Liste des composants

Afficheur LCD I²C


Chapitre 4. La carte Arduino Discoveryboard 	 61

Composant

6 résistances de 10 kΩ

14 résistances de 330 Ω

3 potentiomètres de 10 kΩ

1 écran LC-I²C

1 bargraphe, par ex.
Kingbright DC-10EWA

1 écran OLED 2,4 cm
(0,96 pouce), 128 x 64 pixels,
pilote LCD

3 barrettes femelles à
64 broches (RM : 2,54)

1 afficheur sept segments
à 4 caractères, par ex.
CL5641BH

1 plaque de prototypage
miniature

 Tableau 1
Liste des composants
(suite)

	 62	 Partie I. Les bases

Composant

1 platine perforée 160 x 100
(RM : 2,54)

4 pieds en caoutchouc

Schéma des connexions
Le schéma des connexions est vraiment simple et facile à comprendre.

Pour la soudure au dos de la platine, il faut avoir la main très sûre. Mais si
j’y suis arrivé, vous y parviendrez aussi. Comme les points de soudure sont
très rapprochés, il est conseillé d’avoir une pompe à dessouder à portée
de main, car deux points de soudure très proches risquent de se rejoindre.
Ce n’est pas dramatique mais c’est énervant. Cela m’est arrivé très souvent.

L’afficheur sept segments
Nous utilisons pour l’affichage un afficheur sept segments à quatre carac-
tères avec une anode commune, de type CL5641BH. Il est évidemment
possible d’utiliser d’autres composants présentant des spécifications simi-
laires. La disposition des broches de l’afficheur est illustrée page suivante.

Tableau 1 u
Liste des composants

(suite)

Broches de connexions

Potentiomètres x 3

Broches de connexion 

Broches de connexions

Figure 2 u
Le schéma des

connexions de la
Discoveryboard

Chapitre 4. La carte Arduino Discoveryboard 	 63

Je décrirai plus en détail dans le montage n° 12 comment commander
cet afficheur sept segments. On peut voir sur le schéma des connexions
que tous les segments des différentes positions sont reliés entre eux. Cela
signifierait évidemment que tous les segments à toutes les positions s’al-
lumeraient en même temps, ce qui serait complètement stupide. Le point
crucial est la commande ciblée ou intelligente des différentes anodes des
positions Dig1 à Dig4. Ces anodes sont toutes reliées entre elles, d’où le
nom d’anode commune. Un procédé particulier entre en application pour
commander maintenant chaque position avec des valeurs de positions
différentes. Cela devient intéressant !

 Figure 3
La disposition des broches
de l’afficheur CL5641BH

Partie 2

Les montages

	 67

Montage

1Hello World –
faire clignoter une LED

La plupart des manuels sur les langages de programmation commencent
par la présentation d’un programme appelé Hello World. Il donne un pre-
mier aperçu de la syntaxe du langage de programmation en affichant le
texte Hello World dans une fenêtre. De cette manière, un programmeur
peut se faire une idée du langage de programmation et de sa syntaxe, et
gagner ainsi du temps.

« Hello World » clignote
À quoi ressemble un programme Hello World dans l’univers Arduino ? En
effet, notre Arduino n’a pas d’écran à l’origine, et donc pas de console de
visualisation pour nous informer. Alors que faire ? Si aucune communi-
cation sous une forme écrite n’est possible, peut-être l’est-elle avec des
signaux optiques ou acoustiques ? Nous optons pour la variante optique,
car une diode électroluminescente, également appelée LED, se branche
sans problème à l’une des sorties numériques et attirera à coup sûr l’atten-
tion. J’ai été moi-même très étonné quand ça a marché du premier coup.
Voyons d’abord la liste des composants.

Composants nécessaires
Ce montage ne nécessite pas grand-chose et il peut même se passer de
composants supplémentaires. En effet, la carte Arduino comporte une LED
qui est désignée par la lettre L. Toutefois, j’aimerais compléter ce montage
par quelques composants que nous réutiliserons pour d’autres montages.

	 68	 Partie 2. Les montages

Composant

1 LED rouge

1 résistance de 220 Ω

Avant d’examiner le programme Arduino, ou sketch, jetons d’abord un
œil au schéma. Ce schéma représente le circuit du montage sous forme
graphique, certains l’appellent aussi le schéma des connexions.

Le schéma des connexions
Le schéma ne représente qu’une seule LED avec la résistance correspondante.

L’anode de la LED (la tige longue) est reliée à la broche 13 via la résistance
série de 220 Ω, tandis que l’autre extrémité, ou cathode (la tige courte),
de la LED est reliée à la masse (GND) de la carte Arduino. Pour ce circuit,
j’utilise pour la première fois la carte Arduino combinée à une plaque de
prototypage, dont je vous ai déjà parlé dans le chapitre d’introduction (cha-
pitre 2). J’utiliserai dans les montages suivants l’Arduino Discoveryboard,
mais vous pouvez évidemment réaliser de votre côté tous les montages
sur une plaque de prototypage tout à fait normale.

Tableau 1-1 u
Liste des composants

Figure 1-1 u
Le schéma

des connexions

Montage 1. Hello World – faire clignoter une LED 	 69

Le circuit
La réalisation du circuit sur une plaque de prototypage est extrêmement
simple. Vous voyez ci-dessous la carte Arduino Uno avec la plaque de pro-
totypage. Les deux sont reliées par des cavaliers. J’ai placé sur la plaque de
prototypage la LED et la résistance.

ATTENTION À LA POLARITÉ DE LA LED
Veillez à respecter la polarité correcte de la LED, faute de quoi nous ne verrons
qu’une LED éteinte. Vous ne risquez pas d’endommager quoi que ce soit
avec une LED mal raccordée mais, tant qu’à faire les choses, faisons-les
correctement.

Le sketch Arduino
Le code de notre premier sketch a pour effet de faire clignoter toutes les
secondes une LED raccordée à une résistance. Le programme est le suivant :

int ledPin = 13;	 // Variable déclarée
	 // + initialisée avec broche 13
void setup() {

 pinMode(ledPin, OUTPUT);	 // Broche numérique 13
	 // définie comme sortie
}

void loop() {
 digitalWrite(ledPin, HIGH);	 // LED au niveau HIGH (5 V)
 delay(1000);	 // Attendre une seconde (1000 ms)
 digitalWrite(ledPin, LOW);	 // LED au niveau LOW (0 V)
 delay(1000);	 // Attendre une seconde (1000 ms)
}

Je recommande vivement de taper vous-même le code. Je trouve que cela
est bénéfique sur le plan pédagogique. Vous apprendrez par exemple à

t Figure 1-2
Le circuit sur une petite
carte combinée Arduino

	 70	 Partie 2. Les montages

toujours mettre un point-virgule à la fin d’une ligne d’instruction. Vous vous
familiariserez plus avec les finesses de la programmation si vous entrez
vous-même les lignes de code. Cela s’applique en particulier au code du
premier montage. Pour les montages suivants, le code est parfois si long
que le taper à la main serait trop fastidieux.

Le code utilisé dans ce livre est disponible à l’adresse :

https://www.editions-eyrolles.com/dl/0100583

LA STRUCTURE DE BASE D’UN SKETCH ARDUINO
Tous les sketches Arduino présentent la même structure. Celle-ci est
représentée sur la figure 3 :

L’ensemble du programme, après le démarrage du sketch, est divisé en trois
blocs, comme vous pouvez le voir ci-dessus. Chaque bloc a une fonction
clairement définie dans un sketch.

Bloc vert : déclarations et initialisations
Dans ce premier bloc, des bibliothèques externes sont par exemple intégrées,
si nécessaire, à l’aide de l’instruction #include. Vous apprendrez dans les
montages suivants comment cela fonctionne. C’est également l’endroit idéal
pour déclarer des variables globales qui seront visibles et utilisables dans
l’ensemble du sketch. La déclaration permet de définir à quel type de données
la variable doit être affectée. L’initialisation en revanche affecte une valeur à
la variable.

Bloc bleu : fonction setup()
Les différentes broches du microcontrôleur sont programmées la plupart du
temps dans la fonction setup(). Celle-ci définit donc quelles broches doivent
servir d’entrées et de sorties. Certaines broches sont connectées à des capteurs
comme des interrupteurs ou des résistances sensibles à la température, qui
dirigent des signaux de l’extérieur vers une entrée correspondante. D’autres
broches transmettent les signaux aux sorties, pour commander par exemple
un moteur ou une diode lumineuse.

Fonctions

Exécution
une seule fois

Exécution
une seule fois

Boucle infinie

Déclarations
et initialisations

setup()

loop()

Début du sketchFigure 1-3 u
La structure de

base d’un sketch

Montage 1. Hello World – faire clignoter une LED 	 71

Bloc orange 3 : fonction loop()
La fonction loop() est une boucle sans fin. Elle contient la logique, par exemple
lorsque des capteurs doivent être interrogés ou des moteurs commandés en
continu. Les deux fonctions, setup() et loop() constituent ensemble un bloc
d’exécution, reconnaissable dans le code aux paires d’accolades {}. Elles servent
de limitateurs permettant de savoir où la définition de la fonction commence
et où elle se termine.

Les deux fonctions setup() et loop() doivent avoir ces dénominations
exactes, car elles sont recherchées au démarrage du sketch, parce qu’elles
servent de points d’entrée pour garantir un démarrage défini. Comment le
compilateur pourrait savoir quelle fonction doit être exécutée une seule fois
et quelle fonction en continu dans une boucle sans fin ? Ces noms sont donc
indispensables à chaque sketch. Ils sont toujours précédés du mot-clé void.
Il indique que la fonction ne donnera probablement aucune information en
retour à la fonction qui l’a appelée.

Revue de code
Au départ, nous déclarons et initialisons une variable globale portant le
nom de ledPin et nous lui attribuons la valeur 13. À l’aide de l’instruction
int (int = Integer), nous décidons qu’il s’agit d’un type de donnée entier.
Cette variable devient visible dans toutes les fonctions et est accessible.
L’initialisation s’apparente à une affectation de valeurs avec l’opérateur
d’affectation =. La déclaration et l’initialisation s’effectuent ici sur une seule
ligne.

La fonction setup() est appelée une fois au début du démarrage du sketch
et la broche numérique 13 est programmée comme sortie. Examinons
encore une fois l’instruction pinMode.

Elle présente deux arguments numériques. Le premier pour la broche à
configurer et le deuxième pour définir son comportement comme entrée
ou sortie. Comme nous voulons raccorder une LED, nous avons besoin
pour cela d’une broche de sortie. Le sens de circulation du deuxième
argument est indiqué par une constante prédéfinie. Derrière OUTPUT se
cache la valeur 1.

Type
de donnée Déclaration Initialisation

Commande
Numéro de
la broche Mode

	 72	 Partie 2. Les montages

Il en va de même pour l’instruction digitalWrite, qui présente également
deux arguments.

On trouve ici aussi une constante dont le nom est HIGH, censée servir
d’argument pour un niveau HIGH sur la broche 13. Elle est équivalente à
la valeur numérique 1. Vous trouverez les valeurs correspondantes dans
le tableau ci-dessous :

Constante Valeur Explication

INPUT 0 Constante pour l’instruction pinMode (programme
la broche en tant qu’entrée)

OUTPUT 1 Constante pour l’instruction pinMode (programme
la broche en tant que sortie)

LOW 0 Constante pour l’instruction digitalWrite (met la broche
au niveau LOW)

HIGH 1 Constante pour l’instruction digitalWrite (met la broche
au niveau HIGH)

L’instruction delay sert à la temporisation dans le sketch. Elle interrompt
l’exécution du sketch pendant un temps correspondant à la valeur donnée
qui exprime la durée en millisecondes (ms).

La valeur 1000 signifie une attente de 1 000 ms précisément, soit 1 seconde,
avant de continuer.

Les différentes étapes de travail de la boucle sans fin, qui a été déclenchée
par l’instruction void loop sont :

1.	allumez la LED de la broche 13 ;

2.	attendez 1 seconde ;

3.	éteignez la LED de la broche 13 ;

4.	attendez 1 seconde ;

5.	revenez au point 1.

Commande
Numéro de
la broche Niveau

Tableau 1-2 u
Les constantes
et leurs valeurs

Commande Durée (ms)

Montage 1. Hello World – faire clignoter une LED 	 73

Illustration de l’évolution temporelle
C’est difficile à voir, mais en regardant bien, on s’aperçoit que la LED sur
la carte clignote en même temps que la LED reliée extérieurement. Les
LED sont censées commencer à clignoter aussitôt après la transmission
réussie sur la carte. L’oscillogramme présente plus précisément l’évolution
temporelle de l’impulsion sur la sortie numérique.

J’ai récupéré directement le niveau sur la sortie sans résistance série. Elle
alterne constamment entre 0 V et 5 V, ce qui est caractérisé ici par L (LOW)
et H (HIGH).

ATTENTION !
On trouve sur Internet des schémas de circuits où une diode électroluminescente
est branchée directement entre masse et broche 13. Les deux fiches femelles
se trouvant l’une à côté de l’autre, côté broches numériques, il est très aisé de
brancher une LED. Je vous mets expressément en garde contre cette variante,
car la LED est utilisée sans résistance série. Ce n’est pas tant pour la LED,
mais bel et bien pour votre microcontrôleur que je m’inquiète. J’ai mesuré
une fois que l’intensité du courant atteignait 60 mA. Cette valeur est de 50 %
au-dessus du maximum et donc assurément trop élevée. Le courant admis
par une broche numérique du microcontrôleur est de 40 mA au maximum.

Problèmes courants
Les erreurs ont le don de se glisser rapidement même si vous pensez
avoir suivi à la lettre les textes et les figures. Je sais par expérience que
la recherche d’erreurs dans un programme ou un circuit est parfois fasti-
dieuse. C’est pourquoi j’indique toujours dans chaque montage les sources
d’erreurs possibles. Si votre montage ne fait pas ce que vous attendez de
lui, passez en revue les points que j’énumère dans cette section.

Si la LED ne s’allume pas, plusieurs raisons peuvent en être la cause.

La LED est-elle mal polarisée ?
Rappelez-vous les deux connexions d’une LED que sont l’anode et la
cathode.

t Figure 1-4
Évolution du niveau
sur la broche de sortie
numérique 13

	 74	 Partie 2. Les montages

La LED est-elle défectueuse ?
La LED a peut-être été grillée par une surtension lors des montages précé-
dents. Testez-la avec une résistance de 220 Ω sur une source d’alimentation
de 5 V.

Y a-t-il une erreur de raccordement ?
Vérifiez les fiches de la barrette de raccordement qui sont reliées à la LED
ou à la résistance. S’agit-il bien de GND et de la broche 13 ?

Une erreur se serait-elle glissée
dans le code ?
Vérifiez le sketch que vous avez entré dans l’éditeur de l’IDE. Peut-être
avez-vous oublié une ligne ou commis une erreur, ou peut-être le sketch
a-t-il mal été transmis ? Avez-vous bien mis les accolades au début et à la
fin des fonctions setup() et loop() ? Avez-vous toujours terminé une ligne
d’instructions avec un point-virgule ? Ce sont les erreurs les plus fréquentes
commises par les débutants.

Si la LED qui se trouve sur la carte clignote, la LED branchée doit elle aussi
clignoter. Le sketch fonctionne dans ce cas correctement.

BASES DE CALCULS DE LA RÉSISTANCE SÉRIE
Dans ce montage, j’ai utilisé une résistance de 220 Ω qui est amplement
suffisante pour ce petit circuit. Mais vous avez parfaitement le droit de
vous interroger sur les raisons qui ont motivé ce choix. Le circuit suivant
comporte une diode et une résistance série qui sont branchées à une source
d’alimentation.

tot

tot

Figure 1-5 u
Une LED avec

résistance série

Montage 1. Hello World – faire clignoter une LED 	 75

J’ai ajouté quelques flèches pour les valeurs de tension et le courant total.
Pour calculer la valeur d’une résistance, on utilise la loi d’Ohm que nous avons
déjà évoquée. Elle décrit le rapport entre la tension, le courant et la résistance.
Si nous amenons une tension U à un composant, le courant I qui le traverse
évolue proportionnellement à la tension. Le rapport entre les deux grandeurs,
c’est-à-dire la tension et le courant, est donc constant et il définit la résistance
électrique R. Nous obtenons alors l’équation suivante :

= constante = R
U

I

Si je me donne la peine de mettre les lettres dans l’ordre, j’obtiens l’équation
suivante qui me sert à calculer la résistance électrique :

R =
U

I

Un aspect important n’a pas encore été abordé : qu’est-ce qu’une résistance
série ? Les électrons circulant dans un conducteur peuvent avoir plus ou moins
de mal à le traverser. Sur leur chemin, ils rencontrent en effet des résistances
très différentes les unes des autres. On peut établir une classification des
matériaux en fonction de leur conductibilité :

	● isolants (très haute résistance). Par exemple : la céramique ;

	● mauvais conducteurs (haute résistance). Par exemple : le verre ;

	● bons conducteurs (faible résistance). Par exemple : le cuivre ;

	● très bons conducteurs (supraconductivité à de très basses températures
où la résistance électrique tend vers 0) ;

	● semi-conducteurs (la résistance peut être contrôlée). Par exemple : silicium
ou germanium.

Il existe deux grandeurs électriques inversement proportionnelles : la résistance
R et la conductance G. Plus la résistance est élevée, plus la conductance est
faible et inversement. La relation qui lie une résistance à une conductance
est donnée par :

R =
1

G

La résistance est la valeur inverse de la conductance. On peut comparer une
résistance élevée à un goulet d’étranglement que doivent franchir les électrons.
Le flux de courant est freiné et donc plus faible. Imaginez que vous couriez
sur une surface lisse. Avancer ne devrait pas vous poser trop de problèmes.
En revanche, si vous essayez de courir dans du sable en gardant la même
allure, c’est fatigant. Vous dépensez de l’énergie sous forme de chaleur et votre
vitesse diminue. Il en va de même pour des électrons qui doivent traverser
par exemple du verre (mauvais conducteur) au lieu du cuivre (conducteur).

	 76	 Partie 2. Les montages

Cette résistance n’est évidemment pas sans conséquences. Le frottement
plus intense des électrons, par exemple sur la paroi externe ou bien entre
eux, dégage une énergie sous forme de chaleur que la résistance transmet
à l’extérieur.

La plupart des circuits électroniques recourent à des composants spéciaux, qui
réduisent artificiellement le flux de courant. La résistance R est alors indiquée
en ohms (Ω). Il s’agit de résistances fabriquées spécialement (par exemple des
résistances à couche de carbone ou à couche métallique) avec des valeurs
différentes, pourvues d’un code couleur qui permet de déduire leur valeur de
résistance respective. Nous reviendrons plus loin sur ce point.

Lorsque vous examinez de plus près la figure 1-6 avec le flux d’électrons,
vous pourriez avoir l’impression que les électrons sur le côté gauche avancent
plus vite que ceux du côté droit. Ce n’est pas le cas. Le courant qui circule
dans un circuit fermé est toujours le même ! Certes, il est influencé par la
résistance illustrée ici, mais le courant avant ou après la résistance est toujours
le même. À chaque unité de temps, le même nombre d’électrons passe dans
le conducteur ou dans la résistance.

Revenons à notre circuit afin de calculer la résistance. Comment déterminer
le courant et la tension ? Ce n’est pas très compliqué. À la résistance série et
la LED (entre les points A et C de la figure 1-5), on a +5 V, ce qui correspond à
la tension d’alimentation de la carte Arduino. On la retrouve aussi à la sortie
de la broche numérique lorsqu’elle est commandée avec un niveau HIGH.
Aux bornes de la LED, entre les points B et C, on a, normalement, une chute
de tension d’environ 2 V, selon la LED utilisée et sa couleur. La tension aux
bornes de la résistance série, donc entre les points A et B, est par conséquent
la différence entre +5 V et +2 V, soit +3 V.

Reste à connaître la grandeur du courant qui passe par la résistance. Lorsque
les composants sont disposés les uns derrière les autres dans un seul circuit
électrique, nous parlons de montage en série. C’est notre cas ici. Dans un
montage en série, le courant passe par tous les composants. La fiche technique
de la carte Arduino nous apprend que le courant maximum fourni par une
broche numérique est de 40 mA. Cette valeur ne doit en aucun cas être
dépassée, faute de quoi le microcontrôleur pourrait être endommagé. C’est
pourquoi nous limitons le courant à l’aide de la résistance Rv. En électronique,
on n’est pas obligé de repousser les limites et on préfère même s’en tenir
sagement à l’écart. Pour calculer la résistance série, j’utilise ici deux valeurs
de courant différentes soit 5 mA et 10 mA, des valeurs situées entre 5 mA et
30 mA sont courantes pour une LED.

Figure 1-6 u
Une résistance freinant

le flux d’électrons

Montage 1. Hello World – faire clignoter une LED 	 77

Voyons les calculs correspondants et les résultats obtenus :

R
1
 = = = 300 Ω

U
ges

 – U
LED

I1

5V – 2V

I0 ma
et

R
2
 = = = 600 Ω

U
ges

 – U
LED

I
2

5V – 2V

5 ma

Pour une telle valeur de résistance, nous pouvons donc employer des valeurs
comprises entre 300 Ω et 600 Ω. La sortie de la broche Arduino correspondante
ne sera que modérément sollicitée. Une valeur de 330 Ω suffit amplement en
ce qui nous concerne. Toutes les valeurs de résistance possibles ne sont pas
fabriquées, mais des E-séries normalisées sont proposées avec certaines
classes. Il faut également tenir compte de la dissipation d’énergie avec une
valeur admise de ¼ watt. Divers assortiments sont disponibles dans le
commerce.

Je vous avais promis de vous expliquer la signification des anneaux de
couleurs des résistances. La figure ci-dessous présente une résistance dotée
de différents anneaux de couleur.

Que signifient-ils exactement et comment déchiffre-t-on le code ? Nous allons
l’expliquer en nous servant d’un exemple :

Une résistance possède généralement quatre anneaux de couleur. On a
opté pour cette forme de marquage, car il n’y a pas assez de place pour un
marquage explicite. Pour interpréter les anneaux de couleur, il faut placer les
trois anneaux les plus rapprochés sur le côté gauche. D’après vous, quelle est
la valeur de cette résistance ?

1er anneau 2e anneau 3e anneau 4e anneau
Valeur de

la résistance

Jaune : valeur
4

Violet : valeur
7

Rouge : multiplicateur
100

Or : +/- 5 % 4,7 kΩ

Quand on écrit ces chiffres les uns à côté des autres, on obtient un résultat
parfaitement lisible : 4 700 correspond à 4,7 kΩ. La valeur de tolérance donne

1er anneau
2e anneau
Multiplicateur
Tolérance

	 78	 Partie 2. Les montages

des indications sur la qualité : plus elle est basse, plus la valeur de résistance
remplit ses promesses. Mais d’où est-ce que je tiens ces valeurs ? C’est très
simple ! Le tableau ci-dessous reprend tous les codes couleurs avec leurs
valeurs correspondantes :

Couleur 1er anneau 2e anneau 3e anneau 4e anneau

Noir x 0 100 = 1

Marron 1 1 101 = 10 +/- 1 %

Rouge 2 2 102 = 100 +/- 2 %

Orange 3 3 103 = 1 000

Jaune 4 4 104 = 10 000

Vert 5 5 105 = 100 000 +/- 5 %

Bleu 6 6 106 = 1 000 000 +/- 0,25 %

Violet 7 7 107 = 10 000 000 +/- 0,1 %

Gris 8 8 108 = 100 000 000 +/- 0,05 %

Blanc 9 9 109 =
1 000 000 000

Or - - 10-1 = 0,1 +/- 5 %

Argent - - 10-2 = 0,01 +/- 10 %

Voici comment sont représentées les résistances dans les schémas électriques.
Il y a des différences entre les normes européennes et américaines :

Le symbole de l’ohm (Ω) est en principe absent et seul le nombre est indiqué
si la valeur est inférieure à 1 kΩ (1 000 ohms), suivi éventuellement d’un K
pour kilo, si la valeur est supérieure ou égale à 1 kΩ ou d’un M pour méga, si
la valeur est supérieure ou égale à 1 MΩ. Voici quelques exemples :

Valeur Marquage

220 Ω 220

1000 Ω 1K

4700 Ω 4,7K ou 4K7

2,2 MΩ 2,2M

Tableau 1-3 u
Code couleur

des résistances

R

Notation américaineNotation européenne

Figure 1-7 u
Symboles de la résistance

fixe dans un schéma
électrique

R

Tableau 1-4 u
Différentes valeurs

de résistance

Montage 1. Hello World – faire clignoter une LED 	 79

La dissipation d’énergie maximale admise pour notre montage est de ¼ watt.
Il s’agit toujours de résistances à couche de carbone. Elles coûtent moins cher
que celles à couche métallique. Vous trouverez des résistances de différentes
tailles et couleurs : plus elles sont grandes ou grosses, plus la dissipation
d’énergie est élevée.

Voilà pour votre premier montage réalisé avec la carte Arduino ! Vous avez
raccordé une LED et une résistance appropriée à la carte Arduino puis,
à l’aide du sketch, vous avez fait clignoter cette LED à une cadence que
vous avez définie. Vous avez réussi à faire clignoter la LED ? Si la réponse
est oui, vous pouvez être fier de vous ! Si vous vous en sentez capable,
vous pouvez maintenant vous pencher sur le thème suivant. La MLI est
un sujet que vous rencontrerez immanquablement durant votre carrière
de développeur amateur. Si vous ne comprenez pas tout tout de suite,
n’hésitez pas à revenir sur le sujet plus tard.

LA COMMANDE MLI
Nous en arrivons à la commande d’une LED par MLI. Nous avons déjà vu
brièvement de quoi il s’agit au chapitre 1. Il est maintenant temps de passer
à la pratique. Nous voulons allumer progressivement une LED à l’aide d’une
commande analogique, puis l’éteindre brusquement lorsqu’une valeur
maximale est atteinte. Ensuite, tout doit recommencer au début. Il s’agit
presque ici d’un clignotement en douceur, contrairement au clignotement
brusque du circuit précédent. La commande s’effectue à l’aide des broches
numériques dont le numéro est précédé d’un tilde. Il s’agit des broches D3,
D5, D6, D9, D10 et D11. Dans cet exemple, j’ai utilisé la broche 3. Le code du
sketch est le suivant :

int ledPin = 3; // Variable déclarée + initialisée avec broche 3
int pwmValue = 0; // Variable déclarée + initialisée pour MLI

void setup() {/* Aucun code requis */ } void
loop() {

 analogWrite(ledPin, pwmValue++);	 // Commande de la LED
	 // avec valeur MLI
 delay(10);// Courte pause
 if(pwmValue > 255) pwmValue = 0;	 // Quand valeur MLI > 255
	 // -> remettre à 0
}

	 80	 Partie 2. Les montages

Revue de code
Au départ, nous déclarons et initialisons deux variables globales portant le nom
ledPin et pwmValue et dont le type de données entier est int (int = Integer).
Examinons l’instruction analogWrite.

Elle présente deux arguments : le premier définit la broche et le deuxième la
valeur MLI qui peut varier entre 0 et 255.

 pwmValue++

augmente la variable pwmValue de la valeur 1 comme indiqué par les deux
signes +. En programmation, on parle d’incrémentation. Dans un circuit
conventionnel, on obtiendrait le même comportement par l’ajout d’une ligne
de code supplémentaire :

 pwmValue = pwmValue + 1;

Si on laissait l’incrémentation de la variable pwmValue se poursuivre sans
surveillance dans une boucle sans fin loop, on aboutirait tôt ou tard à une
valeur supérieure à 255. Pour l’éviter, l’instruction if vérifie si la valeur est
supérieure à 255. Si la réponse est positive, l’instruction suivante est exécutée :

 pwmValue = 0;	

Cela nous ramène à la valeur initiale de 0. Par conséquent, la LED s’éteint à
la prochaine activation de l’instruction analogWrite. Nous pourrions aussi
modifier le code de telle sorte que la LED ne s’éteigne pas d’un coup, mais
que sa luminosité décroisse progressivement.

IMPORTANT !
Pour commander une broche numérique par MLI avec l’instruction
analogWrite, il n’est pas nécessaire de la programmer au préalable à l’aide
de l’instruction pinMode. La fonction setup ne contient pas d’instruction en ce
sens. D’ailleurs, elle ne contient aucun code.

Vous trouverez de plus amples informations sur la MLI aux adresses suivantes :

https://www.arduino.cc/en/Tutorial/PWM
https://www.arduino.cc/en/Reference/AnalogWrite

Bon à savoir
Nous avons vu comment faire clignoter une LED avec quelques lignes de
code. On pourrait faire encore plus court.

Commande
Numéro de
la broche Niveau

Montage 1. Hello World – faire clignoter une LED 	 81

int ledPin = 13; // Variable déclarée + initialisée avec broche 13
void setup() {
 pinMode(ledPin, OUTPUT); // Broche numérique 13 définie comme sortie
}
void loop() {
 digitalWrite(ledPin, !digitalRead(ledPin)); // Bascule la LED

 delay(1000);	 // Attendre une seconde
}

La ligne décisive est :

 digitalWrite(ledPin, !digitalRead(ledPin));	

Nous utilisons ici deux nouvelles structures : il s’agit d’une part de l’ins-
truction digitalRead qui permet de lire l’état d’une broche numérique.

D’autre part, nous utilisons l’opérateur NOT avec le point d’exclamation (!)
qui sert à inverser le résultat. Dans le langage de programmation C/C++,
il n’existe pas de type de donnée pour les valeurs logiques, comme vrai
ou faux. On utilise donc une valeur de type int. Dans le tableau 1-2, nous
avons vu que le niveau LOW équivaut à la valeur 0 et le niveau HIGH à la
valeur 1. L’opérateur NOT permet de passer de l’un à l’autre, c’est-à-dire de
basculer entre l’un et l’autre. Vous trouverez de plus amples informations
sur les opérateurs booléens à l’adresse suivante :

https://www.arduino.cc/en/Reference/Boolean

Si vous souhaitez approfondir la thématique autour des résistances, vous
pouvez lire l’ouvrage L’électronique par la pratique de Charles Platt (Éditions
Eyrolles).

Qu’avez-vous appris ?
Vous avez appris à déclarer et à initialiser correctement une variable globale.

	● Vous connaissez désormais la structure de base du sketch.

	● Vous avez déterminé le sens de transmission des données pour une
certaine broche comme OUTPUT avec l’instruction pinMode, si bien que
vous avez pu envoyer un signal numérique (HIGH ou LOW) au moyen
de l’instruction digitalWrite à la sortie, à laquelle est raccordée la LED.

Commande N0 de la broche

	 82	 Partie 2. Les montages

	● Vous avez créé un temps d’attente dans l’exécution du sketch au moyen
de l’instruction delay, si bien que la LED restait allumée ou éteinte
un certain temps.

	● Vous avez vu une variante abrégée du code pour faire clignoter la LED
à l’aide de l’opérateur NOT et de l’instruction digitalRead.

	● Vous savez que pour utiliser une LED, il faut une résistance série dimen-
sionnée en conséquence.

	● Vous savez calculer une résistance série à l’aide de la loi d’Ohm.

	● Il est très facile de connaître la valeur d’une résistance indiquée par
ses anneaux colorés en se référant au tableau des codes couleurs.

	● Vous avez vu comment commander une LED depuis une broche MLI.

Workshop pour faire clignoter
une LED
À l’issue de ce montage, voici un petit exercice : modifier le sketch de telle
sorte que les temps durant lesquels la LED est allumée ou éteinte soient
déterminés par deux variables. Cela vous permet de changer le rapport
cyclique. Il correspond au rapport entre la durée de l’impulsion et la durée
de la période. Le résultat est la plupart du temps exprimé en pourcentage.
Le chronogramme suivant montre les différentes durées pour t ou T :

t = durée de l’impulsion	 T = durée de la période

La formule pour calculer le rapport cyclique est la suivante :

Rapport cyclique =
t

T

Programmez le sketch de telle sorte que la LED reste allumée pendant
0,5 s et éteinte pendant 1,5 s. Le rapport cyclique se calcule comme suit :

Rapport cyclique = = = 0,25 =̂ 25 %
t 500 ms

200 msT

Ceci correspond à un rapport cyclique de 0,25. Par rapport à la durée
complète de la période, la LED est allumée pendant 25 % du temps.

Figure 1-8 u
Évolution du niveau

sur la broche de sortie
numérique 13 à un rapport

cyclique de 25 %

Montage 2. Programmation Arduino de bas niveau 	 83

Montage

2Programmation
Arduino de bas niveau

Le cœur de la carte Arduino Uno est son microcontrôleur, qui fait office
d’unité centrale traitant les différentes opérations informatiques. Outre
l’alimentation, il existe bien sûr d’autres connexions offrant une commu-
nication avec le monde extérieur. Il existe ainsi des entrées et sorties ana-
logiques et numériques (nous les avons déjà rencontrées au chapitre 1) qui
peuvent être interrogées et utilisées. Comme un microcontrôleur effectue
des opérations élémentaires dites de bas niveau à l’aide de signaux numé-
riques, les informations sont stockées sous forme de niveaux HIGH ou LOW
(HAUT ou BAS). Certaines d’entre elles peuvent se trouver dans des zones
de stockage interne particulières appelées registres. Dans ce montage, nous
allons raisonner au niveau le plus bas, ce qui peut sembler ardu mais sera
très utile pour bien comprendre les bases du système. Mais pas de panique,
nous allons procéder pas à pas.

Vous vous demandez certainement ce qu’est un registre. Pour pouvoir
être programmé, un microcontrôleur dispose d’un certain nombre d’em-
placements de mémoire pour gérer et enregistrer en interne des valeurs.
La plupart de ces mémoires présentent un accès en écriture et en lecture,
permettant ainsi de stocker et de lire des données. D’autres mémoires
peuvent seulement être consultées et ne fournissent qu’un accès en lecture.
Ces emplacements de mémoire sont appelés des registres. Les ports que
nous allons justement découvrir ci-après en font partie.

	 84	 Partie 2. Les montages

Les accès du microcontrôleur
Pour communiquer avec un microcontrôleur, vous devez pouvoir envoyer
et recevoir des signaux. Pour cette raison, certaines connexions, appelées
ports,sont proposées. Port vient du latin porta qui signifie porte ou accès.
Sur la carte Arduino, plusieurs broches de connexions ont été regroupées
en blocs fonctionnels. Nommés ports, ces blocs ont une largeur de données
de 8 bits. Vous voyez certains de ces ports sur la figure 2-1 :

Les ports signalés ici sont connectés aux broches suivantes :

	● port B : broches numériques 8 à 13 ;

	● port C : entrées analogiques (A0 à A5) ;

	● port D : broches numériques 0 à 7.

Comme chacun de ces trois ports doit pouvoir être programmé individuel-
lement, des registres supplémentaires sont nécessaires pour les configurer.
La petite lettre x sera remplacée par le port requis. Ces ports, qui ont
également une largeur de données de 8 bits, sont les suivants :

	● DDRx (Data Direction Register) - Définit une broche comme entrée (0)
ou comme sortie (1) : lecture/écriture ;

	● PORTx (Pin Output Value) - Définit l’état de la broche sur HAUT ou
BAS : écriture ;

	● PINx (Pin Input Value) - Lit la valeur d’une broche : lecture seule.

https://www.arduino.cc/en/Reference/PortManipulation

Figure 2-1 u
Les ports de la carte

Arduino Uno

Montage 2. Programmation Arduino de bas niveau 	 85

Programmation d’un port
Regardons cela en détail, même si je précise encore une fois que ce type
de programmation est d’un niveau avancé, mais qu’il va nous permettre
de mieux comprendre tout le système. Jetons un coup d’œil au port B
correspondant aux broches numériques 8 à 13.

Certaines de ces broches, appelées aussi headers, ne sont pas affectées à
un port. Elles se distinguent des autres broches par leur petite croix. À côté
de ces broches figure un libellé qui donne une indication de leur fonction,
ce qui est très utile. Les quatre connecteurs de gauche ne peuvent pas être
utilisés pour nos projets car ils sont associés au bus I²C, à l’alimentation en
tension et à la masse. Pour pouvoir accéder aux broches numériques 8 à
13, il faut avoir configuré les registres appropriés. Mais il faut d’abord savoir
quelles broches doivent fonctionner comme entrées et comme sorties. En
résumé, nous avons :

	● broches 8, 9 et 10 : entrées ;

	● broches 11, 12 et 13 : sorties.

J’ai déjà évoqué les registres, utilisés pour la configuration et le contrôle des
ports. La figure 2-3 montre deux registres, ayant une largeur de données de
8 bits, qui assurent ces fonctions. Plus loin dans ce montage, nous ferons
connaissance d’un registre supplémentaire.

Ils se nomment DDRx et PORTx. Commençons par DDRx, qui gère la direc-
tion du flux de données, où x est le port. Dans notre cas, ce sera donc
DDRB. Nous savons que les entrées sont configurées avec la valeur 0 et
les sorties avec la valeur 1.

t Figure 2-2
Port B

t Figure 2-3
Les registres DDRx
et PORTx

Quelle direction ?

Quelle broche ?

Registre

	 86	 Partie 2. Les montages

Les flèches indiquent la direction du flux de données et nous devons effec-
tuer la programmation dans l’environnement de développement selon le
sketch suivant. Je vous renvoie à mes explications détaillées du montage
n° 1 : la fonction de configuration setup est exécutée une seule fois au début
du sketch et la fonction loop est une boucle sans fin.

void setup() {
 DDRB = 0b11111000;	 // Broches 8, 9, 10 en ENTRÉE. Broches 11,
	 // 12, 13 en SORTIE
 PORTB = 0b00111000;	 // Broches 11, 12, 13 au niveau HAUT
}

void loop() {/* vide */}

Dans cet exemple, le code n’est présent que dans la fonction setup car nous
avons juste besoin d’une exécution unique. La fonction loop est donc vide.
L’attribution d’une valeur au registre peut se faire en format binaire, ce qui
simplifie beaucoup la compréhension, car cela montre immédiatement
comment chaque broche du port fonctionne. À la suite du préfixe 0b se
situe la valeur binaire :

 DDRB = 0b11111000; // Correspond à la valeur décimale 248

Composants nécessaires
Pour ce montage, nous aurons besoin des composants suivants :

Composant

6 LED vertes

6 résistances de 330 Ω

Figure 2-4 u
La configuration

du port B

Tableau 2-1 u
Liste des composants

Montage 2. Programmation Arduino de bas niveau 87

Composant

3 résistances de 10 kΩ

3 boutons-poussoirs
miniatures

Le schéma des connexions pour commander les LED est le suivant :

La réalisation du montage sur une carte Arduino Discoveryboard peut
être la suivante :

Avec ce montage, il est possible de modifi er les différentes valeurs de
contrôle pour un résultat immédiatement visible. Vous remarquerez que

t Figure 2-5
Le schéma des
connexions avec six LED

t Figure 2-6
Confi guration du test
avec six diodes sur la carte
Arduino Discoveryboard

	 88	 Partie 2. Les montages

seules les broches 11, 12 et 13 peuvent être configurées comme sorties.
Cependant, le montage utilise six diodes reliées aux broches numériques
8 à 13. Que faut-il changer pour que les six diodes électroluminescentes
puissent être contrôlées ? La réponse est très facile ! Mais avant cela, regar-
dons de plus près ce qu’est une diode électroluminescente et comment
la contrôler. Une diode électroluminescente (appelée aussi LED) est un
dispositif semi-conducteur qui émet une lumière d’une certaine longueur
d’onde dépendant du matériau semi-conducteur utilisé. Comme le laisse
entendre le mot diode, le sens de branchement de la diode a une impor-
tance, car la LED ne transmet la lumière que dans un sens. Si la LED est
branchée à l’envers, elle reste éteinte, ce qui ne veut pas dire qu’elle est
défectueuse. Par ailleurs, il est impératif de veiller à ce qu’elle soit toujours
reliée à une résistance série d’une valeur appropriée. Sinon, elle s’allumera
une fois avec une très forte luminosité, mais plus jamais ensuite. Vous avez
vu au montage n° 1 comment définir la valeur de la résistance série. 330 Ω
est une bonne valeur. Tout comme une diode classique, une LED possède
deux contacts, l’anode et la cathode. Son symbole est quasiment le même
qu’une diode normale, avec en plus deux petites flèches représentant le
flux lumineux émis :

Revenons maintenant à notre configuration, où les broches 8, 9 et 10 sont
configurées comme des entrées. Comment vérifier leur comportement ?
Pour cela, il faut aller un peu plus loin. Dans la technologie numérique,
il n’y a rien de pire qu’un circuit qui est défini comme une entrée et qui
n’a rien de connecté. Essayons de comprendre pourquoi en examinant le
circuit suivant :

Figure 2-7 u
Les symboles d’une LED

Figure 2-8 u
Une entrée ouverte

Poussoir

Vers broche d’entrée de l’Arduino

Poussoir :

Poussoir :

Montage 2. Programmation Arduino de bas niveau 	 89

Si l’interrupteur est fermé, la tension de +5 V est présente à la broche
d’entrée, et si nous l’ouvrons, vous pensez peut-être être en présence de
0 V. Il n’en est rien, parce qu’une entrée ouverte à laquelle aucun niveau
défini n’est affecté reçoit des signaux d’interférences parasites. Il suffit de
toucher avec le doigt la broche d’entrée pour injecter un signal de niveau
important en constante évolution. Pour cette raison, nous devons utiliser
le circuit suivant comportant une résistance de rappel dite pull-down.

Si l’interrupteur est fermé, rien ne change par rapport à la situation précé-
dente, le +5 V est appliqué à la broche d’entrée ou tombe sur la résistance
pull-down de 10 kΩ reliée à la masse. Mais si l’interrupteur est ouvert, le
potentiel de la masse est affecté à la broche d’entrée via la résistance, si
bien qu’un niveau LOW de 0 V y est appliqué. Ainsi, dans les deux cas, nous
avons un signal défini sur la broche d’entrée. Pour le montage qui suit,
nous utiliserons à nouveau la carte Arduino Discoveryboard, qui dispose
de résistances pull-down fixes. Le schéma des connexions du prochain
montage est le suivant :

 Figure 2-9
Une entrée ouverte avec
résistance pull-downPoussoir

Vers broche d’entrée de l’Arduino

Poussoir

Poussoir

Pu
llD

ow
n (

tir
ag

e)

 Figure 2-10
Le schéma des connexions
avec trois LED et trois
boutons-poussoirs

	 90	 Partie 2. Les montages

Examinons la configuration de test avec les trois boutons-poussoirs
correspondants :

Nous devons bien sûr modifier la programmation :

void setup() {
 DDRB = 0b11111000; // Broches 8, 9, 10 en ENTRÉE. Broches 11, 12,
	 // 13 en SORTIE
 PORTB = 0b00111000; // Broches 11, 12, 13 au niveau HAUT
 Serial.begin(9600); // Interface sérielle à 9600 bauds
}

void loop() {
 // Sortie binaire du registre PINB sur le moniteur série
 Serial.println(PINB,BIN);
 delay(1000); // Pause d’une seconde
}

Avant de passer le code en revue, nous devons parler d’un autre registre.
Il s’appelle PINx, où x représente encore le port.

Le registre PINB (adresse de broche d’entrée) est essentiellement un registre
d’état qui indique l’état du port. Il ne propose qu’un accès en lecture. Nous
l’utilisons pour afficher l’état de toutes les broches sur le moniteur série.
Dans la fonction setup, l’interface sérielle est initialisée avec une vitesse de
transmission de 9 600 bauds. La sortie est effectuée ultérieurement dans
la loop (boucle) par la fonction println (print linefeed, assurant un passage
à la ligne suivante) avec le paramètre supplémentaire BIN qui produit une
sortie binaire de la valeur.

Figure 2-11 u
La configuration de test

avec des boutons-poussoirs
supplémentaires

Figure 2-12 u
Le registre PINx Quel niveau?

Registre

Montage 2. Programmation Arduino de bas niveau 	 91

Le moniteur série s’ouvre dans l’environnement de développement via
l’icône encadrée en rouge.

Après un clic avec la souris, le moniteur apparaît comme suit :

Les trois bits les moins significatifs à droite reflètent l’état des trois inter-
rupteurs. Sur quel(s) bouton(s) ai-je appuyé ici pour obtenir ces combi-
naisons de bits ?

REMARQUE CONCERNANT LE REGISTRE D’ENTRÉE PINX
Pour ce qui est du registre PINx, toutes les informations d’état du port
correspondant sont lues à la fois.

Registres et instructions C++
Pour programmer ou contrôler les différentes broches, ce type de pro-
grammation peut s’avérer un peu lourd. Heureusement, on peut utiliser
différentes instructions en C ++ qui permettent de nous faciliter la tâche.
Nous en parlerons plus en détail dans le montage n° 3, mais je souhaite le
mentionner ici dès à présent.

Registre Instruction C++ Exemple

DDRB pinMode pinMode(13, OUTPUT);

PORTB digitalWrite digitalWrite(10, HIGH);

PINB digitalRead digitalRead(8);

Voici quelques informations sur les instructions utilisées.

 Figure 2-13
L’ouverture du
moniteur série

 Tableau 2-2
Les registres et leurs
équivalents en instructions

 Figure 2-14
La fenêtre du
moniteur série

	 92	 Partie 2. Les montages

pinMode
L’instruction pinMode programme le sens du flux de données d’une broche
numérique. Elle nécessite deux paramètres : le premier spécifie la broche
concernée, et le second le sens, où OUTPUT correspond à sortie et INPUT à
entrée.

digitalWrite
L’instruction digitalWrite influence l’état d’une broche numérique. Elle
nécessite deux paramètres : le premier spécifie la broche concernée, et le
second le niveau, où HIGH correspond à 5 V et LOW à 0 V.

digitalRead
L’instruction digitalRead lit l’état d’une broche numérique, dont le résultat
est HIGH ou LOW.

REMARQUE CONCERNANT LE REGISTRE DE SORTIE DDRD
Il existe une méthode plus sûre pour les deux broches RX et TX de l’interface
sérielle, situées sur le port D, dont le sens de flux de données ne doit pas être
changé. L’exemple suivant programme les broches 2 à 7 comme sorties et
ne modifie pas les broches 0 et 1 : DDRD |= 0b11111100;

Comment ça marche ? Nous utilisons un opérateur OU binaire avec le
registre utilisé. Pour les broches critiques 0 et 1, l’opérateur utilise la valeur
0, ce qui signifie que ces deux bits restent inchangés. Des informations plus
détaillées sur la manipulation des bits peuvent être trouvées à l’adresse
suivante :

https://playground.arduino.cc/Code/BitMath

Pour obtenir des détails sur le mappage des broches, l’adresse suivante
vous sera certainement utile :

https://www.arduino.cc/en/Reference/Atmega168Hardware

La résistance pull-up
Nous avons vu qu’une entrée ouverte sur une broche numérique causait
des problèmes et nécessitait par conséquent un circuit externe, utilisant
par exemple une résistance pull-down. Mais on peut également prévoir un
circuit comportant une résistance pull-up. Il s’agit d’une résistance normale,
mais contrairement à la pull-down reliée à la masse, elle est reliée au +5 V
de l’alimentation. Dans le cas d’une entrée ouverte, 5 V sont donc appliqués
à la broche d’entrée. Considérons le circuit suivant :

Montage 2. Programmation Arduino de bas niveau 	 93

Je tiens à faire remarquer que le microcontrôleur contient des résistances
pull-up intégrées qui peuvent être activées si nécessaire. Comment
ça marche ? Nous devons effectuer deux actions qui sont en réalité
contradictoires :

	● programmer une broche en entrée ;

	● fournir à la broche un niveau HIGH.

Pourquoi sont-elles contradictoires ? Eh bien, si dans un premier temps une
broche est programmée en entrée, on s’attend à ce que de l’extérieur un
niveau lui soit appliqué puis change si nécessaire. Mais si dans un deuxième
temps nous programmons un niveau HIGH pour cette broche, comme si
elle était utilisée en sortie, la résistance de pull-up interne est alors activée.
Regardons le sketch correspondant, qui utilise les registres DDB et PORTB :

void setup() {
 DDRB = 0b00000000; // Toutes les broches sont en INPUT
 PORTB = 0b00000111; // Résistances pull-up activées pour les
	 // broches 8, 9 et 10
 Serial.begin(9600); // Initialisation de l’interface sérielle
	 // à 9600 bauds
}

void loop() {
 Serial.println(PINB, BIN);
 delay(500); // Pause de 500 millisecondes

Si nous avons maintenant seulement trois interrupteurs miniatures sans
résistances, reliés aux entrées numériques 8, 9 et 10, notre circuit fonc-
tionne parfaitement, car les résistances pull-up assurent un niveau cor-
rect et sans interférence. Bien sûr, nous ne pouvons pas utiliser pour ce
montage les boutons-poussoirs de la carte Arduino Discoveryboard, car
ils disposent d’une résistance pull-down fixe. Ce n’est cependant pas un

Vers broche d’entrée de l’Arduino

 Figure 2-15
Une entrée ouverte
avec résistance pull-up

Pu
llU

p (
tir

ag
e)

	 94	 Partie 2. Les montages

problème. La carte Arduino Discoveryboard présente une petite plaque
de prototypage, sur laquelle vous pouvez très bien enficher les boutons-
poussoirs miniatures.

Si nous ouvrons maintenant le moniteur série, nous verrons que lorsqu’au-
cun bouton-poussoir n’est pressé, les bits respectifs sont au niveau HIGH, ce
qui était à prévoir. Si nous appuyons maintenant sur un bouton-poussoir,
le niveau du bit correspondant change de HIGH vers le niveau LOW. Bien
entendu, vous pouvez activer ou désactiver les résistances pull-up internes
à l’aide d’une commande Arduino classique. Nous en reparlerons.

Problèmes courants
	● Vérifiez les fiches sur la plaque de prototypage pour voir si elles cor-

respondent bien au schéma des connexions.

Qu’avez-vous appris ?
	● Nous avons expliqué le rapport entre les broches Arduino et les

registres internes du microcontrôleur.

	● Les registres DDRx, PORTx et PINx permettent de définir et d’interro-
ger la direction du flux de données et les niveaux logiques.

Figure 2-16 u
Un circuit avec trois
boutons-poussoirs

Montage 2. Programmation Arduino de bas niveau 	 95

	● Nous avons étudié la LED et la manière de la piloter correctement.

	● Nous avons évoqué le problème dû à une entrée numérique non
connectée et avons décrit une solution utilisant une résistance dite
pull-down.

	● Des instructions appropriées ont permis d’activer les résistances
internes pull-up, de sorte qu’aucun circuit externe comportant des
résistances supplémentaires soit nécessaire.

	 97

Montage

3Interrogation
d’un bouton-poussoir

Manipulation d’une résistance
pull-up interne
À quoi peut bien ressembler une résistance pull-up interne ? Examinons
le schéma de raccordement suivant :

t Figure 3-1
Résistance pull-up interne
connectée à la broche
numérique 9

J’ai choisi dans cet exemple la broche 9, à laquelle par exemple votre
bouton-poussoir est relié. On peut voir que la résistance pull-up R relie
la broche 9 à la tension d’alimentation de +5 V via un interrupteur élec-
tronique quand celui-ci est fermé. La question est de savoir comment cet
interrupteur peut être fermé pour que la broche présente un niveau HIGH
en l’absence de niveau d’entrée. Les instructions suivantes sont nécessaires,
pin ayant ici la valeur 9 :

	 98	 Partie II. Les montages

pinMode(pin, INPUT);	 // Configurer la broche comme entrée
digitalWrite(pin, HIGH);	// Activer la résistance pull-up interne

Elles ont pour effet de fermer l’interrupteur.

Figure 3-2 u
La résistance pull-up

interne est activée.

Vous remarquerez que nous configurons une broche numérique en
tant qu’entrée parce que nous voulons y raccorder un bouton-poussoir.
Jusque-là, ça va. Mais nous essayons ensuite de modifier le niveau de cette
broche avec l’instruction digitalWrite alors qu’elle n’a pas été configurée
en tant que sortie. Qu’est-ce que ça veut dire ?

C’est ça l’astuce. La séquence d’instructions en question permet d’activer
la résistance pull-up interne qui possède par ailleurs la valeur de 20K. Cela
permet de fixer le potentiel de la broche à +5 V quand l’entrée est ouverte
tout en obtenant un niveau d’entrée défini.

RÉSISTANCE PULL-DOWN OU PULL-UP ?
Comme le raccordement d’une broche numérique peut se faire soit à l’aide
d’une résistance pull-down externe soit d’une résistance pull-up interne,
l’interrogation de la broche ne se programme pas de la même façon.
Réfléchissez un peu avant de poursuivre votre lecture. Dans le cas d’une
résistance pull-down, le niveau est LOW quand l’entrée est ouverte. Pour
produire un changement de niveau, il faut appliquer +5 V depuis l’extérieur.
Cela signifie que l’interrogation du bouton-poussoir s’effectuera au moyen
de la ligne suivante, la variable buttonState devant préalablement avoir été
initialisée.

Nous y reviendrons très vite.

if(buttonState == HIGH) ...

Montage 3. Interrogation d’un bouton-poussoir 	 99

Jusqu’ici, tout va bien. Supposons que vous travaillez maintenant avec
une résistance pull-up interne qui génère un niveau HIGH quand le bou-
ton-poussoir est ouvert. Pour produire un changement de niveau, le bou-
ton-poussoir fermé doit appliquer depuis l’extérieur un signal LOW, ou
0 V. L’interrogation du bouton-poussoir s’effectuera alors au moyen de la
ligne suivante :

if(buttonState == LOW) ...

Il existe encore une autre façon de manipuler une résistance pull-up interne.
À partir de la version 1.0.1 de l’environnement de développement Arduino,
il est possible d’influencer la résistance à l’aide d’un paramètre de mode
avec l’instruction pinMode.

t Figure 3-3
La résistance pull-up interne
est activée.

Une seule instruction pinMode ferme l’interrupteur. La désactivation s’ef-
fectue à l’aide du mode INPUT qui rouvre l’interrupteur interne.

t Figure 3-4
La résistance pull-up interne
est désactivée.

Là aussi, il suffit d’une seule instruction pinMode avec le mode indiqué.
Nous allons prendre un exemple concret illustrant l’interrogation de l’état

	 100	 Partie II. Les montages

d’une broche numérique. Nous utiliserons l’instruction digitalRead. Nous
avons déjà vu sa syntaxe dans le montage précédent de la LED clignotante.

Instruction

digitalRead(buttonPin);

Broche

Cette fonction n’est pas seulement appelée, elle nous renvoie également
une valeur de retour que nous pouvons mettre à profit. La valeur est trans-
mise à la variable buttonState au moyen de l’opérateur d’affectation =. Les
valeurs restituées peuvent être HIGH ou LOW, qui représentent des constantes
prédéfinies par le système – souvenez-vous.

Avant de nous intéresser au sketch, aux composants nécessaires et au
schéma de montage correspondant, j’aimerais revenir sur la construction
et le fonctionnement d’un bouton-poussoir miniature. La figure suivante
présente un bouton-poussoir miniature qui possède quatre pattes. Deux
broches sont nécessaires pour fermer un seul contact. Mais ce n’est pas
parce que nous disposons de quatre broches que le boîtier contient deux
boutons-poussoirs indépendants.

Figure 3-5 u
Bouton-poussoir miniature

Sur le schéma de raccordement qui montre le câblage interne, vous pou-
vez voir que deux pattes sont toujours connectées ensemble. Le bouton
est donc accessible au moyen des pattes 1 et 2 ou 3 et 4. Lorsque vous
tournez le bouton de 90° et que vous utilisez le même schéma de raccor-
dement, le bouton est constamment fermé. Il faut donc faire particulière-
ment attention aux pattes qui dépassent sur le côté du boîtier. Elles sont
court-circuitées lorsque vous actionnez le bouton. Au besoin, utilisez un
multimètre et son testeur de continuité pour identifier avec certitude les
contacts du bouton.

Montage 3. Interrogation d’un bouton-poussoir 	 101

Il existe différents modèles de boutons-poussoirs.

t Figure 3-6
Plusieurs types
de boutons-poussoirs

Composants nécessaires
Ce montage ne nécessite pas grand-chose et il peut même se passer de
composants supplémentaires. En effet, la carte Arduino comporte une LED
qui est désignée par la lettre L. Toutefois, j’aimerais compléter ce montage
par quelques composants que nous réutiliserons pour d’autres montages.

Composant t Tableau 3-1
Liste des composants

1 LED rouge

1 résistance de 330 Ω

1 résistance de 10 kΩ

1 bouton-poussoir miniature

Schéma
Le schéma montre une entrée externe assurant un niveau d’entrée sûr grâce
à une résistance pull-down externe sur la broche numérique 8.

	 102	 Partie II. Les montages

Figure 3-7 u
Schéma d’interrogation

d’un bouton-poussoir

Réalisation du circuit
Le circuit est facile et rapide à réaliser sur une plaque de prototypage.

Figure 3-8 u
Réalisation du circuit

d’interrogation
d’un bouton-poussoir

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

 LED de bouton-poussoir	 LED clignotante

bouton-
poussoir

Montage 3. Interrogation d’un bouton-poussoir 	 103

Sketch Arduino
Voici le sketch d’interrogation d’un bouton-poussoir et de commande de
la LED :

int ledPin = 13;	 // LED – broche 13
int buttonPin = 8;	 // bouton-poussoir – broche 8
int buttonState;	 // variable d’état du bouton

void setup() {
 pinMode(ledPin, OUTPUT); // broche LED comme sortie
 pinMode(buttonPin, INPUT); // broche du bouton-poussoir comme
entrée
}

void loop() {
 buttonState = digitalRead(buttonPin);
 if(buttonState == HIGH)
 digitalWrite(ledPin, HIGH);
 else
 digitalWrite(ledPin, LOW);
}

Revue de code
Dans cet exemple, on voit d’emblée qu’on a affaire à plusieurs variables qui
doivent être déclarées dès le début. Les explications figurent sous forme
de commentaires derrière les lignes d’instructions.

BROCHE NUMÉRIQUE
Une broche numérique opère de manière standard comme entrée et n’a donc
pas besoin d’être configurée en tant que telle au moyen de l’instruction pinMode.
C’est cependant utile pour une meilleure compréhension d’ensemble. Vous
pouvez malgré tout laisser tomber cette étape dans la mesure où la quantité
de mémoire est limitée et où chaque octet compte.

Examinons le schéma de raccordement suivant :

Touche
enfoncée ?

Non

Oui

Démarrage
boucle

LED niveau HIGH

LED niveau LOW

t Figure 3-9
Organigramme
pour commander la LED

	 104	 Partie II. Les montages

L’organigramme se lit très facilement. Lorsque l’exécution du sketch arrive
à la boucle sans fin loop, l’état de la broche du bouton-poussoir est conti-
nuellement interrogé et consigné dans la variable buttonState. Voici la
ligne de code correspondante :

buttonState = digitalRead(buttonPin);

Selon la valeur reçue, l’évaluation est effectuée à la suite de l’interroga-
tion par une structure de contrôle sous la forme d’une décision if-else
(si-alors-sinon).

if(buttonState == HIGH)
 digitalWrite(ledPin, HIGH);
 else
 digitalWrite(ledPin, LOW);

L’instruction if évalue la condition entre parenthèses, laquelle peut être
librement traduite comme suit : « Le contenu de la variable buttonState
est-il égal à HIGH ? Si oui, exécuter la ligne d’instruction qui vient aussitôt
après l’instruction if. Si non, poursuivre avec l’instruction qui vient après
le mot-clé else. »

L’organigramme suivant permet de mieux comprendre cette structure de
contrôle.

Figure 3-10 u
Organigramme pour

structure de contrôle
if-else

Début

Condition

Instruction(s)

Fin

True

False

Instruction(s)

Il existe une variante plus simple de la structure de contrôle if, dans laquelle
la branche else est absente. Nous y reviendrons plus tard. Vous voyez donc
que le déroulement d’un programme n’est pas forcément linéaire. On peut
y insérer des ramifications qui permettent à diverses instructions ou blocs
d’instructions d’être exécutés selon différents mécanismes d’évaluation.

Montage 3. Interrogation d’un bouton-poussoir 	 105

Un sketch n’agit pas seulement, mais réagit également à des influences
externes, par exemple des signaux de capteur.

OPÉRATEUR D’ÉGALITÉ ET D’AFFECTATION
Une erreur très fréquente chez les débutants consiste à confondre opérateur
d’égalité et opérateur d’affectation. L’opérateur d’égalité == et l’opérateur
d’affectation = ont des missions complètement différentes, mais sont souvent
utilisés l’un à la place de l’autre. Le pire est que les deux modes d’écriture sont
utilisables et valables dans une condition.

Voici l’utilisation correcte de l’opérateur d’égalité :

if(buttonState == HIGH)

Voici maintenant l’utilisation erronée de l’opérateur d’affectation :

if(buttonState = HIGH)

Comment se fait-il que ce mode d’écriture ne produise pas d’erreurs ?
C’est très simple : il s’ensuit une affectation de la constante HIGH (valeur
numérique 1) à la variable buttonState. 1 n’étant pas une valeur nulle,
elle est interprétée comme étant true (vraie). Dans le cas d’une ligne de
code if(true)…, l’instruction qui suit est toujours exécutée. Une valeur
numérique 0 est évaluée comme false (fausse) dans C/C++ et toute autre
différente de 0 est évaluée comme true. De telles erreurs sont difficiles à
discerner et cela prend toujours énormément de temps.

Vous trouverez plus d’informations sur les commandes utilisées aux
adresses suivantes :

	● if 	
https://www.arduino.cc/en/Reference/If

	● if-else 	
https://www.arduino.cc/en/Reference/Else

Qu’avez-vous appris ?
	● Le microcontrôleur de la carte Arduino Uno dispose d’une résistance

pull-up interne qui possède la valeur de 20K.

	● Ces résistances peuvent être activées ou désactivées soit à l’aide d’une
séquence d’instructions pinMode ou digitalWrite, soit à l’aide d’une
seule instruction pinMode avec le mode INPUT_PULLUP ou INPUT.

	 107

Montage

4Clignotement
avec gestion
des intervalles

Dans le montage n° 1 de commande d’une LED, nous avons vu comment
interrompre momentanément l’exécution d’un sketch à un endroit par-
ticulier avec la fonction de retardement delay. La LED reliée à la broche
de sortie numérique 13 clignotait à intervalles réguliers. Un tel circuit ou
une telle programmation présente cependant un inconvénient que nous
entendons déceler et éliminer. Pour cela, il nous faut modifier et compléter
le circuit clignotant en y ajoutant quelques composants.

Appuyez sur le bouton-poussoir
et il réagit
Que se passerait-il si vous branchiez en plus un bouton-poussoir sur une
autre entrée numérique pour interroger continuellement son état ? Une
LED est censée s’allumer si vous appuyez sur le bouton-poussoir. Peut-
être voyez-vous déjà où je veux en venir ? Tant que l’exécution du sketch
est prisonnière de la fonction delay, le traitement du code est interrompu
et l’entrée numérique ne peut être interrogée. Vous appuyez donc sur le
bouton-poussoir et rien ne se passe.

	 108	 Partie II. Les montages

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 4-1 u
Liste des composants

Composant

1 LED rouge

1 LED jaune

1 bouton-poussoir miniature

1 résistance de 330 Ω

1 résistance de 10K

Schéma
Le schéma montre un niveau d’entrée sûr grâce à une résistance pull-down
externe sur la broche numérique 8.

Figure 4-1 u
Schéma d’interrogation

d’un bouton-poussoir
et de commande des LED

bouton-poussoir

Montage 4. Clignotement avec gestion des intervalles 	 109

Réalisation du circuit
La plaque de prototypage est un peu plus remplie.

t Figure 4-2
Réalisation du circuit
d’interrogation
d’un bouton-poussoir

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino
Le code du sketch suivant ne fonctionne pas comme nous l’aurions voulu.

// Le code ne fonctionne pas comme prévu
int ledPinBlink = 13; // LED clignotante rouge – broche 13
int ledPinButton = 10;	// LED de bouton-poussoir jaune – broche 10
int buttonPin = 8;	 // Bouton-poussoir – broche 8
int buttonState;	 // Variable d’état du bouton

void setup() {
 pinMode(ledPinBlink, OUTPUT);	 // Broche LED clignotante comme sortie
 pinMode(ledPinButton, OUTPUT);	// Broche LED de bouton-poussoir comme 	
		 // sortie
 pinMode(buttonPin, INPUT);	 // Broche du bouton-poussoir comme entrée
}

void loop() {
 // Faire clignoter la LED clignotante
 digitalWrite(ledPinBlink, HIGH);	// LED rouge au niveau HIGH
 delay(1000);	 // Attendre une seconde
 digitalWrite(ledPinBlink, LOW); // LED rouge au niveau LOW

 LED de bouton-poussoir	 LED clignotante

bouton-
poussoir

	 110	 Partie II. Les montages

 delay(1000); // Attendre une seconde
 // Interrogation de l’état du bouton-poussoir
 buttonState = digitalRead(buttonPin);
 if(buttonState == HIGH)
 digitalWrite(ledPinButton, HIGH); // LED jaune au niveau HIGH
 else
 digitalWrite(ledPinButton, LOW); // LED jaune au niveau LOW
}

Vous remarquerez que l’exécution du sketch repasse bien à un moment
donné sur la ligne d’interrogation du bouton-poussoir dans la boucle sans
fin. L’état est alors bien interrogé correctement.

Vous avez tout compris : l’expression « à un moment donné » sied ici à
merveille ! Vous voulez programmer un sketch qui réagisse à tout moment
de son exécution à une action sur le bouton-poussoir et pas seulement à
un moment donné quand l’exécution du code atteint l’emplacement cor-
respondant. La fonction delay entrave la poursuite du code, donc nous ne
pouvons pas l’employer ici. Je vous montre le comportement sur un chro-
nogramme, où figurent les signaux pertinents, ceux de la LED clignotante
(broche 13), du bouton-poussoir (broche 8) et de la LED de bouton-poussoir
(broche 10).

Figure 4-3 u
Chronogramme des signaux

sur les broches 13, 8 et 10

Le signal du haut (ici, en bleu) représente l’état de la LED clignotante
sur la broche 13 qui bascule infatigablement chaque seconde entre les
niveaux HIGH et LOW. Le signal suivant (ici, en violet) représente le niveau
sur le bouton-poussoir raccordé à la broche 8 qui essaye de commander
la LED du bouton-poussoir sur la broche 10. Le dernier signal devrait donc
changer de niveau en même temps que le signal sur le bouton-poussoir,
mais ce n’est pas le cas. J’ai numéroté quatre points significatifs sur ce
chronogramme. Au point 1, je maintiens le bouton-poussoir enfoncé, mais
le front descendant du signal ne semble pas être concerné. Pourquoi la LED
de bouton-poussoir connectée à la broche 10 ne réagit-elle pas ? C’est très
simple ! Il y a deux activations de delay. La première fonction delay est
activée au moment du passage de HIGH à LOW alors que nous nous trouvons
encore dans la deuxième fonction delay. L’état du bouton-poussoir n’est
donc pas interrogé. Cette interrogation s’effectue uniquement au point 2 où
j’ai enfoncé le bouton au moment du changement de niveau de LOW à HIGH.
L’interrogation de la broche numérique 8 à laquelle le bouton-poussoir
est connecté est effectuée avant le changement de niveau suivant. L’état

Montage 4. Clignotement avec gestion des intervalles 	 111

du bouton-poussoir peut maintenant être évalué et la LED connectée à la
broche 10 s’allume. Elle le reste jusqu’au moment où le niveau de la LED
clignotante passe à LOW avec le front montant, ce qui ne se produit qu’au
point 4 alors que ce n’était pas le cas au point 3.

C’est la raison pour laquelle nous devons renoncer à utiliser la fonction
delay et choisir une autre solution que nous montre le sketch suivant. Ne
vous en faites pas pour les lignes de code, car nous allons le développer
progressivement :

// Le code fonctionne comme prévu
int ledPinBlink = 13;	// LED clignotante rouge – broche 13
int ledPinButton = 10;	// LED de bouton-poussoir jaune – broche 10
int buttonPin = 8;	 // Bouton-poussoir – broche 8
int buttonState;	 // Variable d’état du bouton
int interval = 2000;	 // Intervalle de temps (2 secondes)
unsigned long prev;	 // Variable de temps
int ledStatus = LOW;	 // Variable d’état pour la LED clignotante

void setup() {
 pinMode(ledPinBlink, OUTPUT);	 // Broche LED clignotante comme sortie
 pinMode(ledPinButton, OUTPUT);	// Broche LED de bouton-poussoir comme 	
		 // sortie
 pinMode(buttonPin, INPUT);	 // Broche du bouton-poussoir comme entrée
 prev = millis();	 // Mémoriser le compteur de temps actuel
}

void loop() {
 // Faire clignoter la LED clignotante via la gestion des intervalles
 if((millis() - prev) > interval) {
 prev = millis();
 ledStatus = !ledStatus; // Bascule l’état de la LED
 digitalWrite(ledPinBlink, ledStatus); // Bascule la LED rouge
 }
 // Interrogation de l’état du bouton-poussoir
 buttonState = digitalRead(buttonPin);
 if(buttonState == HIGH)
 digitalWrite(ledPinButton, HIGH); // LED jaune au niveau HIGH
 else
 digitalWrite(ledPinButton, LOW); // LED jaune au niveau LOW
}

Examinons la signification de ce sketch.

Revue de code
Ce sketch contient quelques variables supplémentaires. Je commencerai par
la gestion des intervalles. Le chronogramme représente le comportement
du circuit qui est exactement celui que nous voulions :

	 112	 Partie II. Les montages

Figure 4-4 u
Chronogramme des signaux

sur les broches 13, 8 et 10

Chaque fois que le bouton-poussoir (broche bouton-poussoir) est enfoncé,
le niveau suit la LED du bouton-poussoir et ce, quel que soit l’état ou le
changement de niveau de la broche 13 (LED clignotante). Pour la gestion
des intervalles, nous avons besoin de la nouvelle fonction millis qui se
présente comme suit :

Instruction

millis ();

La fonction renvoie une valeur en millisecondes depuis le début du sketch. Il
faut ici tenir compte d’un aspect important. Le type de la donnée de retour
est unsigned long, donc un type de nombre entier de 32 bits non signé dont
le domaine de valeurs s’étend de 0 à 4 294 967 295 (232-1). Ce domaine
de valeurs est aussi vaste parce qu’il doit être en mesure de traiter des
valeurs correspondant à une période prolongée (49,71 jours maximum)
sans débordement (dépassement de capacité).

Vous trouverez de plus amples informations sur la fonction millis à
l’adresse suivante :

https://www.arduino.cc/en/Reference/Millis

QU’EST-CE QU’UN DÉBORDEMENT ?
Un débordement signifie pour des variables que le maximum des valeurs que
leur type de données peut traiter a été dépassé et va maintenant recommencer
à 0. Pour le type de donnée byte, qui présente une donnée de 8 bits et peut par
conséquent stocker 28 = 256 états (de 0 à 255), un débordement se produit au
moment de l’action 255 + 1. La valeur est 256, ce que le type de donnée byte
n’est plus en mesure de traiter.

Trois autres variables ont été ajoutées par mes soins, dont les rôles sont
les suivants :

	● interval (enregistre en ms le temps applicable à l’intervalle de
clignotement) ;

	● prev (enregistre en ms le temps actuellement écoulé, prev vient de
previous qui signifie précédent) ;

Montage 4. Clignotement avec gestion des intervalles 	 113

	● ledStatus (la LED clignotante est commandée en fonction de l’état
HIGH ou LOW).

Nous allons maintenant voir comment cela fonctionne. Le diagramme
suivant montre une évolution chronologique de la gestion des intervalles.

t Figure 4-5
Évolution chronologique
de la gestion des intervalles

Analysons maintenant le diagramme, dans lequel j’ai pris au hasard des
moments marquants pour plus de clarté. Le temps ne s’écoule évidemment
pas réellement pendant ces étapes.

Moment Explication

1 Le temps actuel en millisecondes (1 000 dans le cas présent) est chargé
dans la variable prev. Cela ne se produit qu’une seule fois dans la
fonction setup. La différence millis() – prev donne la valeur 0
comme résultat. Cette valeur n’est pas supérieure à la valeur d’intervalle
2 000. La condition n’est pas remplie et le bloc if n’est pas exécuté.

2 1 000 ms plus tard, la différence millis() – prev est à nouveau
calculée et il est vérifié que le résultat n’est pas supérieur à la valeur
d’intervalle 2 000. 1 000 n’étant pas supérieur à 2 000, la condition n’est
toujours pas remplie.

3 1 000 ms plus tard, la différence millis() – prev est à nouveau
calculée et il est vérifié que le résultat n’est pas supérieur à la valeur
d’intervalle 2 000. 2 000 n’étant pas supérieur à 2 000, la condition n’est
toujours pas remplie.

4 Après une durée de fonctionnement de 3 001 ms, la différence donne
cependant une valeur supérieure à la valeur d’intervalle 2 000. La
condition est remplie et le bloc if mis à exécution. L’ancienne valeur
prev est remplacée par le temps actuel provenant de la fonction
millis. L’état de la LED clignotante peut être inversé. Le jeu reprend au
début sur la base de la nouvelle valeur temps dans la variable prev.

u Tableau 4-2
Contenu des variables
dans l’évolution
chronologique

	 114	 Partie II. Les montages

Pendant tout le déroulement du sketch, aucun arrêt n’a été inséré à aucun
endroit sous la forme d’une pause dans le code source, si bien que l’inter-
rogation de la broche numérique 8 pour gérer la LED du bouton-poussoir
n’a été absolument pas gênée. Une pression sur le bouton-poussoir est
presque simultanément évaluée et affichée.

La variable ledState stocke le niveau qui commande la LED rouge ou
plutôt qui est en charge du clignotement (HIGH pour allumée et LOW pour
éteinte). La ligne suivante :

digitalWrite(ledPinBlink, ledState);

permet de commander la LED. Le clignotement est précisément obtenu
par un va-et-vient entre les états HIGH et LOW. Ce va-et-vient est également
appelé bascule. Je vais reformuler la ligne de manière à la rendre peut-être
plus claire.

if(ledState == LOW)
 ledState = HIGH;
else
 ledState = LOW;

La première ligne demande si le contenu de la variable ledState est égal à
LOW. Si oui, il est mis sur HIGH ; sinon, il est mis sur LOW. Il s’agit également
d’une bascule d’état. La variante à une ligne suivante, que j’ai déjà utilisée,
est beaucoup plus courte.

ledState = !ledState; // Bascule l’état de la LED

J’utilise ici l’opérateur logique not, représenté par le point d’exclamation. Il
est souvent utilisé pour des variables booléennes qui ne peuvent accepter
que les valeurs logiques true ou false. Le résultat de l’opérateur not est la
valeur logique opposée à celle de l’opérande. Ceci est également valable
pour les deux niveaux HIGH et LOW.

Le bouton-poussoir relié au port 8 est finalement interrogé tout à fait
normalement et sans retardement.

 buttonState = digitalRead(buttonPin);
 if(buttonState == HIGH)
 digitalWrite(ledPinButton, HIGH);
 else
 digitalWrite(ledPinButton, LOW);

Montage 4. Clignotement avec gestion des intervalles 	 115

Problèmes courants
Si la LED ne s’allume pas quand le bouton-poussoir est enfoncé ou si la
LED reste allumée, vérifiez ce qui suit.

	● Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au schéma ?

	● Les LED ont-elles été mises dans le bon sens ? Pensez à la polarité.

	● Les boutons-poussoirs peuvent être à 2 ou 4 connexions. S’il s’agit d’un
modèle à 4 connexions, ont-elles été correctement branchées ? Faites,
le cas échéant, un essai de continuité avec un multimètre et vérifiez
ainsi l’adéquation du bouton-poussoir et des pattes correspondantes.

	● Les deux résistances ont-elles bien les bonnes valeurs ? Ont-elles été
éventuellement interverties ?

	● Le code du sketch est-il correct ?

Qu’avez-vous appris ?
	● Vous savez utiliser plusieurs variables à des fins les plus diverses

(déclaration pour broche d’entrée ou de sortie et enregistrement des
informations d’état).

	● L’instruction delay interrompt le déroulement du sketch et instaure
une pause, de telle sorte que toutes les instructions subséquentes ne
soient pas exécutées avant la fin du temps d’attente.

	● Vous avez appris, à travers la gestion des intervalles avec la fonction
millis, un moyen permettant de maintenir malgré tout l’exécution
continue du sketch de la boucle sans fin loop, de telle sorte que d’autres
instructions de la boucle loop soient exécutées et qu’une utilisation
d’autres capteurs, tels que le bouton-poussoir raccordé, soit possible.

	● Vous avez appris à lire divers chronogrammes, qui représentent très
bien graphiquement les différents états de niveau dans la courbe d’évo-
lution temporelle.

	 117

Montage

5Le bouton-poussoir
récalcitrant

Dans ce montage, vous verrez qu’un bouton-poussoir, ou également un
interrupteur, ne se comporte pas toujours comme vous l’auriez voulu.
Prenons pour exemple un bouton-poussoir qui, en théorie, ferme le circuit
tant qu’il reste enfoncé, et le rouvre quand il est relâché. Rien de neuf en
soi et rien de bien difficile à comprendre. Mais les circuits électroniques,
dont le rôle consiste par exemple à déterminer le nombre exact de pres-
sions sur le bouton-poussoir pour une exploitation ultérieure, posent un
problème dont on ne peut se douter au départ.

Une histoire de rebond
En électromécanique, il existe un effet perturbateur qui se nomme le
rebond. Appuyer sur un bouton-poussoir normal et même le maintenir
enfoncé revient à fermer le contact mécanique une seule et unique fois dans
le bouton-poussoir. Ce n’est pourtant pas le cas la plupart du temps, car le
composant en question ouvre et referme plusieurs fois le contact dans un
intervalle de temps très court, de l’ordre de la milliseconde. Les surfaces de
contact d’un bouton-poussoir ne sont en général pas complètement lisses,
et on peut voir de multiples aspérités et impuretés quand on les observe
au microscope électronique. Ainsi, les points de contact des matériaux
conducteurs ne se touchent pas instantanément et pas durablement au
moment du rapprochement. L’effet en question peut aussi être obtenu
par vibration ou montage sur ressorts du matériau, le contact étant alors
brièvement fermé puis de nouveau ouvert plusieurs fois l’une derrière
l’autre lors de la jonction.

	 118	 Partie II. Les montages

Ces impulsions délivrées par le bouton-poussoir sont enregistrées et traitées
en bonne et due forme par le microcontrôleur, c’est-à-dire comme si vous
appuyiez très vite et très souvent sur le bouton-poussoir. Ce comporte-
ment est bien sûr gênant et doit être évité d’une manière ou d’une autre.
Regardons maintenant le chronogramme de plus près.

Figure 5-1 u
Bouton-poussoir à rebond

J’ai appuyé une seule fois sur le bouton-poussoir et l’ai ensuite maintenu
enfoncé, mais celui-ci a interrompu plusieurs fois la liaison souhaitée avant
que l’état stable de la connexion ne soit atteint. Cette suite de fermetures et
d’ouvertures du circuit jusqu’à ce que le niveau HIGH définitif souhaité soit
atteint est appelée rebond. Ce comportement peut aussi se constater dans
l’opération inverse. Si je relâche le bouton-poussoir, plusieurs impulsions
peuvent éventuellement être générées jusqu’à ce que j’obtienne enfin le
niveau LOW souhaité. Le rebond du bouton-poussoir est à peine percep-
tible, voire carrément invisible, par l’œil humain et si un circuit censé
commander une LED quand le bouton-poussoir est enfoncé était construit,
les différentes impulsions se verraient comme un niveau HIGH du fait de la
persistance oculaire. Essayons donc une autre solution. Nous pourrions
construire un circuit avec un bouton-poussoir sur une entrée numérique
et une LED sur une autre sortie numérique.

Certes, ce type de rebond ne se voit pas dans un circuit. Mais notre circuit
n’est pas le seul composant. Il y a en effet le matériel, mais il y a aussi le
logiciel et nous entendons le configurer de telle sorte que la LED s’allume
à la première impulsion. Elle doit s’éteindre à l’impulsion suivante et se

Montage 5. Le bouton-poussoir récalcitrant 	 119

rallumer à celle d’après et ainsi de suite. Nous avons donc affaire à une
bascule du niveau logique. Si maintenant plusieurs impulsions sont enre-
gistrées par le circuit ou plutôt par le logiciel quand le bouton-poussoir
est pressé, la LED change alors plusieurs fois d’état. Dans le cas d’un bou-
ton-poussoir sans rebond, les états doivent être tels que représentés dans
le diagramme de la figure 5-2.

t Figure 5-2
Changement du niveau
de la LED pour un appui
sur le bouton-poussoir

On voit que dans le cas de multiples appuis sur le bouton-poussoir (front
montant), l’état de la LED bascule.

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 5-1
Liste des composants1 LED rouge

1 résistance de 330 Ω

1 résistance de 10K

1 bouton-poussoir miniature

Schéma
Le schéma vous est certainement familier puisqu’il est identique à celui
du montage n° 3.

	 120	 Partie II. Les montages

Figure 5-3 u
Carte Arduino

avec bouton-poussoir
et LED illustrant le rebond

Réalisation du circuit
Le circuit est identique à celui du montage n° 3. Maintenant que nous
avons élucidé les questions techniques, nous allons pouvoir nous pencher
sur le sketch.

Sketch Arduino
Le sketch suivant change l’état de la LED connectée chaque fois que le bou-
ton-poussoir est enfoncé. Quand le bouton est maintenu enfoncé pendant
un temps plus long, l’état ne change plus après la bascule :

int buttonPin = 2;	// Bouton-poussoir – broche 2
int ledPin = 8;	 // LED – broche 8
int ledState;	 // État de la LED

int buttonStateActual;	 // Enregistre l’état actuel du bouton-poussoir
int prevbuttonState;	 // Enregistre l’état précédent du bouton-poussoir
int debouncedButtonState; // Enregistre l’état lissé du bouton-poussoir
int debounceInterval = 50; // Intervalle de 50 ms
unsigned long lastDebounceTime = 0;	// Période sans changement d’état de
		 // la LED

void setup() {
 pinMode(ledPin, OUTPUT); // Broche du bouton-poussoir comme sortie
 pinMode(buttonPin, INPUT); // Broche du bouton-poussoir comme entrée
}

void loop() {
 buttonStateActual = digitalRead(buttonPin); // Lit l’état du bouton

Montage 5. Le bouton-poussoir récalcitrant 	 121

 unsigned long currentTime = millis(); // Lit la période de lissage

 if(buttonStateActual != prevbuttonState) lastDebounceTime = currentTime;
 if(currentTime - lastDebounceTime > debounceInterval){
 if(buttonStateActual != debouncedButtonState){
 debouncedButtonState = buttonStateActual;
 // Changement du niveau de la LED quand l’état du bouton = niveau HIGH
 if(debouncedButtonState == HIGH) ledState = !ledState;
 }
 }
 digitalWrite(ledPin, ledState);	 // Commande la LED
 prevbuttonState = buttonStateActual;	// Enregistre l’état précédent 	
		 // du bouton-poussoir
}

Examinons la signification de ce sketch.

Revue de code
Au début de la boucle loop, le niveau actuel du bouton-poussoir est toujours
consigné dans la variable buttonStateActual. La date et l’heure actuelles
depuis le début du sketch sont consignées dans la variable currentTime
avec la fonction millis. Si l’état actuel du bouton-poussoir est différent de
l’état précédent, la période de lissage est ramenée au nouvel état. Celle-ci
est utilisée dans l’interrogation suivante afin de déterminer si l’intervalle
prédéfini est écoulé.

if(currentTime - lastDebounceTime > debounceInterval){...}

Si c’est le cas, l’état courant du bouton-poussoir est comparé à l’état lissé
du bouton-poussoir. S’ils sont différents, il faut déterminer si un niveau
HIGH est présent pour le changement d’état. Ce n’est qu’à cette condition
que le changement d’état de la LED aura lieu. Il sera effectué par l’inversion
de l’état dans la variable ledState.

if(debouncedButtonState == HIGH) ledState = !ledState;

Enfin, il ne reste plus qu’à commander la LED à l’aide de cette même
variable ledState

digitalWrite(ledPin, ledState);

et à transférer l’état actuel du bouton-poussoir dans l’état précédent.

prevbuttonState = buttonStateActual;

Tout reprend depuis le début.

	 122	 Partie II. Les montages

Problèmes courants
Si la LED ne s’allume pas ou ne bascule pas, plusieurs choses peuvent en
être la cause.

	● La LED peut avoir été mal polarisée. Rappelez-vous les deux différentes
connexions d’une LED que sont l’anode et la cathode.

	● La LED est peut-être défectueuse et avoir été grillée par une surtension
lors des montages précédents. Testez-la avec une résistance en série
sur une source d’alimentation de 5 V.

	● Vérifiez les branchements de la LED et des composants sur votre plaque
d’essais.

	● Vérifiez le sketch que vous avez entré dans l’éditeur de l’IDE. Peut-être
avez-vous oublié une ligne ou commis une erreur ou peut-être que le
sketch a été mal transmis ?

	● Vérifiez le bon fonctionnement du bouton-poussoir utilisé avec un
testeur de continuité ou un multimètre.

Qu’avez-vous appris ?
	● Vous savez maintenant que des composants mécaniques tels que

des boutons-poussoirs ou des interrupteurs ne se ferment ou ne
s’ouvrent pas immédiatement. Plusieurs brèves interruptions succes-
sives peuvent résulter par exemple de tolérances de fabrication, d’im-
puretés ou de matériel en vibration, avant d’arriver à un état stable.
Ce comportement est enregistré et traité comme tel par des circuits
électroniques. Si, par exemple, vous devez compter le nombre d’ap-
puis sur le bouton-poussoir, ces impulsions multiples peuvent s’avérer
extrêmement gênantes.

	● Ce comportement peut être corrigé de différentes manières :

	– par une solution logicielle (par exemple, une stratégie de tempori-
sation lors de l’interrogation du signal d’entrée) ;

	– par une solution matérielle (par exemple, un circuit RC).

	 123

Montage

6Le séquenceur
de lumière

Vous maîtrisez déjà suffisamment les LED pour être en mesure de réaliser
des montages où clignotent plusieurs diodes électroluminescentes. Ça n’a
l’air de rien dit comme ça, mais ce n’est pas si simple. Nous allons com-
mencer par un séquenceur de lumière, qui commande une par une diffé-
rentes LED. Souvenez-vous du premier montage pour lequel nous avions
programmé un effet similaire. Toutefois, l’objectif était simplement de
commander une LED en utilisant les ports ou la manipulation des registres
correspondants. Dans ce montage, nous parviendrons à un résultat simi-
laire, mais par un autre biais.

C’est chacun son tour
Les LED branchées sur les broches numériques doivent s’allumer confor-
mément au modèle présenté ci-dessous.

t Figure 6-1
Séquence d’allumage
des 7 LED

	 124	 Partie II. Les montages

À chaque tour, la LED s’allume une position plus loin à droite. Arrivé à
la fin, le cycle reprend au début. Vous pouvez programmer les diverses
broches, qui toutes sont censées servir de sortie, de différentes manières.
Dans l’état actuel de vos connaissances, vous devez déclarer sept variables
et les initialiser avec les valeurs de broche correspondantes. Ce qui pourrait
donner ceci :

int ledPin1 = 7;
int ledPin2 = 8;
int ledPin3 = 9;
…

Chaque broche doit être ensuite programmée dans la fonction setup
avec pinMode comme sortie, ce qui représente aussi un travail de saisie
considérable :

pinMode(ledPin1, OUTPUT);
pinMode(ledPin2, OUTPUT);
pinMode(ledPin3, OUTPUT);
…

Voici donc la solution. Je voudrais vous présenter un type intéressant de
variable, capable de mémoriser plusieurs valeurs du même type de donnée
sous un même nom.

Mais comment une variable peut-elle mémoriser plusieurs valeurs sous
un seul et même nom ? Et comment faire pour sauvegarder ou appeler
les différentes valeurs ?
Patience ! C’est possible. Cette forme spéciale de variable est appelée
tableau (array). On n’y accède pas seulement par son nom évocateur, car
une telle variable possède aussi un index. Cet index est un nombre entier
incrémenté. Ainsi, les différents éléments du tableau – c’est le nom donné
aux valeurs stockées – peuvent être lus ou modifiés. Vous allez voir com-
ment dans le code du sketch ci-après.

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 6-1 u
Liste des composants

Composant

7 LED rouges

7 résistances de 330 Ω

Montage 6. Le séquenceur de lumière 	 125

Schéma
Le schéma vous est certainement familier puisqu’il est identique à celui
du montage n° 3.

t Figure 6-2
Carte Arduino commandant
7 LED pour un séquenceur
de lumière

Réalisation du circuit
Le circuit ressemble beaucoup à celui du premier montage.

t Figure 6-3
Réalisation du circuit
de séquenceur de lumière
à 7 LED

	 126	 Partie II. Les montages

ATTENTION AUX BRANCHEMENTS !
Quand vous branchez des composants électroniques tout près les uns des
autres, comme c’est ici le cas, soyez très attentif, car il arrive souvent de
se tromper et d’occuper le trou voisin sur la plaque, si bien que le circuit ne
fonctionne qu’en partie, voire pas du tout. Cela devient sérieux si vous travaillez
avec les lignes d’alimentation et de masse placées l’une à côté de l’autre. Des
problèmes peuvent aussi résulter de cavaliers flexibles mal enfoncés dans
leur trou, dont les fils conducteurs dénudés ressortent en partie. Des courts-
circuits peuvent se produire quand on bouge ces cavaliers, lesquels peuvent
tout abîmer. Il faut donc se montrer soigneux.

Sketch Arduino
Voici le code du sketch pour commander le séquenceur de lumière à 7 LED :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13}; �// Tableau de LED avec
// numéros de broche

int waitTime = 200; // Pause entre les changements en ms

void setup() {
 for(int i = 0; i < 7; i++)
 pinMode(ledPin[i], OUTPUT); �// Toutes les broches du tableau

// comme sorties
}

void loop() {
 for(int i = 0; i < 7; i++) {
 digitalWrite(ledPin[i], HIGH); �// Élément de tableau au niveau

// HIGH
 delay(waitTime); // Une pause entre les changements
 digitalWrite(ledPin[i], LOW); �// Élément de tableau au niveau

// LOW
 }
}

Examinons la signification de ce sketch, car ce programme comporte
quelques nouveautés.

Revue de code
Dans le sketch du séquenceur de lumière, vous rencontrez pour la première
fois un tableau et une boucle. Cette dernière est nécessaire pour accéder
facilement aux différents éléments du tableau par le biais des numéros
de broche. D’une part les broches sont toutes programmées en tant que
sorties, et d’autre part les sorties numériques sont sélectionnées. L’accès à

Montage 6. Le séquenceur de lumière 	 127

chaque élément se fait par un index et comme la boucle utilisée ici dessert
automatiquement un certain domaine de valeurs, cette construction est
idéale pour nous. Commençons par la variable de type array (tableau). La
déclaration ressemble à celle d’une variable normale, à ceci près que le
nom doit être suivi d’une paire de crochets.

Type de donnée

int ledPin[7];

Nom du tableau Dimension t Figure 6-4
Déclaration du tableau

Déclaration du tableau
	● Le type de donnée définit quel type les différents éléments du tableau

doivent avoir.

	● Le nom du tableau est un nom évocateur pour accéder à la variable.

	● Le nombre entre les crochets indique combien d’éléments le tableau
doit contenir.

Vous pouvez imaginer un tableau comme un meuble à plusieurs tiroirs.
Chaque tiroir est surmonté d’une étiquette portant un numéro d’ordre. Si
je vous donne par exemple pour instruction d’ouvrir le tiroir numéro 3 et
de regarder ce qu’il y a dedans, les choses sont plutôt claires non ? Il en
va de même pour le tableau.

43210

00000
Index

Contenu
du tableau

5

0
6

0

Tous les éléments de ce tableau ont été implicitement initialisés avec la
valeur 0 après la déclaration. L’initialisation peut toutefois être faite de deux
manières différentes. Nous avons choisi la manière facile et les valeurs, dont
le tableau est censé être pourvu, sont énumérées derrière la déclaration
entre deux accolades et séparées par des virgules :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Sur la base de cette ligne d’instruction, le contenu du tableau est le suivant.

43210

1110987
Index

Contenu
du tableau

5

12
6

13

	 128	 Partie II. Les montages

N’avons-nous pas oublié quelque chose d’important ? Dans la déclaration
du tableau, il n’y a rien entre les crochets. La taille du tableau devrait
pourtant y être indiquée.

C’est vrai, mais le compilateur connaît déjà dans le cas présent – par les
informations fournies pour l’initialisation faite dans la même ligne – le
nombre d’éléments. Aussi la dimension du tableau n’a-t-elle pas besoin
d’être indiquée. L’initialisation, quelque peu fastidieuse, consiste à affecter
explicitement les différentes valeurs à chaque élément du tableau :

int ledPin[7]; // Déclaration du tableau avec 7 éléments
void setup() {
 ledPin[0] = 7;
 ledPin[1] = 8;
 ledPin[2] = 9;
 ledPin[3] = 10;
 ledPin[4] = 11;
 ledPin[5] = 12;
 ledPin[6] = 13;
 // ...
}

INDEX D’UN TABLEAU
L’index du premier élément du tableau est toujours le chiffre 0. Si, par exemple,
vous déclarez un tableau de 10 éléments, l’index admis le plus élevé sera le
chiffre 9 – soit toujours un de moins que le nombre d’éléments. Si vous ne vous
en tenez pas à cette règle, vous pouvez provoquer une erreur à l’exécution
que le compilateur de l’environnement de développement ne détecte ni au
moment du développement ni plus tard pendant l’exécution. C’est pourquoi
vous devez redoubler d’attention !

Venons-en maintenant à la boucle et regardons la syntaxe de plus près.

Figure 6-5 u
Boucle for

for(int i = 0; 1 < 7; i++)

Instruction Initialisation Test Incrément

for(int i = 0; 1 < 7; i++)

Montage 6. Le séquenceur de lumière 	 129

La boucle introduite par le mot-clé for est appelée boucle for. Suivent entre
parenthèses certaines informations sur les caractéristiques fondamentales.

	● À partir de quelle valeur la boucle doit-elle commencer à compter ?
(initialisation)

	● Jusqu’à combien doit-elle compter ? (test)

	● De combien la valeur initiale doit-elle être modifiée ? (incrément)

Ces trois informations déterminent le fonctionnement de la boucle for et
définissent son comportement au moment de l’appel.

QUAND UTILISER UNE BOUCLE FOR ?
Une boucle for est utilisée la plupart du temps quand on connaît au départ
le nombre de fois que certaines instructions doivent être exécutées. Ces
caractéristiques-clés sont définies dans ce qui est appelé l’en-tête de boucle,
qui correspond à ce qui est inclus entre parenthèses.

Mais soyons plus concrets. La ligne de code suivante :

for(int i = 0; i < 7; i++)

déclare et initialise une variable i du type int avec la valeur 0. L’indication
du type de donnée dans la boucle stipule qu’il s’agit d’une variable locale
qui n’existe que tant que la boucle for itère, c’est-à-dire suit son cours.
La variable i est effacée de la mémoire à la sortie de la boucle. Le nom
exact d’une telle variable dans une boucle est « variable de contrôle ».
Elle parcourt une certaine zone tant que la condition (i < 7) – désignée
ici sous le nom de « test » – est remplie. Une mise à jour de la variable est
ensuite effectuée selon l’expression de l’incrément. L’expression i++ ajoute
la valeur 1 à la variable i.

Les signes ++ sont un opérateur qui ajoute la valeur 1 au contenu de l’opé-
rande, donc à la variable. Les programmeurs sont paresseux de naissance
et font tout pour formuler au plus court ce qui doit être tapé. Quand on
pense au nombre de lignes de code qu’un programmeur doit taper dans
sa vie, moins il y a de caractères et mieux c’est. Il s’agit aussi à terme de
consacrer plus de temps à des choses plus importantes – par exemple
encore plus de code – en adoptant un mode d’écriture plus court. Toujours
est-il que les deux expressions suivantes ont exactement le même effet :
i++; et i = i + 1;

Deux caractères de moins ont été utilisés, ce qui représente tout de même
une économie de 40 %. Mais revenons-en au texte. La variable de contrôle
i sert ensuite de variable d’index dans le tableau et traite ainsi l’un après
l’autre les différents éléments de ce tableau.

	 130	 Partie II. Les montages

43210

1110987
Index

Contenu
du tableau

5

12
6

13

10

3

Sur cette capture d’écran d’une itération de la boucle, la variable i pré-
sente la valeur 3 et a donc accès au 4e élément dont le contenu est 10.
Autrement dit, toutes les broches consignées dans le tableau ledPin sont
programmées en tant que sorties dans la fonction setup au moyen des
deux lignes suivantes :

for(int i = 0; i < 7; i++)
 pinMode(ledPin[i], OUTPUT);

Une chose importante encore : si, dans une boucle for, il n’y a aucun bloc
d’instructions, formé au moyen d’accolades (comme nous en verrons un
bientôt dans la fonction loop), seule la ligne venant immédiatement après
la boucle for est prise en compte par cette dernière. Le code de la fonction
loop contient seulement une boucle for dont la structure de bloc donne
cependant accès à plusieurs instructions :

for(int i = 0; i < 7; i++) {
 digitalWrite(ledPin[i], HIGH); // Élément de tableau au niveau HIGH
 delay(waitTime);
 digitalWrite(ledPin[i], LOW); // Élément de tableau au niveau LOW
}

Je voudrais vous montrer dans un court sketch comment la variable de
contrôle i est augmentée (incrémentée) :

void setup() {
 Serial.begin(9600); // Configuration de l’interface série
 for(int i = 0; i < 7; i++)
 Serial.println(i); // Affichage sur l’interface série
}

void loop(){ /* vide */ }

Puisque notre Arduino n’a pas de fenêtre d’affichage, nous devons trouver
autre chose. L’interface série sur laquelle il est fréquemment branché peut
nous servir à envoyer des données. L’environnement de développement
dispose d’un moniteur série capable de recevoir et d’afficher ces données
sans problème. Vous pouvez même l’utiliser pour envoyer des données à

Montage 6. Le séquenceur de lumière 	 131

la carte Arduino. Vous en saurez plus bientôt. Le code initialise par l’ins-
truction suivante :

Serial.begin(9600);

l’interface série avec une vitesse de transmission de 9 600 bauds. La ligne
suivante :

Serial.println(i);

envoie ensuite au moyen de la fonction println la valeur de la variable i à
l’interface. Il ne vous reste plus qu’à ouvrir le moniteur série pour afficher
les valeurs de la figure 6-6 :

t Figure 6-6
Affichage des valeurs
dans le moniteur série

On voit ici comment les valeurs de la variable de contrôle i, dont nous
avons besoin dans notre sketch pour sélectionner les éléments du tableau,
sont affichées de 0 à 6. J’ai placé le code dans la fonction setup pour que la
boucle for ne soit exécutée qu’une fois et ne s’affiche pas constamment.
La figure 6-7 page suivante montre de plus près les différents passages de
la boucle for.

	 132	 Partie II. Les montages

L’INTERFACE SÉRIE POUR LA RECHERCHE D’ERREURS
Vous savez maintenant comment envoyer quelque chose à l’interface série.
Vous pouvez vous en servir pour trouver une ou plusieurs erreurs dans un
sketch. Si le sketch ne fonctionne pas comme prévu, placez des instructions
d’écriture sous forme de Serial.println() à divers endroits qui vous
paraissent importants dans le code et affichez certains contenus de variable
ou encore des textes. Vous pouvez ainsi savoir ce qui se passe dans votre
sketch et pourquoi il ne marche pas bien. Vous devez seulement apprendre
à interpréter les données affichées. Ce n’est pas toujours facile et il faut un
peu d’entraînement.

Manipulation des registres
Dans le montage n° 2 sur la programmation de bas niveau de la carte
Arduino, nous avons vu qu’il est très facile d’influencer les broches numé-
riques par la manipulation des registres. Cela peut se révéler utile pour
notre séquenceur de lumière. Le circuit suivant ne possède que 6 LED
avec les résistances série correspondantes, chaque LED étant associée à un
numéro écrit en rouge. Nous allons bientôt voir à quoi ça sert.

t Figure 6-8
Circuit du petit séquenceur
de lumière

Examinons le registre du PORT B :

Figure 6-7 u
Comportement

de la boucle for

Il me faut maintenant parler de la programmation orientée objet, car elle va
me servir à vous expliquer la syntaxe. Nous reviendrons plus tard sur ce mode
de programmation puisque C++ est un langage orienté objet (ou OOP sous sa
forme abrégée). Ce langage est tourné vers la réalité constituée d’objets réels
tels que par exemple table, lampe, ordinateur, barre de céréales, etc. Aussi les
programmeurs ont-ils défini un « objet » représentant l’interface série. Ils ont
donné à cet objet le nom de Serial, et il est utilisé à l’intérieur d’un sketch.
Chaque objet possède cependant d’une part certaines caractéristiques (telles
que la couleur ou la taille) et d’autre part un ou plusieurs comportements
qui définissent ce qu’on peut faire avec cet objet. Dans le cas d’une lampe, le
comportement serait par exemple le fait de s’allumer ou de s’éteindre. Mais
revenons à notre objet Serial. Le comportement de cet objet est géré par
de nombreuses fonctions qui sont appelées méthodes en programmation
orientée objet (OOP). Deux de ces méthodes vous sont déjà familières : la
méthode begin qui initialise l’objet Serial avec le taux de transmission voulu,
et la méthode println (print line signifie en quelque sorte imprimer/affi-
cher avec un saut de ligne) qui envoie quelque chose sur l’interface série. Le
lien entre objet et méthode est assuré par l’opérateur point (.) qui les relie
ensemble. Quand je dis par conséquent que setup et loop sont des fonctions,
ce n’est qu’une demi-vérité car il s’agit, à bien y regarder, de méthodes.
Vous trouverez plus d’informations sur la programmation de l’interface
série aux adresses suivantes :

https://www.arduino.cc/en/Reference/Serial

https://www.arduino.cc/en/Serial/Begin

https://www.arduino.cc/en/Serial/Println

Montage 6. Le séquenceur de lumière 	 133

L’INTERFACE SÉRIE POUR LA RECHERCHE D’ERREURS
Vous savez maintenant comment envoyer quelque chose à l’interface série.
Vous pouvez vous en servir pour trouver une ou plusieurs erreurs dans un
sketch. Si le sketch ne fonctionne pas comme prévu, placez des instructions
d’écriture sous forme de Serial.println() à divers endroits qui vous
paraissent importants dans le code et affichez certains contenus de variable
ou encore des textes. Vous pouvez ainsi savoir ce qui se passe dans votre
sketch et pourquoi il ne marche pas bien. Vous devez seulement apprendre
à interpréter les données affichées. Ce n’est pas toujours facile et il faut un
peu d’entraînement.

Manipulation des registres
Dans le montage n° 2 sur la programmation de bas niveau de la carte
Arduino, nous avons vu qu’il est très facile d’influencer les broches numé-
riques par la manipulation des registres. Cela peut se révéler utile pour
notre séquenceur de lumière. Le circuit suivant ne possède que 6 LED
avec les résistances série correspondantes, chaque LED étant associée à un
numéro écrit en rouge. Nous allons bientôt voir à quoi ça sert.

t Figure 6-8
Circuit du petit séquenceur
de lumière

Examinons le registre du PORT B :

	 134	 Partie II. Les montages

Les huit bits d’un port sont regroupés dans un octet. Chacun des bits de
cet octet possède un numéro croissant de droite à gauche en commençant
à 0, comme vous pouvez le voir dans la rangée du haut. Cela nous permet
d’adresser chaque bit de façon univoque de 0 à 7. En plus de sa position
à l’intérieur de l’octet, chaque bit possède une valeur qui dépend aussi de
cette position et qui augmente également de droite à gauche. La valeur
de chaque bit est indiquée dans la rangée du bas. Reste à savoir comment
nous en sommes arrivés à ces valeurs. C’est simple ! Le système binaire
connaissant uniquement les états 0 et 1, la base de calcul de la valeur est
le chiffre 2. Comme notre système décimal utilise les chiffres 0 à 9, il y a
donc 10 états possibles. Par conséquent, la base de calcul de la valeur est le
chiffre 10. Mais revenons-en à notre système binaire. Comment calcule-t-on
la valeur ? On utilise l’équation suivante :

Valeur = 2Position

Exemple : quelle est la valeur du bit à la position 4 ? L’équation est la
suivante :

Valeur = 24 = 16

Examinons maintenant la variante de syntaxe obtenue par manipulation
de registre ou de bit. Pour créer le motif de LED voulu, il faut simplement
écrire un 1 aux emplacements de l’octet où les LED doivent être allumées :

Le code du sketch est alors le suivant :

void setup() {
 DDRB = 0b11111111; // PORT B entièrement défini comme SORTIE
 PORTB = 0b00010101; // Création du motif de LED
}

void loop() { /* vide */ }

Nous voyons que la ligne contenant la combinaison de bits suivante :

PORTB = 0b00010101;

correspond précisément au motif de LED. Il ne faut évidemment pas utiliser
de nombre binaire lors de l’initialisation. Cela fonctionne aussi avec un
nombre entier. Faisons une petite expérience en affichant des combinai-
sons de bits comprises entre 0 et 63. Il suffit d’incrémenter – c’est-à-dire
d’augmenter – constamment une valeur de 1. Mais cette fois, une partie

Montage 6. Le séquenceur de lumière 	 135

du code doit se trouver à l’intérieur de la fonction loop, car la modification
doit avoir lieu à intervalles réguliers.

byte pattern = 0;
void setup() {
 DDRB = 0b11111111; // PORT B entièrement défini comme SORTIE
}

void loop() {
 PORTB = pattern++; // Incrémenter le motif
 delay(100); // Courte pause de 100 ms
}

La variable pattern est de type byte. Elle compte donc huit bits et peut
stocker des valeurs comprises entre 0 et 255. Quand nous l’incrémentons
à l’intérieur de la fonction loop, un débordement se produira tôt ou tard,
quand le contenu de la variable atteindra 255 et que la valeur 1 y sera ajou-
tée encore une fois. Ça ne fonctionnera pas, car la capacité de stockage
sera épuisée. Il se produit donc un débordement et le cycle reprendra au
début. La ligne suivante :

PORTB = pattern++;

incrémente la variable. L’opérateur d’incrémentation qui est représenté par
les deux signes + est chargé d’augmenter la valeur. Le même résultat est
obtenu avec les lignes suivantes :

pattern = pattern + 1;
PORTB = pattern;

C’est évidemment une question de goût, mais les programmeurs préfèrent
les formulations aussi courtes que possible afin d’avoir à saisir moins de
code. Nous en arrivons à une partie très intéressante : la manipulation de
bits. Les bits peuvent être manipulés de diverses façons à l’aide d’opé-
rateurs, même si cela demande un peu d’expérience. Une fois que l’on
maîtrise ce type de programmation, on peut s’amuser à combiner les bits
à sa guise. Ce montage consiste à commander un anneau de LED qui nous
resservira plus tard. Nous allons voir comment faire circulerl’allumage
d‘une LED. Pour cela, nous utiliserons les opérateurs de bits.

Opérateurs de décalage
Pour décaler une LED d’un bit au suivant, nous utilisons l’un des opéra-
teurs de décalage.

	● >> : décaler vers la droite

	● << : décaler vers la gauche

	 136	 Partie II. Les montages

Comment ça marche ? Examinons le contenu de PORT B et son évolution
au fil du temps :

Figure 6-9 u
Contenu du registre

de PORT B à différents
moments

On constate que le chiffre 1 qui se trouve initialement à l’extrême droite se
décale peu à peu vers la gauche. Le petit point rouge indique la position
finale à un moment donné. Mais comment décale-t-on ce 1 de droite à
gauche ? L’opérateur de décalage vers la gauche va nous être très utile.
Nous présupposons que le 1 qui se trouve à l’extrême droite et qui, soit dit
en passant, se nomme LSB (Least Significant Bit) c’est-à-dire bit de poids
faible, sert toujours de position de départ pour toutes les opérations de
décalage. Le code de sketch suivant exécute la fonction de décalage :

byte pos = 0; // Valeur de position
void setup() {
 DDRB = 0b11111111; // PORT B entièrement défini comme SORTIE
}

void loop() {
 PORTB = 1 << pos++; // Décaler le "1" vers la gauche
 if(pos > 5) pos = 0;
 delay(500); // Courte pause de 500 ms
}

La variable apparaît dans la fonction en tant qu’indicateur de distance de
décalage. Au départ, elle intègre la valeur 0, ce qui signifie qu’à la première
itération de la boucle, le 1 ne change pas de position, comme c’est le cas au
marqueur temporel Temps 1. Après le traitement de l’instruction, la variable
pos est augmentée de la valeur 1, ce qui signifie qu’à la prochaine itération
de la boucle, il se produira un décalage d’une position vers la gauche. Notez
que le décalage vers la gauche fait apparaître un 0 sur côté droit. Il en va
de même à chaque nouvelle itération. Lorsque la valeur pos est supérieure
à 5, ce qui dépasse les possibilités d’affichage de notre dispositif à LED à
six bits, elle est ramenée à la valeur 0. Le cycle reprend alors au début.

Montage 6. Le séquenceur de lumière 	 137

Placer des bits
Nous allons maintenant voir comment placer des bits, c’est-à-dire leur
affecter la valeur 1 sans influencer l’état actuel des bits existants. Examinons
la situation suivante dans laquelle la combinaison de bits présentée repré-
sente le masque de bits (suite de bits) de départ :

Cette fois, nous voulons décaler le bit ayant la valeur 8 jusqu’à la position
3. Pour y parvenir, nous pouvons écrire le sketch suivant :

void setup() {
 DDRB = 0b11111111; // PORT B entièrement défini comme SORTIE
 PORTB = 0b00000110; // Masque de bits de départ
 delay(500);
 PORTB = 1 << 3; // Décaler de 3 positions vers la gauche
}

void loop() { /* vide */ }

Le masque de bits de départ qui reste visible pendant 500 ms est le suivant :

Ensuite, la LED ayant la valeur 8 doit s’allumer en plus de celles qui sont
déjà éclairées. Quel résultat obtient-on ? Voyez par vous-même :

Quel est le problème ? Nous avons placé un 1 à l’extrême droite sur le LSB,
puis nous l’avons décalé de 3 positions vers la gauche. Souvenez-vous : en
cas de décalage, un 0 est toujours intercalé à la position précédente. Ce
n’est pas ce que nous voulons ici ! Alors que faire ? La solution réside dans
un autre opérateur qui appartient à la catégorie des opérateurs de bits.
Il s’agit du OU binaire. Pour mieux comprendre l’effet de ces opérateurs,
nous allons examiner le tableau de valeurs suivant :

	 138	 Partie II. Les montages

Tableau 6-2 u
L’opérateur binaire OU

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Les colonnes A et B contiennent des valeurs de départ logiques et la colonne
Q présente le résultat de la liaison logique ou binaire OU. L’opérateur
logique OU est symbolisé par la barre verticale | (pipe). Si nous modifions
la ligne

PORTB = 1 << 3;

en

PORTB |= 1 << 3;

le bit correspondant est correctement placé, sans modifier pour autant les
bits existants. Le résultat est le suivant :

Comment cela s’explique-t-il ? Quand une action de décalage progressive
est constamment liée au masque de bits précédent sur le PORT B par un
l’opérateur logique OU, alors tous les bits qui contiennent un 0 ne sont
pas modifiés et tous ceux qui contiennent un 1 sont placés.

Supprimer des bits
Les bits placés peuvent bien sûr aussi être supprimés. Mettons que la com-
binaison de bits suivante ait été obtenue par la ligne de code ci-dessous.

PORTB = 0b0010110;

Montage 6. Le séquenceur de lumière 	 139

Nous voulons supprimer le bit ayant la valeur 2 à la position 1 afin d’éteindre
la LED correspondante. L’état de toutes les autres LED ne doit pas s’en
trouver modifié. Nous utiliserons un autre opérateur appartenant à la caté-
gorie des opérateurs de bits : l’opérateur logique ET. Le tableau de valeurs
ci-dessous en explique le fonctionnement.

A B Q t Tableau 6-3
L’opérateur binaire ET0 0 0

0 1 0

1 0 0

1 1 1

Le résultat de cette liaison peut uniquement être un 1 lorsque les deux
valeurs d’entrées sont des 1. L’opérateur logique ET est représenté par le
et commercial &. Tous les bits qui ont la valeur 0 dans le masque de liaison
sont supprimés. Ceux qui ont la valeur 1 ne sont pas concernés. Le code
du sketch est le suivant :

void setup() {
 DDRB = 0b11111111; // PORT B entièrement défini comme SORTIE
 PORTB = 0b00010110; // Masque de bits de départ
 delay(500);
 PORTB &= 0b11111101;
}

void loop() { /* vide */ }

La ligne

PORTB &= 0b11111101;

produit presque un masque. Les bits existants ne passent pas aux endroits
où il y a un 0

Problèmes courants
Si les LED ne s’allument pas l’une après l’autre, débranchez le port USB
de la carte pour plus de sécurité et vérifiez ce qui suit.

	● Vos fiches de raccordement sur la plaque correspondent-elles vraiment
au circuit ?

	● Pas de court-circuit éventuel entre elles ?

	● Les LED ont-elles été mises dans le bon sens ? Autrement dit, la pola-
rité est-elle correcte.

Tableau 6-2 u
L’opérateur binaire OU

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Les colonnes A et B contiennent des valeurs de départ logiques et la colonne
Q présente le résultat de la liaison logique ou binaire OU. L’opérateur
logique OU est symbolisé par la barre verticale | (pipe). Si nous modifions
la ligne

PORTB = 1 << 3;

en

PORTB |= 1 << 3;

le bit correspondant est correctement placé, sans modifier pour autant les
bits existants. Le résultat est le suivant :

Comment cela s’explique-t-il ? Quand une action de décalage progressive
est constamment liée au masque de bits précédent sur le PORT B par un
l’opérateur logique OU, alors tous les bits qui contiennent un 0 ne sont
pas modifiés et tous ceux qui contiennent un 1 sont placés.

Supprimer des bits
Les bits placés peuvent bien sûr aussi être supprimés. Mettons que la com-
binaison de bits suivante ait été obtenue par la ligne de code ci-dessous.

PORTB = 0b0010110;

	 140	 Partie II. Les montages

	● Les résistances ont-elles bien les bonnes valeurs ?

	● Le code du sketch est-il correct ?

Qu’avez-vous appris ?
	● Vous avez fait la connaissance d’une forme spéciale de variable vous

permettant d’enregistrer plusieurs valeurs d’un même type de donnée.
Elle est appelée tableau (array). On accède à ses différents éléments
au moyen d’un index.

	● La boucle for vous permet d’exécuter plusieurs fois une ou plusieurs
lignes de code. Elle est gérée par une variable de contrôle, active dans
la boucle et initialisée avec une certaine valeur initiale. Une condition
vous a permis de définir combien de fois la boucle doit s’exécuter. Vous
contrôlez ainsi quel domaine de valeurs la variable traite.

	● Vous pouvez réunir plusieurs instructions, qui sont ensuite toutes
exécutées par exemple dans le cas d’une boucle for, en constituant
un bloc au moyen de la paire d’accolades.

	● La variable de contrôle, dont nous venons de parler, est utilisée pour
modifier l’index d’un tableau et accéder ainsi à ses différents éléments.

	● La manipulation de registre vous a permis de commander les broches
numériques d’un port pour créer un séquenceur de lumière.

	 141

Montage

7Extension de port

Nous avons vu dans le montage précédent comment programmer la com-
mande des multiples LED d’un séquenceur de lumière. Votre carte Arduino
ne disposant que d’un nombre limité de sorties numériques, ces précieuses
ressources pourraient finir par vous manquer pour ajouter d’autres LED
à votre séquenceur de lumière. Par ailleurs, vous voulez peut-être aussi
connecter quelques capteurs sur des entrées numériques. Vous aurez donc
encore moins de broches numériques à disposition. Comment résoudre
ce problème ?

Le registre à décalage
Il existe plusieurs solutions d’extension de port, en voici une. Je dois utiliser
pour cela un registre à décalage. Vous vous demandez certainement ce que
c’est et comment il opère. Dans cette expérimentation, un circuit intégré
(IC pour Integrated Circuit) sera relié pour la première fois à votre carte
Arduino. Un registre à décalage est un circuit géré par un signal d’horloge et
doté de plusieurs sorties disposées l’une derrière l’autre. À chaque période
d’horloge, le niveau présent à l’entrée du registre est transmis à la sortie
suivante. Cette information passe ainsi par toutes les sorties existantes.
L’illustration ci-dessous montre l’action zélée du registre de décalage déca-
lant infatigablement le niveau logique HIGH à la position suivante.

t Figure 7-1
Attrape !

	 142	 Partie II. Les montages

Le circuit intégré 74HC595, que nous utilisons ici, dispose d’une entrée série
par laquelle les données sont entrées et de huit sorties équipées de registres
mémoire internes pour conserver les états. Seules trois broches numériques
sont nécessaires à l’alimentation, lesquelles fournissent des données au module
qui, de son côté, commande ses huit sorties. C’est en soi une économie majeure,
car le circuit 74HC595 peut être cascadé, permettant ainsi une expansion quasi
illimitée des sorties numériques. De quoi s’agit-il exactement ? Voyons de plus
près les différentes entrées et sorties de ce circuit. La figure suivante illustre le
brochage du circuit, vu de dessus.

Figure 7-2 u
Brochage du registre
à décalage 74HC595

TRAIT HORIZONTAL AU-DESSUS D’UNE DÉSIGNATION DE BROCHE
Quand la désignation d’une broche comporte un trait horizontal, comme pour
les broches 10 et 13 de la figure précédente, cela signifie que ce sont des
entrées de signaux actives au niveau LOW. Pour un master reset (réinitialisation
générale) sur la broche 10, la réinitialisation sera donc déclenchée en présence
d’un niveau LOW et, en fonctionnement normal, elle devra être raccordée à une
tension d’alimentation Vcc.

La figure suivante illustre le fonctionnement d’un registre à décalage avec
un traitement en deux étapes.

Figure 7-3 u
Fonctionnement du registre

à décalage 74HC595



Montage 7. Extension de port 	 143

1re étape
Le registre à décalage (Shift Register) sur le côté gauche reçoit les données en
série sur la broche DS (14) et les enregistre temporairement. Quand le front
est positif (bascule de 0 à 1) sur la broche SH_CP (11), toutes les valeurs du
flux de données entrent une par une dans le registre interne.

2e étape
Les données doivent encore être transférées dans le registre mémoire
(Storage Register) afin que les données auparavant série soient transmises
en parallèle aux sorties Q

A
 à Q

H
. Cela s’effectue sur un front positif (bascule

de 0 à 1) sur la broche ST_CP (12). Pour que le transfert s’exécute correc-
tement vers les sorties, la broche OE (Output Enable) (13) doit être reliée
à la masse, car elle est active au niveau LOW. Le tableau suivant récapitule
les différentes broches et leur signification.

Broche Signification t Tableau 7-1
Signification des broches
du registre à décalage
74HC595

Vcc Tension d’alimentation + 5 V

GND Masse O V

QA-QH Sorties parallèles 1 à 8

QH" Sortie série (entrée pour un deuxième registre à décalage)

MR Master Reset (actif LOW)

SH_CP Registre à décalage, entrée d’horloge (Shiftregister clock input)

ST_CP Registre mémoire, entrée d’horloge (Storageregister clock input)

œ Activation de la sortie (Output enable/actif LOW)

DS Entrée série (Serial data input)

Le mode de fonctionnement du registre à décalage peut se résumer ainsi :
quand le niveau à l’entrée d’horloge SH_CP passe de LOW à HIGH, le niveau à
l’entrée série DS est lu, transmis à l’un des registres internes et enregistré
temporairement. Mais cela ne signifie pas pour autant transmis aux sorties
Q

A
 à Q

H
. C’est seulement une impulsion d’horloge à l’entrée ST_CP de LOW

à HIGH qui fait transmettre toutes les informations des registres internes
aux sorties. C’est utile, car ce n’est que quand toutes les informations ont
été lues à l’entrée série qu’elles sont censées être détectées aux sorties. Le
changement du niveau logique de LOW à HIGH est appelé contrôle par front
montant d’horloge, car une action n’est entreprise que quand un changement
de niveau se produit de la manière décrite.

Voyons maintenant un peu ce qui se passe dans le registre à décalage…

	 144	 Partie II. Les montages

Voici justement SH_CP au travail. Quand il tourne la pancarte de LOW à HIGH,
le candidat potentiel, qui se trouve dans la zone DS-area, passe dans le
registre suivant et attend la suite de son voyage vers la sortie.

Figure 7-4 u
SH_CP préparant
les données série

Hop, dans

la une !

La figure suivante montre ST_CP en train de faire partir les données des
registres internes vers les sorties.

Figure 7-5 u
ST_CP autorisant le départ
des données des registres

vers les sorties
Tout le monde est là ?

On peut y aller !

Quand il tourne la pancarte de LOW à HIGH, les portes des registres internes
s’ouvrent et alors seulement les données peuvent trouver le chemin de la
sortie. Le procédé croqué ici sera reproduit dans plusieurs sketches pour
que vous puissiez voir en direct comment marche le registre à décalage.
Nous allons tout faire de A à Z, mais vous verrez à la fin qu’il existe une
instruction bien commode pour toutes les actions à entreprendre l’une
derrière l’autre, qui vous épargnera beaucoup de travail et vous facilitera
les choses.

Montage 7. Extension de port 	 145

Registre à décalage conventionnel
Certains d’entre vous seront certainement intéressés par la structure interne
d’un registre à décalage. Les différents modèles intègrent des composants
variés. Nous allons examiner un exemple rudimentaire : si l’on raccorde
successivement plusieurs bascules ou verrous (flipflops, en anglais), c’est-à-
dire des circuits pouvant accepter deux états stables, on obtient un registre
à décalage. Le schéma suivant représente un registre à décalage réalisé
avec 4 verrous D.

Vous trouverez de plus amples informations sur le verrou D à l’adresse
suivante :

https://fr.wikipedia.org/wiki/Bascule_(circuit_logique)

t Figure 7-6
Registre à décalage réalisé
avec 4 verrous D

Les niveaux sont lus aux entrées via Data In, puis ils poursuivent leur route
à chaque période d’horloge Clock. Les sorties Q1 à Q4 affichent de façon
parallèle les informations arrivées en série.

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 7-2
Liste des composants

1 registre à décalage 74HC595

8 LED rouges

8 résistances de 330 Ω

1 résistance de 10 kΩ

1 bouton-poussoir miniature

https://fr.wikipedia.org/wiki/Bascule_(circuit_logique)

	 146	 Partie II. Les montages

Schéma
Le schéma montre les différentes LED avec leurs résistances série de
330 ohms, qui sont commandées par le registre à décalage 74HC595.
L’entrée master reset de la puce est connectée, à travers la résistance pull-up,
à la tension d’alimentation +5 V, si bien que le reset ne se déclenche pas
tant que le bouton-poussoir n’est pas enfoncé puisque l’entrée MR est
active au niveau LOW. On note la présence d’un trait horizontal au-dessus de
MR, qui correspond à une négation. L’entrée output enabled est également
active au niveau LOW et reliée par un fil à la masse, car les sorties doivent
être toujours actives. Le registre à décalage est commandé par les broches
Arduino 8, 9 et 10 avec les fonctions décrites précédemment.

Figure 7-7 
Carte Arduino commandant

le registre à décalage
74HC595 par trois lignes de

signaux

Si vous lancez le sketch, que nous verrons bientôt, la première LED s’al-
lume immédiatement sur la sortie Q

A,
 car vous avez entré une seule fois 1

dans le registre à décalage. Vous devez actionner non seulement le bou-
ton-poussoir du circuit, mais aussi le bouton de reset de la carte Arduino
pour effectuer un reset (réinitialisation).

Montage 7. Extension de port 	 147

Réalisation du circuit
Vérifiez que les raccordements ont été correctement effectués sur la plaque
d’essais qui se remplit de plus en plus. Restez concentré !

t Figure 7-8
Réalisation du circuit
avec le registre à décalage
74HC595

Sketch Arduino
Voici le code du sketch pour commander le registre à décalage 74HC595
au moyen de trois lignes de sorties numériques. Les broches suivantes sont
nécessaires sur le registre :

	● SH_CP (registre à décalage, entrée d’horloge) ;

	● ST_CP (registre mémoire, entrée d’horloge) ;

	● DS (entrée série pour les données).

Des variables sont affectées aux trois lignes de données, variables auxquelles
j’ai donné les noms suivants :

	● SH_CP est shiftPin ;

	● ST_CP est storagePin ;

	● DS est dataPin.

Ce sketch met l’entrée série DS sur HIGH, niveau qui est ensuite transféré
dans le registre interne quand l’entrée d’horloge SH_CP du registre à déca-
lage passe de LOW à HIGH. Les sorties sont alors programmées et enregistrées
via les registres internes au moyen de l’entrée d’horloge ST_CP du registre
mémoire.

	 148	 Partie II. Les montages

int shiftPin = 8; // SH_CP
int storagePin = 9; // ST_CP
int dataPin = 10; // DS

// Réinitialisation de toutes les broches → niveau LOW
void resetPins() {
 digitalWrite(shiftPin, LOW);
 digitalWrite(storagePin, LOW);
 digitalWrite(dataPin, LOW);
}

void setup() {
 pinMode(shiftPin, OUTPUT);
 pinMode(storagePin, OUTPUT);
 pinMode(dataPin, OUTPUT);
 resetPins(); // Mise de toutes les broches sur LOW
 // Mise de DS sur HIGH pour reprise ultérieure par SH_CP
 digitalWrite(dataPin, HIGH); // DS
 delay(20); // Brève pause avant traitement
 // Transmission du niveau à DS dans registres mémoire internes
 digitalWrite(shiftPin, HIGH); // SH_CP
 delay(20); // Brève pause avant traitement
 //Transmission des registres mémoire internes aux sorties
 digitalWrite(storagePin, HIGH); // ST_CP
 delay(20);
}

void loop(){ /* vide */ }

Comme je l’ai mentionné plus haut, seule la sortie Q
A

s’allume après la
transmission du sketch, ce qui n’a rien de spectaculaire. Mais cela ne va
pas tarder à devenir plus intéressant. Promis !

Revue de code
Les variables sont d’abord pourvues des informations de broche nécessaires
puis toutes les broches sont programmées en tant que sorties au début de
la fonction setup. Vous rencontrez pour la première fois dans ce montage
une fonction écrite par vous-même. Une fonction n’a en soi rien de nou-
veau pour vous puisque setup et loop font déjà partie de cette catégorie
de structures logicielles. Je souhaite cependant revenir sur le sujet pour
en préciser le sens. Une fonction peut être considérée comme une sorte
de sous-programme qui peut toujours être appelé dans le déroulement
normal d’un sketch. Elle est invoquée par son nom et peut tout aussi bien
retourner une valeur à l’appelant qu’enregistrer plusieurs valeurs transfé-
rées nécessaires au calcul ou au traitement. La structure formelle d’une
fonction est la suivante :

Montage 7. Extension de port 	 149

Type de donnée de retour Nom (paramètre)
{
 //Une ou plusieurs instructions
}

t Figure 7-9
Structure de base
d’une fonction

La partie entourée est appelée signature de la fonction et représente l’inter-
face formelle avec la fonction. Cette dernière est comparable à une boîte
noire : vous n’avez pas besoin de savoir comment elle fonctionne. Il vous
suffit de connaître la structure de l’interface et de savoir sous quelle forme
une valeur est retournée. Vous programmez ici bien entendu la fonction
elle-même et devez pour le moins connaître la logique qu’elle renferme.
Certaines fonctions peuvent également être obtenues par exemple sur
Internet, dans la mesure où leur usage n’est pas limité techniquement
par une licence, et utilisées dans votre montage. Peu importe de savoir
comment elles fonctionnent du moment qu’elles ont été programmées et
testées avec succès par d’autres. Le principal est qu’elles fonctionnent !
Mais revenons à notre définition de la fonction. Si elle renvoie une valeur
en retour à l’appelant, comme le fait par exemple digitalRead, vous devez
indiquer le type de donnée en question dans votre fonction.

Supposons que vous vouliez retourner des valeurs qui sont toutes des
nombres entiers, le type de donnée est alors Integer défini par le mot-clé
int. Si toutefois aucun retour n’est requis, vous devez le faire savoir par
le mot-clé void (qui signifie : vide) qui précède déjà les deux fonctions
principales setup et loop.

Nous avons dit que les fonctions sont toujours invoquées par leur nom.
Mais qu’en est-il des deux fonctions setup et loop ? Pas besoin de stipuler
quelque part dans le code qu’elles doivent être appelées et pourtant ça
marche. Comment est-ce possible ?

En fait, setup et loop sont des fonctions systémiques qui sont appelées
implicitement. Comme vous l’avez remarqué, vous n’avez pas besoin de
vous en occuper. Si cela vous intéresse, vous trouverez dans le répertoire
d’installation sous

C:\Program Files (x86)\Arduino\hardware\arduino\avr\cores\arduino

le fichier main.cpp que vous pourrez ouvrir avec un éditeur de texte. Vous
verrez alors ce qui suit :

	 150	 Partie II. Les montages

La fonction directement appelée en début de programme avec C++ est
nommée main, comme c’est le cas ici. Elle sert quasiment de point d’accès,
pour que le programme sache par quoi il doit commencer. main contient
plusieurs appels de fonction qui sont traités l’un après l’autre. On y trouve
entre autres la fonction setup et l’appel de la fonction loop dans une
boucle sans fin définie par for(;;). Vous reconnaissez certainement les
déroulements ou plutôt les relations qui se créent en coulisses au début
d’un sketch quand il s’agit d’appeler setup ou loop.

Si une ou plusieurs variables sont à fournir à votre fonction, celles-ci sont
indiquées entre parenthèses derrière son nom, séparées par des virgules,
avec leur type de donnée correspondant. Les parenthèses sont nécessaires
même s’il n’y a rien entre elles, faute de variables. La signature est suivie du
corps de fonction, formé par la paire d’accolades. Toutes les instructions,
qui se trouvent entre ces deux accolades, font partie de la fonction et sont
traitées séquentiellement de haut en bas lors de l’appel. Mais revenons au
code. En quoi est-ce utile d’écrire une fonction particulière ? Très simple !
Ça l’est toujours quand les mêmes instructions sont à exécuter plusieurs
fois dans le code et c’est ici le cas. Je dois exécuter la suite d’instructions

digitalWrite(shiftPin, LOW);
digitalWrite(storagePin, LOW);
digitalWrite(dataPin, LOW);

à divers endroits pour réinitialiser – autrement dit, pour remettre sur
LOW – les niveaux sur les différentes broches numériques. Sans fonction,
le sketch compterait un grand nombre de lignes de code en plus et man-
querait donc de clarté.

Montage 7. Extension de port 	 151

CODE REDONDANT
Le code source, qui revient plusieurs fois avec la même séquence d’instructions
dans le sketch, est appelé code redondant ou redondance de code. Le mieux est
de le stocker dans une fonction à laquelle vous donnez un nom suffisamment
évocateur pour en saisir le sens. Si vous devez procéder à une modification,
vous intervenez de manière centrale au sein de la fonction et non pas un
peu partout dans le code, ce qui est générateur de bien des erreurs et très
chronophage.

Au début du sketch, l’appel de fonction :

resetPins(); // Mise de toutes les broches sur LOW

permet de mettre les broches 8, 9 et 10 au niveau LOW. Le premier signal
de niveau HIGH est ensuite appliqué à DS par la ligne :

digitalWrite(dataPin, HIGH); // DS

Puis une attente de 20 ms s’écoule avant que la ligne

digitalWrite(shiftPin, HIGH); // SH_CP

ne transmette le niveau HIGH de DS au registre mémoire interne. Il faut ici
tenir compte du fait que ce n’est possible qu’au moyen d’un contrôle par
front montant de LOW vers HIGH.

Il n’y a pas encore de transfert en direction du port de sortie. Une nouvelle
attente de 20 ms s’écoule, et enfin la ligne

digitalWrite(storagePin, HIGH); // ST_CP

déclenche la transmission des registres mémoire internes aux sorties, ce
qui revient à commander les LED dans le cas présent. Un changement de
niveau de LOW à HIGH est ici aussi nécessaire, d’où le recours préalable à
la fonction resetPin qui permettra plus tard de changer encore le niveau
de LOW à HIGH.

	 152	 Partie II. Les montages

Extension du sketch : première
partie
Complétons maintenant un peu le sketch de telle sorte que vous puissiez
rentrer plusieurs valeurs dans l’entrée série. Ce n’est encore qu’un degré
intermédiaire et non pas la solution finale que je souhaite vous présenter.
Ce code doit transmettre au registre à décalage une séquence stockée dans
un tableau de données. La construction du circuit reste la même.

int shiftPin = 8; // SH_CP
int storagePin = 9; // ST_CP
int dataPin = 10; // DS
int dataArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

void resetPins() {
 digitalWrite(shiftPin, LOW);
 digitalWrite(storagePin, LOW);
 digitalWrite(dataPin, LOW);
}

void putPins(int data[]){
 for(int i = 0; i < 8; i++) {
 resetPins();
 digitalWrite(dataPin, data[i]); delay(20);
 digitalWrite(shiftPin, HIGH); delay(20);
 }
}

void setup() {
 pinMode(shiftPin, OUTPUT);
 pinMode(storagePin, OUTPUT);
 pinMode(dataPin, OUTPUT);
 resetPins(); // Mettre toutes les broches à LOW
 putPins(dataArray); // Régler les broches sur le tableau de données
 // Transmission des registres mémoire internes aux sorties
 digitalWrite(storagePin, HIGH); // ST_CP
}

void loop() { /* vide */ }

Voyons maintenant comment le code accomplit son travail. Tout tourne
autour du tableau de données qui contient le modèle de commande des
différentes LED. Il s’agit donc de la ligne de déclaration et d’initialisation
suivante :

int dataArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

Montage 7. Extension de port 	 153

Le code lit les éléments du tableau de gauche à droite et rentre les valeurs
dans le registre à décalage. Un 1 signifie une LED allumée et un 0 une LED
éteinte.

Vous remarquerez que nous avons utilisé les valeurs 1 et 0 pour comman-
der les LED. Ça marche ? Ne vaut-il pas mieux travailler avec les noms de
constante HIGH et LOW ?

J’ai préféré utiliser les valeurs 1 et 0 parce que ce sont elles précisément
qui se cachent derrière les constantes HIGH et LOW. Normalement, je ne
suis pas pour les magic numbers, mais il m’a semblé que dans ce cas, je
pouvais faire une exception. 1 et 0 étant aussi les valeurs logiques, vous ne
devriez pas avoir trop de mal à comprendre ! Vous pouvez bien entendu
écrire à la place de :

int dataArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

la ligne suivante :

int dataArray[] = {HIGH, LOW, HIGH, LOW, HIGH, HIGH, LOW, HIGH};

Mais revenons au code et à sa manière d’exploiter le tableau. La chose
n’est pas si simple, car j’ai ajouté une fonction nommée putPins, qui a
pour tâche de remplir le registre à décalage. Elle présente un paramètre
de transmission capable d’enregistrer non pas une variable normale, mais
tout un tableau de données. Il suffit de transmettre le tableau de données
comme argument dans la fonction :

putPins(dataArray);

La fonction est définie comme suit :

void putPins(int data[]){
 for(int i = 0; i < 8; i++) {
 resetPins(); �// Remise à zéro des broches et préparation à la commande

// par front montant
 digitalWrite(dataPin, data[i]); delay(20);
 digitalWrite(shiftPin, HIGH); delay(20);
 }
}

On peut voir qu’un tableau du type de donnée int a été déclaré avec deux
crochets dans la signature de la fonction. Au moment où la fonction est
appelée, le tableau initial dataArray est copié dans data, qui est ensuite
exploité dans la fonction. Puis chaque élément du tableau est envoyé dans
l’entrée série, au moyen de la boucle for (que vous connaissez déjà), via :

digitalWrite(dataPin, data[i]);

	 154	 Partie II. Les montages

et placé lors de l’étape suivante dans le premier registre interne via :

digitalWrite(shiftPin, HIGH);

Le tout s’effectue huit fois (de 0 à 7), chaque registre interne transmettant
ses valeurs au suivant. Les figures suivantes montrent les choses encore
plus clairement.

Figure 7-10 u
Registre à décalage

(phase 1)

Registres internes

Sorties

Entrée
série

Au début, les registres sont encore tous vides. Un bit 1 attend toutefois déjà
à l’entrée d’être transféré dans le premier registre interne sur le côté gauche.

Figure 7-11 u
Registre à décalage

(phase 2)

1
Entrée
série

Registres internes

Sorties

Le 1 qui se trouve à l’entrée série est entré, pendant le front montant de
SH_CP, dans le premier registre interne. Les contenus de tous les registres
sont décalés d’une position vers la droite. Cette action donne les états
illustrés sur la page suivante.

Montage 7. Extension de port 	 155

Entrée
série

Registres internes

Sorties

t Figure 7-12
Registre à décalage
(phase 3)

À l’entrée se trouve maintenant un 0 qui sera lui aussi entré à la prochaine
impulsion de SH_CP dans le premier registre interne. Mais avant, l’état du
septième registre interne sera passé au huitième, le sixième au septième,
etc. Enfin, le 0 est entré dans le premier registre. Passons directement au
moment où toutes les valeurs du tableau ont été entrées, conformément
au schéma précédent, dans les registres internes et où l’impulsion ST_CP
a recopié les registres vers les sorties.

Registres internes

Sorties

Entrée
série

t Figure 7-13
Registre à décalage
(phase 4)

Les valeurs du tableau lu sont appliquées aux sorties seulement maintenant,
la première valeur entrée se trouvant complètement à droite et la dernière
complètement à gauche.

Vous vous demandez peut-être comment faire pour inverser le comporte-
ment ? En effet, vous voudriez que la première valeur du tableau se trouve
complètement à gauche et que la dernière complètement à droite se trouve
à la sortie, de telle sorte que l’ordre soit quasiment inversé.

Pas de problème car où les broches ont-elles été déterminées ? Exact, dans
la fonction putPins ! C’est la boucle for qui fixe l’ordre des différentes bro-
ches. Celui-ci sera inversé si vous appelez la dernière valeur à la place de

	 156	 Partie II. Les montages

la première et la transmettez au registre à décalage. Voici le code modifié
de la boucle for :

for(int i = 7; i >= 0; i--){
 // ...
}

Extension du sketch :
deuxième partie
Maintenant que vous en savez assez sur le registre à décalage 74HC595,
je voudrais vous présenter une instruction spéciale qui vous épargnera du
travail. shiftOut est vraiment facile à utiliser. Mais je dois auparavant vous
livrer quelques informations sur la sauvegarde des données dans l’ordi-
nateur, informations qui sont vraiment importantes pour comprendre le
fonctionnement d’un microcontrôleur. Je me sers pour mes réalisations
du type de donnée byte, dont la taille est de 8 bits et qui peut stocker
des valeurs comprises entre 0 et 255. La figure suivante montre la valeur
décimale 157 sous sa forme binaire 10011101.

Figure 7-14 u
Combinaison binaire

pour le nombre entier 157

Puissances

Valeurs

Combinaison
de bits

Si on regarde les puissances de plus près, on voit que la base est le chiffre 2.
Nous autres humains comptons en base 10 en raison des dix doigts de nos
mains. Les valeurs des différents chiffres d’un nombre dont donc 100, 101,
102, etc. Pour le nombre 157, cela donne 7 × 100 + 5 × 101 + 1 × 102 qui font
bien sûr 157. Le microcontrôleur ne pouvant cependant stocker que deux
états (HIGH et LOW), le système binaire (du latin binarius, deux chacun)
est fondé sur la base 2. La valeur décimale de ladite combinaison binaire
se calcule par conséquent comme suit, en commençant en principe par
la valeur – ou bit – la plus petite :

1 × 20 + 0 × 21 + 1 × 22 + 1 × 23 + 1 × 24 + 0 × 25 + 0 × 26 + 1 × 27 = 157
10

NOTATION
La base figure derrière le nombre pour plus de clarté quand différents systèmes
de numération sont utilisés.



Montage 7. Extension de port 	 157

Avec un nombre de 8 bits (ou 1 octet), vous pouvez représenter 256 valeurs
distinctes (de 0 à 255). Ceci dit, revenons à l’instruction shiftOut, qui
possède différents paramètres dont nous allons faire le tour.

 Instruction

shiftOut(dataPin,shiftPin,MSBFIRST,value);

DS SH_CP Sens des transmissions Valeur t Figure 7-15
Instruction shiftOut
avec ses nombreux
arguments

Les arguments dataPin, shiftPin ou encore la valeur à transmettre sont
censés être clairs. Mais que signifie la constante MSBFIRST ? Cet argument
permet de définir le sens de transmission des bits. Dans le cas d’un octet,
le bit de poids fort est nommé Most Significant Bit (MSB) et le bit de poids
faible Least Significant Bit (LSB). Vous pouvez ainsi définir quel bit doit
être transféré en premier dans le registre à décalage.

MSBFIRST

LSBFIRST

Voici le code complet avec l’instruction shiftOut. Le circuit n’a pas non
plus besoin ici d’être modifié.

int shiftPin = 8;	 // SH_CP
int storagePin = 9;	// ST_CP
int dataPin = 10;	 // DS
byte value = 157;	 // Valeur à transférer

void setup() {
 pinMode(shiftPin, OUTPUT);
 pinMode(storagePin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

void loop() {
 digitalWrite(storagePin, LOW);
 shiftOut(dataPin, shiftPin, MSBFIRST, value);
 digitalWrite(storagePin, HIGH);
 delay(20);
}

	 158	 Partie II. Les montages

INDICATION D’UNE VALEUR BINAIRE
Vous pouvez saisir directement la combinaison binaire au lieu du nombre
décimal 157 lors de l’initialisation des variables et éviter ainsi la conversion.
Tapez seulement B10011101. Le préfixe B indique qu’il s’agit d’une combinaison
binaire avec laquelle la variable doit être initialisée.

Ce chronogramme vous montre les niveaux des trois lignes de données,
les unes par rapport aux autres, pour commander le registre à décalage
pendant le déroulement chronologique.

Figure 7-16 u
Chronogramme pour le

nombre transféré 157
(B10011101)

On voit tout en haut le signal d’horloge SH_CP pour la prise en charge des
données à l’entrée série DS. À l’issue de la 8e période, le niveau de ST_CP
passe de LOW à HIGH et les données des registres internes sont transmises aux
sorties. Essayez avec différentes valeurs et différents sens de transmission
pour bien comprendre.

POUR ALLER PLUS LOIN
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

• 74HC595

• 75HC595 fiche technique ;

• 74HC595 datasheet.

Problèmes courants
Si les LED ne s’allument pas l’une après l’autre, débranchez le port USB
de la carte pour plus de sécurité et vérifiez ce qui suit.

	● Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

	● Pas de court-circuit éventuel ?

	● Les différentes LED sont-elles correctement branchées ? La polarité
est-elle correcte ?

	● Les résistances ont-elles bien les bonnes valeurs ?



Montage 7. Extension de port 	 159

	● Le registre à décalage est-il correctement câblé ? Contrôlez encore
une fois tous les raccordements qui sont nombreux.

	● Le code du sketch est-il correct ?

Qu’avez-vous appris ?
	● Vous savez ce qu’est un registre à décalage de type 74HC595 avec une

entrée série et huit sorties.

	● Le premier sketch permet de commander les trois lignes de données
SH_CP, ST_CP et DS, les signaux d’horloge étant contrôlés par un front
d’horloge montant, autrement dit ne réagissant que quand le niveau
passe de LOW à HIGH.

	● L’instruction shiftOut permet d’envoyer au registre à décalage des
combinaisons de bits au moyen de nombres non seulement décimaux,
mais aussi binaires.

	● Vous pouvez initialiser une variable du type de donnée byte avec un
nombre entier, par exemple 157, ou à l’aide de la combinaison de bits
correspondante qui doit être précédée du préfixe B, soit par exemple
B10011101.

	 161

Montage

8Comment créer
une bibliothèque ?

Le jour viendra où vos connaissances vous permettront de réaliser vos
propres idées, que d’autres n’auront peut-être pas encore eues. Mais peut-
être souhaiterez-vous aussi améliorer un projet existant parce que votre
solution est plus élégante et moins compliquée à transposer. D’innombrables
développeurs de logiciels se sont penchés avant vous sur les questions les
plus diverses et ont programmé des bibliothèques pour épargner du tra-
vail et du temps aux autres développeurs. À travers ce projet, nous allons
découvrir les grands principes de ces bibliothèques et leur création. Si le
langage de programmation C++ – y compris la programmation orientée
objet – vous a toujours intéressé, vous allez être servi !

Les bibliothèques
Une fois l’environnement de développement Arduino installé ou plutôt
décompressé, vous disposez de quelques bibliothèques maison prêtes à
l’emploi, appelées également librairies (libraries en anglais). Elles traitent
de thèmes intéressants, tels que commander :

	● un servomoteur ;

	● un moteur pas-à-pas ;

	● une connexion Wi-Fi.

Ces bibliothèques sont stockées dans le répertoire libraries du répertoire
d’installation d’Arduino. Vous pouvez utiliser l’Explorateur Windows ou
passer par l’environnement de développement Arduino pour savoir quelles
sont les bibliothèques disponibles. On y trouve une entrée de menu spé-
ciale Sketch|Import Library permettant d’afficher la liste correspondante.

	 162	 Partie II. Les montages

Figure 8-1 u
Afficher ou importer

des bibliothèques

Les entrées du menu coïncident avec les répertoires du dossier libraries.
Tout cela est bien beau, mais voyons d’abord comment une bibliothèque
Arduino fonctionne et ce que nous pouvons faire avec.

Qu’est-ce qu’une bibliothèque
exactement ?
Avant de passer à un exemple concret, vous devez savoir ce qu’est une
bibliothèque. J’ai dit déjà qu’elle servait quasiment à empaqueter et réunir
des tâches de programmation plus ou moins complexes en un paquet de
programme. La figure 8-2 montre la coopération entre une bibliothèque
Arduino et l’API Arduino.

Montage 8. Comment créer une bibliothèque ? 	 163

t Figure 8-2
Comme fonctionne
une bibliothèque Arduino ?

Nous avons affaire à deux couches de programme interdépendantes. Je
procède de l’intérieur vers l’extérieur. J’ai appelé la couche interne API
Arduino. (API est l’abréviation d’Application Programming Interface c’est
une interface vers toutes les instructions Arduino disponibles.) Je n’en
ai sélectionné que très peu par manque de place. La couche externe est
constituée par la bibliothèque Arduino, qui enveloppe la couche interne.
Elle est de ce fait appelée wrapper (enveloppe) et se sert de l’API Arduino.
Pour pouvoir accéder à la couche wrapper, une interface doit être mise en
œuvre, car vous entendez bien sûr exploiter la fonctionnalité d’une biblio-
thèque. Une interface est un portail d’accès à l’intérieur de la bibliothèque,
qui est en soi une unité fermée. Le terme technique est encapsulation.
Vous allez bientôt voir en détail de quoi il s’agit et en quoi cela concerne
le langage de programmation C++.

En quoi les bibliothèques
sont-elles utiles ?
Question idiote à laquelle j’ai déjà répondu plusieurs fois. Aussi me conten-
terai-je ici de vous en rappeler les avantages.

	● Pour ne pas avoir à « réinventer la roue » chaque fois, les développeurs
ont trouvé un moyen de stocker le code de programme dans une
bibliothèque. Beaucoup de programmeurs dans le monde profitent
de ces structures logicielles, qu’ils peuvent utiliser sans problème dans
leurs propres projets. Le mot-clé est ici réutilisation.

	● Une fois testée et débarrassée de ses erreurs, une bibliothèque peut
être utilisée sans en connaître les déroulements internes. Sa fonc-
tionnalité est encapsulée et cachée du monde extérieur. Il suffit au
programmeur de savoir utiliser son interface.

	● Son code propre en est d’autant plus clair et plus stable.

	 164	 Partie II. Les montages

Que signifie programmation
orientée objet ?
La programmation orientée objet (ou POO) est du chinois pour la plupart
des débutants, et peut même réserver maux de tête et nuits blanches à
certains. Mais ce n’est pas obligé et j’espère pouvoir y contribuer, je veux
dire à votre compréhension et non à vos maux de tête ! Dans le langage
de programmation C++, tout est considéré comme objet et ce style – ou
paradigme – de programmation s’oriente vers la réalité qui nous entoure.
Nous sommes cernés d’innombrables objets qui sont plus ou moins réels
et que nous pouvons toucher et observer. Si vous regardez un objet banal
de plus près, vous pourrez constater certaines propriétés. Prenons par
exemple un dé pour ne pas sortir du sujet. Vous savez déjà comment
programmer et construire un dé électronique. Vous avez sûrement, dans
l’un de vos jeux de société, un dé quelconque que vous pouvez regarder
de plus près. Que pourriez-vous en dire, si vous deviez le décrire le plus
précisément possible à un extra-terrestre ?

	● À quoi ressemble-t-il ?

	● Quelle taille a-t-il ?

	● Est-il léger ou lourd ?

	● De quelle couleur est-il ?

	● A-t-il des points ou des symboles ?

	● Quel nombre ou symbole est sorti ?

	● Que peut-on faire avec ? (question idiote, non ?)

Les éléments de cette liste peuvent être répartis en deux catégories.

Propriétés Comportement

Mais quel élément fait partie de quelle catégorie ?

Tableau 8-1 u
Distinction entre

propriétés et
comportement

Propriétés Comportement

Taille Lancer le dé

Poids

Couleur

Points ou symboles

Nombre ou symbole sorti

Montage 8. Comment créer une bibliothèque ? 	 165

Seuls deux éléments de la liste sont pertinents pour la programmation
prévue. Les autres sont certes intéressants, mais sans objet pour un dé
électronique. Ces deux éléments sont :

	● le nombre de points sorti (état) ;

	● lancer le dé (action).

Voyons maintenant comment on charge des propriétés ou un comporte-
ment dans un sketch. Regardons la figure suivante.

Propriétés

Comportement

Variables

Fonctions

Les propriétés sont consignées dans des variables et le comportement est
géré par des fonctions. Mais dans le contexte de la programmation orientée
objet, variables et fonctions ont une autre désignation. Pas de quoi paniquer
cependant puisque c’est en définitive la même chose.

Variables

Fonctions

POO

Variables membres

Méthodes

Programmation procédurale

Les variables deviennent des variables membres (en anglais, fields) et les
fonctions des méthodes (en anglais, methods).

Quelle avancée formidable, vous direz-vous ! Il suffit de rebaptiser deux
éléments d’un programme pour avoir un nouveau paradigme de program-
mation. Le progrès tient à peu de choses, non ?

Dans la programmation procédurale que nous connaissons à travers les
langages C ou Pascal, des instructions ayant un rapport logique, nécessaires
pour résoudre un problème, sont rassemblées dans ce qu’on appelle des
procédures semblables à nos fonctions. Les fonctions opèrent en principe
au mieux avec les variables qui leur ont été transmises comme arguments
ou, dans le cas défavorable, avec des variables globales qui ont été déclarées
au début d’un programme. Celles-ci sont visibles dans tout le programme
et chacun peut les modifier à sa convenance. Toutefois, cela comporte
certains risques et c’est actuellement, tout bien pesé, la plus mauvaise
variante pour traiter des variables ou des données. Variables et fonctions

	 166	 Partie II. Les montages

ne forment aucune unité logique et vivent quasiment les unes à côté des
autres dans le code, sans avoir aucun rapport direct entre elles. La pro-
grammation orientée objet comporte une structure appelée classe. Elle
sert de container pour des variables membres ou des méthodes.

Variable

Variable

Fonction

Fonction

Fonction

Classe

Méthode
Membre

Membre
Méthode

Méthode

La classe enveloppe ses membres, appelés members dans la POO, à la
manière d’un grand manteau. On ne peut en principe accéder aux membres
qu’en passant par la classe.

Construction d’une classe
Qu’est-ce qu’une classe ? Si vous n’avez jamais eu affaire aux langages de
programmation C++, Java et même C# pour ne citer que ceux-là, le terme
ne vous en dira pas plus qu’un caractère chinois pour moi. Mais la chose
est en fait assez facile à comprendre. Si vous regardez encore une fois
le dernier graphique, vous verrez qu’une classe a vocation d’entourer et
ressemble en quelque sorte à un container. Une classe est définie par le
mot-clé class, suivi du nom qu’on lui a donné. Suit une paire d’accolades,
que vous avez pu voir dans d’autres structures comme une boucle for et qui
amène la formation d’un bloc. L’accolade finale est suivie d’un point-virgule.

Figure 8-3 u
Définition générale

d’une classe

class name{

};

Mot-clé Nom de classe

Comme je vous l’ai déjà dit, la classe est composée de différents membres
sous forme de variables membres et de méthodes, qui se fondent, selon la
définition de cette classe, en une unité. La POO offre diverses possibilités
de réglementer l’accès aux membres.

Vous vous demandez peut-être à quoi sert cette réglementation. Quand
vous définissez une variable ou plutôt une variable membre dans une classe,
vous voulez pouvoir y accéder n’importe quand. Alors à quoi cela sert-il si
vous ne pouvez plus ensuite accéder à la classe ?

Montage 8. Comment créer une bibliothèque ? 	 167

Vous avez bien compris le principe, appelé d’ailleurs encapsulation. On
peut protéger certains membres contre le monde extérieur, de telle sorte
qu’ils ne soient pas directement accessibles depuis l’extérieur de la classe.
Le mot directement est ici important. Il existe bien sûr des possibilités d’y
accéder. Ce sont les méthodes qui, par exemple, s’en chargent. Mais vous
devez vous demander quel est le sens de tout cela.

En fait, on peut donc toujours influer directement sur les variables
membres. Mais je pense que les figures suivantes vous permettront de
mieux comprendre le principe.

t Figure 8-4
Accès à une variable
membre de la classe

L’accès à la variable membre de la classe depuis l’extérieur est ici autorisé,
car elle a reçu une certaine étiquette appelée modificateur d’accès. Elle
a pour nom ici public et signifie à peu près ceci : l’accès est autorisé au
public et tout un chacun peut s’en servir à sa guise. Imaginez maintenant
le scénario suivant : une variable membre doit piloter un moteur pas-à-pas,
la valeur indiquant l’angle. Seuls des angles compris entre 0° et 359° sont
cependant admis. Toute valeur inférieure ou supérieure peut compromettre
l’exécution du sketch, si bien que le servo n’est plus commandé correcte-
ment. Quand vous donnez libre accès à une variable membre au moyen
du modificateur public, aucune validation ne peut avoir lieu. Ce qui a été
enregistré une fois produit immanquablement une réaction qui n’est pas
forcément correcte. La solution du problème consiste à isoler les variables
membres grâce à un modificateur d’accès private (privé). C’est le principe
de l’encapsulation déjà évoqué qui est utilisé ici.

C’est bien beau tout ça ! Mais comment fait-on pour accéder à la variable
membre ? On y accède avec une méthode qui contient également un modi-
ficateur d’accès. Il doit cependant être public pour que l’accès fonctionne
depuis l’extérieur. Le tout se présente comme sur la figure 8-6.

t Figure 8-5
Pas d’accès à une
variable membre
de la classe

	 168	 Partie II. Les montages

Figure 8-6 u
Accès à une variable

membre de la classe par la
méthode

On voit clairement que l’accès à la variable membre passe par la méthode,
ceci étant un avantage et non pas un inconvénient. Vous pouvez maintenant
procéder à la validation dans la méthode, seules des valeurs admises étant
alors communiquées à la variable membre.

Mais comment la méthode a-t-elle accès à la variable membre private ?
Le modificateur d’accès private signifie que l’accès depuis l’extérieur de la
classe est impossible. Mais des membres de la classe comme les méthodes
peuvent accéder à des membres déclarés private. Ils appartiennent tous à
la classe et sont donc librement accessibles au sein de celle-ci. Pour faire
court, les modificateurs d’accès gèrent l’accès aux membres de la classe.

Modificateur d’accès Description

public L’accès aux variables membres et aux
méthodes est possible depuis n’importe
où dans le sketch. De tels membres
constituent une interface publique de
la classe.

private L’accès aux variables membres et aux
méthodes est réservé aux membres de
la même classe.

Si vous voulez ajouter une classe à votre projet Arduino, mieux vaut créer
un nouveau fichier se terminant par .cpp pour y stocker la définition de la
classe. Vous verrez bientôt comment dans l’exemple concret de la biblio-
thèque-dé. Encore un peu de patience.

Une classe a besoin d’aide
Nous avons vu ce qu’une classe réalise et comment la créer en bonne et
due forme. Mais je ne vous ai pas encore dit que la classe avait besoin
d’un autre fichier très important. Celui-ci est appelé fichier d’en-tête et
contient les déclarations (informations initiales ou préalables) pour la classe
à concevoir. Si vous créez des variables membres ou des méthodes en
C++, vous devez impérativement les faire connaître auprès du compila-
teur avant de les utiliser. C’est chose faite en définissant les variables et les

Tableau 8-2 u
Modificateurs d’accès

et leur signification

Montage 8. Comment créer une bibliothèque ? 	 169

prototypes de fonction ou de méthode. Le fichier en question renferme
également les consignes relatives aux modificateurs d’accès public et pri-
vate. La construction formelle du fichier d’en-tête ressemble à celle de la
définition de classe, à ceci près qu’il ne contient pas de formulation de
code. Autrement dit, seules les signatures des méthodes sont mentionnées.
Une signature se compose uniquement des informations initiales avec le
nom de la méthode, le type d’objet renvoyé et la liste des paramètres. La
construction générale est la suivante :

class <Nom> {
 public:
 // Membre public
 private:
 // Membre privé
};

Le nom de la classe (ici <Nom>) commence généralement par une majuscule,
suivie de minuscules. La zone définissant le membre public vient après le
mot-clé public suivi de deux-points. La zone définissant le membre privé
vient après le mot-clé private, qui est suivi lui aussi de deux-points. Le
fichier d’en-tête reçoit l’extension de nom .h.

Une classe devient un objet
Une fois créée par sa définition, une classe peut servir, comme lors de la
déclaration d’une variable, de nouveau type de donnée. Ce procédé est
appelé instanciation. Du point de vue du logiciel, la définition d’une classe
ne veut pas dire qu’on a créé réellement un objet. Elle n’est qu’une sorte
de modèle ou plan de construction qu’on peut utiliser pour concevoir un
ou plusieurs objets.

L’instanciation se fait de la manière suivante :

Nomclasse Nomobjet();

t Figure 8-7
De la classe à
l’objet

	 170	 Partie II. Les montages

Nous avons dit que l’instanciation d’un objet avait tout de la déclaration
de variable ordinaire. Mais vous noterez une paire de parenthèses derrière
le nom que vous avez donné à l’objet. Est-ce une double faute de frappe ?
Sûrement pas. Cette parenthèse double a naturellement son utilité. Une
partie de ce projet va lui être consacrée, car elle est extrêmement impor-
tante pour l’instanciation.

Initialiser un objet :
qu’est-ce qu’un constructeur ?
Une définition de classe contient en principe quelques variables membres
qui serviront après l’instanciation. Pour qu’un objet puisse présenter un
état initial bien défini, il s’avère judicieux de l’initialiser en temps voulu.
Quel meilleur moment pour cette initialisation que directement lors de
l’instanciation ? Aucun risque ainsi qu’elle soit oubliée et pose plus tard
problème lors de l’exécution du sketch. Mais comment faire pour initialiser
un objet ? Le mieux est d’employer une méthode qui prend cette tâche
en charge.

Nous devons donc indiquer lors de l’instanciation une méthode à laquelle
on donne certaines valeurs comme arguments. Mais comment savoir quelle
méthode prendre ? Il faut appeler une méthode et lui donner le cas échéant
quelques valeurs en passant. Mais quel nom lui donner ? La solution est à
la fois très simple et géniale. La méthode pour initialiser un objet porte le
même nom que la classe. Cette méthode étant très spéciale, elle porte aussi
un nom à elle. On l’appelle constructeur. Comme son nom l’indique, elle
construit en quelque sorte l’objet. Mais puisqu’il n’est pas impérativement
nécessaire d’initialiser dès le début un objet avec certaines valeurs, elle n’a
pas forcément de liste de paramètres. Elle se comporte alors comme une
méthode à laquelle aucun paramètre n’est donné et qui n’a que la paire
de parenthèses vide. Ceci répond à votre question concernant la paire
de parenthèses que vous avez vue dans l’instanciation. Vous ne devez en
aucun cas l’omettre ou l’oublier.

Il me faut maintenant être un peu plus concret pour vous en montrer la
syntaxe. Voici le contenu du fichier d’en-tête de notre bibliothèque-dé :

class Dice{
public:
 Dice(); // Constructeur
 //...
private:

// ...
};

Montage 8. Comment créer une bibliothèque ? 	 171

Sous le modificateur d’accès public se trouve le constructeur qui porte le
même nom que la classe. Il présente une paire de parenthèses vide, d’où
son nom de constructeur standard.

Mais ne venons-nous pas de dire qu’on peut donner des arguments à un
constructeur tout comme à une méthode pour initialiser l’objet ? La paire
de parenthèses vide indique pourtant que le constructeur ne peut recevoir
aucune valeur. Comment est-ce possible ? Et autre question concernant
le type présumé d’objet retourné par une méthode : il n'a pas été indiqué
pour le constructeur. Pourquoi ?

Effectivement, le constructeur ne peut accueillir aucune valeur sous cette
forme. C’est une bonne introduction au prochain thème. Mais je vais
d’abord répondre à votre question sur le type d’objet renvoyé manquant.
Si une méthode renvoie une valeur à son appelant, le type de donnée en
question doit naturellement être indiqué. Si aucun renvoi n’est prévu, le
mot-clé void est utilisé. Revenons maintenant à notre constructeur. Il est
appelé, non pas explicitement par une ligne d’instruction, mais implici-
tement par l’instanciation d’un objet. C’est pour cette raison que rien ne
peut être retourné à un appelant et que le constructeur n’a pas même le
type de renvoi void.

La surcharge
Ce que je vais vous dire là peut sembler déroutant à première vue : on peut
définir un constructeur et bien entendu également des méthodes plusieurs
fois avec le même nom.

Effectivement, c'est un peu difficile à croire, car c'est contraire au principe
de clarté. Si par exemple une méthode apparaît deux fois avec le même
nom dans un sketch, comment le compilateur peut-il savoir laquelle des
deux est appelée ?

Mais il n’y a pas que le nom qui soit déterminant, il y a aussi la fameuse
signature dont je vous ai parlé plus haut ! L’exemple suivant montre deux
constructeurs acceptables qui portent le même nom, mais dont les signa-
tures diffèrent :

Dice();
Dice(int, int, int, int);

Le premier constructeur représente le constructeur standard et sa paire
de parenthèses vide, qui ne peut accueillir aucun argument. Le deuxième
porte une toute autre signature, car il peut recevoir quatre valeurs du
type int. Vous pouvez alors choisir entre deux variantes pour instancier
un objet Dice :

	 172	 Partie II. Les montages

Dice myDice();

ou :

Dice myDice(8, 9, 10, 11);

Le compilateur est assez intelligent pour savoir quel constructeur il doit
appeler.

La bibliothèque-dé
Toute cette introduction était nécessaire pour bien vous faire comprendre
la création d’une bibliothèque Arduino. Ce deuxième projet de dé va servir
de base pour constituer une bibliothèque. Il s’agit d’une variante améliorée
avec commande des groupes de LED. Deux fichiers sont donc nécessaires
pour réaliser la bibliothèque.

Fichiers d’une bibliothèque

Déclaration
Fichier

d’en-tête .h

Implémentation
(Mise en œuvre)

Fichier de classe .cpp

Le fichier d’en-tête
Commençons par le fichier d’en-tête, qui ne contient que les informa-
tions de prototype et ne présente aucune information de code explicite.
Occupons-nous d’abord des membres de la classe qui sont nécessaires. Pour
piloter les groupes de LED, il faut quatre broches numériques commandées
par les variables membres:

	● pinGroupA ;

	● pinGroupB ;

	● pinGroupC ;

	● pinGroupD.

Ces informations seront transmises au moment de l’instanciation au
constructeur, qui possède quatre paramètres du type int. Les variables
membres sont déclarées privées (private), car elles ne sont traitées qu’en
interne par une méthode appelée roll, qui n’a aucun argument et qui ne
retourne rien. La classe reçoit le nom évocateur de Dice (dé).

Montage 8. Comment créer une bibliothèque ? 	 173

#ifndef Dice_h
#define Dice_h
#include <Arduino.h>

class Dice {
public:
 Dice(int, int, int, int); // Constructeur
 void roll(); // Méthode pour lancer le dé
private:

int GroupA; // Variable membre pour groupe de LED A
int GroupB; // Variable membre pour groupe de LED B
int GroupC; // Variable membre pour groupe de LED C
int GroupD; // Variable membre pour groupe de LED D

};
#endif

Quelques informations supplémentaires méritant une explication ont été
ajoutées à la définition de la classe. La classe tout entière a été enveloppée
dans la structure suivante :

#ifndef Dice_h
#define Dice_h

...
#endif

Des inclusions multiples étant possibles quand il y a du code imbriqué, un
moyen a été trouvé pour les empêcher et éviter une double compilation.
Cette précaution a pour but de garantir une inclusion unique du fichier
d’en-tête. Les instructions #ifndef, #define et #endif sont des instructions
de prétraitement. #ifndef, qui introduit une compilation conditionnelle, est
la forme abrégée de if not defined qui signifie « si non défini ». Si le terme
Dice_h (nom du fichier d’en-tête avec un tiret bas) – appelé macro – n’a
pas encore été défini, faites-le maintenant et exécutez les instructions dans
le fichier d’en-tête. Si ce dernier était appelé une deuxième fois, la macro
serait placée sous le nom et cette partie de la compilation serait rejetée.

Avez-vous compris pourquoi le constructeur n’indique que le type de don-
née pour les paramètres et pourquoi le nom de la variable correspondante
est absent ? Cela tient au fait que nous n’avons besoin ici que des infor-
mations de prototype. Le code en question apparaît plus tard avec une
extension .cpp dans le fichier de classe.

Le fichier de classe
La véritable mise en œuvre du code est effectuée au moyen du fichier de
classe présentant l’extension .cpp :

Dice myDice();

ou :

Dice myDice(8, 9, 10, 11);

Le compilateur est assez intelligent pour savoir quel constructeur il doit
appeler.

La bibliothèque-dé
Toute cette introduction était nécessaire pour bien vous faire comprendre
la création d’une bibliothèque Arduino. Ce deuxième projet de dé va servir
de base pour constituer une bibliothèque. Il s’agit d’une variante améliorée
avec commande des groupes de LED. Deux fichiers sont donc nécessaires
pour réaliser la bibliothèque.

Fichiers d’une bibliothèque

Déclaration
Fichier

d’en-tête .h

Implémentation
(Mise en œuvre)

Fichier de classe .cpp

Le fichier d’en-tête
Commençons par le fichier d’en-tête, qui ne contient que les informa-
tions de prototype et ne présente aucune information de code explicite.
Occupons-nous d’abord des membres de la classe qui sont nécessaires. Pour
piloter les groupes de LED, il faut quatre broches numériques commandées
par les variables membres:

	● pinGroupA ;

	● pinGroupB ;

	● pinGroupC ;

	● pinGroupD.

Ces informations seront transmises au moment de l’instanciation au
constructeur, qui possède quatre paramètres du type int. Les variables
membres sont déclarées privées (private), car elles ne sont traitées qu’en
interne par une méthode appelée roll, qui n’a aucun argument et qui ne
retourne rien. La classe reçoit le nom évocateur de Dice (dé).

	 174	 Partie II. Les montages

#include <Arduino.h>
#include "Dice.h"
#define WAITTIME 20

// Constructeur paramétré
Dice::Dice(int A, int B, int C, int D) {
	GroupA = A;
	GroupB = B;
	GroupC = C;
	GroupD = D;
	pinMode(GroupA, OUTPUT);
	pinMode(GroupB, OUTPUT);
	pinMode(GroupC, OUTPUT);
	pinMode(GroupD, OUTPUT);
}
// Méthode pour lancer le dé
void Dice::roll() {
	int number = random(1, 7);
	digitalWrite(GroupA, number�2!=0?HIGH:LOW);
	digitalWrite(GroupB, number>1?HIGH:LOW);
	digitalWrite(GroupC, number>3?HIGH:LOW);
	digitalWrite(GroupD, number==6?HIGH:LOW);
	delay(WAITTIME); // Ajouter une courte pause
}

Pour que la liaison vers le fichier d’en-tête précédemment créé soit pos-
sible, référence est faite à ce dernier au moyen de l’instruction include :

#include "Dice.h"

Son intégration intervient lors de la compilation. include est ici également
nécessaire pour pouvoir utiliser ce qu’on appelle les éléments de langage
Arduino. Passons maintenant au code, qui contient la mise en œuvre pro-
prement dite. Commençons par le constructeur :

Dice::Dice(int A, int B, int C, int D) {
	GroupA = A;
	GroupB = B;
	GroupC = C;
	GroupD = D;
	pinMode(GroupA, OUTPUT);
	pinMode(GroupB, OUTPUT);
	pinMode(GroupC, OUTPUT);
	pinMode(GroupD, OUTPUT);
}

Vous remarquerez que la méthode roll est légèrement différente de celle
du montage n° 10. Ici, aucune LED n’a été éteinte avant de commander
l’allumage des nouvelles.

Montage 8. Comment créer une bibliothèque ? 	 175

En effet, et ce n’est pas grave puisque les différents groupes de LED sont
commandés par l’opérateur conditionnel ? que vous rencontrerez dans le
montage n° 9. Cet opérateur retourne soit LOW soit HIGH quand la condition
a été évaluée, si bien que le groupe de LED correspondant a toujours le bon
niveau et n’a pas besoin d’être remis auparavant sur LOW. Une autre chose
susceptible de vous étonner est le préfixe Dice:: qui précède aussi bien le
nom de la structure que la méthode roll. Il s’agit du nom de la classe, qui
permet au compilateur de savoir à quelle classe la définition de la méthode
appartient. Cette dernière est qualifiée par cette notation. L’objet dé que
nous voulons créer devant commander quatre groupes de LED, il est pré-
férable de transmettre ces informations au moment de l’instanciation. Ce
serait bien entendu possible aussi après la génération de l’objet, en utilisant
une méthode distincte que nous appellerions par exemple Init. Mais le
risque est grand que cette étape soit oubliée. C’est pourquoi le constructeur
a été inventé. Voyons maintenant le sketch qui utilise cette bibliothèque.

Création des fichiers nécessaires
Je vous propose de programmer les deux fichiers de la bibliothèque .h et
.cpp indépendamment de l’environnement de développement Arduino.
Il existe pour ce faire de nombreux éditeurs, par exemple Notepad++ ou
Programmers Notepad. Les deux fichiers sont stockés dans un répertoire
au nom évocateur, par exemple Dice, que vous copierez ensuite dans le
dossier des bibliothèques Arduino ensuite :

...\Arduino\libraries

Ce dossier contient les bibliothèques système. Vos bibliothèques person-
nelles seront placées dans le dossier :

C:\Users\<Username>\Documents\Arduino\libraries

L’environnement de développement Arduino est ensuite redémarré et la
programmation du sketch peut commencer.

t Figure 8-8
Les fichiers des
bibliothèques dans le
système de fichiers

	 176	 Partie II. Les montages

Mise en surbrillance de la syntaxe
pour une nouvelle bibliothèque
Des types de données élémentaires (par exemple : int, float ou char) ou
d’autres mots-clés (par exemple : setup ou loop) sont signalés en couleurs
par l’environnement de développement. Il est possible, lors de la créa-
tion de ses propres bibliothèques, de faire connaître à l’IDE des noms de
classes ou de méthodes, pour qu’ils apparaissent alors aussi en couleurs.
Un fichier nommé

keywords.txt

ayant obligatoirement une syntaxe spéciale doit être créé pour que cela
fonctionne.

Commentaires
Des commentaires explicatifs sont introduits par le signe # (dièse) :

Ceci est un commentaire

Types de données et classes (KEYWORD1)
Les types de données, mais aussi les noms de classes figurent en orange
et doivent être définis en respectant la syntaxe suivante :

Nomclasse KEYWORD1

Méthodes et fonctions (KEYWORD2)
Méthodes et fonctions apparaissent en marron et doivent être définies en
respectant la syntaxe suivante :

Méthode KEYWORD2

Constantes (LITERAL1)
Les constantes sont en bleu et sont créées comme suit :

Constante LITERAL1

Montage 8. Comment créer une bibliothèque ? 	 177

Voici maintenant le contenu du fichier keywords.txt de notre
bibliothèque-dé :

#--------------------------------------
Affectation des couleurs pour la bibliothèque Dice
#--------------------------------------
#--------------------------------------
KEYWORD1 pour types de données ou classes
#--------------------------------------
Dice	 KEYWORD1
#--------------------------------------
KEYWORD2 pour méthodes et fonctions
#--------------------------------------
roll KEYWORD2
#--------------------------------------
LITERAL1 pour constantes
#--------------------------------------

Utilisation de la bibliothèque
Le fait que la bibliothèque-dé se trouve dans le répertoire

C:\Users\<Username>\Documents\Arduino\libraries

vous permet de la retrouver dans la dernière entrée du menu.

t Figure 8-9
Importer la bibliothèque-dé

	 178	 Partie II. Les montages

Le terme importer est quelque peu mal venu puisque absolument rien
n’est importé à ce moment précis. Seule la ligne suivante est ajoutée dans
votre fenêtre de sketch :

#include <Dice.h>

La ligne include est impérative pour pouvoir accéder à la fonctionnalité
de la bibliothèque-dé. Comment le compilateur saurait-il sinon à quelle
bibliothèque il doit accéder ? Les différentes bibliothèques disponibles ne
sont pas incluses par l’opération du Saint-Esprit ! Passons maintenant à
l’instanciation, qui élève la définition de classe au statut d’objet réel. L’objet
créé myDice est également appelé variable d’instance. Ce terme revient
souvent dans la littérature.

Dice myDice(8, 9, 10, 11);

Les valeurs transmises 8, 9, 10 et 11 figurent les broches numériques aux-
quelles les groupes de LED sont reliés. Un objet dé a ainsi été initialisé de
manière à pouvoir opérer en interne quand la méthode pour lancer le dé
est appelée. Les arguments sont transmis dans l’ordre indiqué.

Ils sont stockés dans les variables locales A, B, C et D, qui sont à leur tour
transmises aux variables membres GroupA, GroupB, GroupC et GroupD. Vient
ensuite l’appel de la méthode à condition qu’un potentiel HIGH soit appli-
qué à l’entrée numérique, appel qui peut se faire par le bouton-poussoir
raccordé.

void setup() {
	pinMode(13, INPUT); // Pas obligatoire – oui, mais pourquoi !?
}

void loop() {
 if(digitalRead(13) == HIGH)
 myDice.roll();
}

On voit ici aussi que la mise en surbrillance de la syntaxe fonctionne puisque
le nom de classe et la méthode sont en couleurs. La méthode roll étant

Montage 8. Comment créer une bibliothèque ? 	 179

un membre de la définition de classe myDice, une liaison vers la classe doit
être établie en cas d’appel de celle-ci. Un appel par

roll();

provoquerait ici une erreur. La relation est établie par l’opérateur point
inséré entre classe et méthode et faisant office de lien.

Importation de bibliothèques
Il est aussi possible de gérer les bibliothèques autrement. Nous avons créé
un dossier nommé Dice pour la bibliothèque-dé à l’intérieur duquel nous
avons enregistré les fichiers :

	● dice.h

	● dice.h

	● keywords.txt

Puis nous avons copié ce dossier dans le répertoire

C:\Users\<Username>\Documents\Arduino\libraries

afin qu’il soit accessible à l’aide de la commande Sketch | Import Library
après le redémarrage de l’IDE Arduino. Vous avez certainement remar-
qué qu’au sommet du menu figure une commande qui permet d’ajouter
d’autres bibliothèques :

t Figure 8-10
Ajouter une bibliothèque

	 180	 Partie II. Les montages

En sélectionnant cette commande, vous avez la possibilité d’intégrer une
bibliothèque compressée, que vous aurez préalablement téléchargée sur
Internet, par exemple, dans l’environnement Arduino ou dans le système
de fichiers. Il n’est pas nécessaire de décompresser préalablement le fichier,
car l’IDE s’en charge automatiquement.

Vous trouverez plus d’informations sur l’importation de bibliothèques à
l’adresse suivante :

https://www.arduino.cc/en/Guide/Libraries

Qu’avez-vous appris ?
	● Je reconnais que les choses sont devenues un peu plus difficiles dans

ce projet, mais le jeu en vaut la chandelle. Vous en savez maintenant
plus sur le paradigme de programmation orientée objet.

	● Vous savez bien faire la différence entre une classe et un objet.

	● Dans la POO, méthode remplace fonction et variable membre remplace
variable.

	● Le constructeur est une méthode avec une tâche particulière. Il initia-
lise l’objet de manière à obtenir un état de départ bien défini.

	● Les différents modificateurs d’accès public ou private réglementent
l’accès aux membres de l’objet, private assurant l’encapsulation des
membres.

	● Vous connaissez les informations de code qu’un fichier d’en-tête ou
.cpp doit contenir.

	● L’objet instancié à partir d’une classe est également appelé variable
d’instance.

	● Un opérateur point, ajouté après le nom de la variable d’instance et
servant quasiment de lien entre les deux, est utilisé pour accéder aux
variables membres et aux méthodes.

	● Vous savez comment créer une bibliothèque Arduino et à quel endroit
copier celle-ci dans le système de fichiers pour pouvoir y accéder à
tout moment.

	● Vous avez enfin appris à configurer certaines méthodes en tant que
mots-clés avec un marquage couleur. L’enregistrement s’effectue à un
emplacement auquel se trouvent habituellement aussi les sketches,
mais à l’intérieur du dossier libraries.

	● Enfin, vous avez vu comment configurer certaines méthodes en tant
que mots-clés en couleur.

	 181

Montage

9Les feux de circulation

Dans le premier montage, nous avions vu comment faire clignoter une
seule LED. Maintenant, nous allons en allumer trois. Elles ne brilleront
pas toutes d’un coup, bien sûr ! En fait, nous allons construire des feux
de circulation. La commande s’effectue par phases que nous étudierons
en détail. Ensuite, nous compléterons nos feux de circulation par des feux
pour piétons. Voyons d’abord la liste des composants.

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 9-1
Liste des composants

2 LED rouges

1 LED orange

2 LED vertes

5 résistances de 330 Ω

1 bouton-poussoir miniature

1 résistance de 10 kΩ

	 182	 Partie II. Les montages

Phases de signalisation
Voyons d’abord les différentes phases de signalisation possibles :

Figure 9-1 u
Les différentes phases

de signalisation

Les différentes phases sont parcourues de gauche à droite, le cycle repre-
nant ensuite au début. Chacune phase a une durée d’affichage définie pou-
vant être ajustée individuellement. Voici un exemple de durées d’allumage.

Tableau 9-2 u
Phases avec durées

d’allumage

1re phase 2e phase 3e phase 4e phase

Durée : 10 s Durée : 2 s Durée : 10 s Durée : 3 s

Schéma
Examinons le schéma de la page suivante.

Montage 9. Les feux de circulation 	 183

t Figure 9-2
Schéma

Chaque LED est commandée par une résistance série de 330 Ω. Le calcul
d’une résistance série pour une LED ne vous pose plus de problème.

Réalisation du circuit
L’illustration suivante présente la réalisation du circuit sur une plaque
d’essais :

t Figure 9-3
Réalisation du circuit

Les sorties numériques 5, 6 et 7 sont raccordées à l’aide de cavaliers flexibles
aux résistances série afin de commander les LED.

	 184	 Partie II. Les montages

Sketch Arduino
Voici le code du sketch pour commander les feux de circulation :

const int ledPinRed = 7;	 // Broche 7 commande la LED rouge
const int ledPinOrange = 6;	// Broche 6 commande la LED orange
const int ledPinGreen = 5;	 // Broche 5 commande la LED verte

#define DELAY1 10000 // Pause 1, 10 secondes
#define DELAY2 2000 // Pause 2, 2 secondes
#define DELAY3 3000 // Pause 3, 3 secondes

void setup() {
 pinMode(ledPinRed, OUTPUT);	 // Broche comme sortie
 pinMode(ledPinOrange, OUTPUT);	 // Broche comme sortie
 pinMode(ledPinGreen, OUTPUT);	 // Broche comme sortie
}

void loop() {
 digitalWrite(ledPinRed, HIGH);	 // Allumage LED rouge
 delay(DELAY1);	 // Attendre 10 secondes
 digitalWrite(ledPinOrange, HIGH);	// Allumage LED orange
 delay(DELAY2);	 // Attendre 2 secondes
 digitalWrite(ledPinRed, LOW);	 // Extinction LED rouge
 digitalWrite(ledPinOrange, LOW);	 // Extinction LED orange
 digitalWrite(ledPinGreen, HIGH);	 // Allumage LED verte
 delay(DELAY1);	 // Attendre 10 secondes
 digitalWrite(ledPinGreen, LOW);	 // Extinction LED verte
 digitalWrite(ledPinOrange, HIGH);	// Allumage LED orange
 delay(DELAY3);	 // Attendre 3 secondes
 digitalWrite(ledPinOrange, LOW);	 // Extinction LED orange
}

Peut-être avez-vous remarqué quelque chose d’inhabituel dans la défini-
tion des broches au début du sketch. J’ai déjà présenté les avantages de ce
mode d’écriture lors du premier montage. Pourtant, il semble y avoir ici
trois formes d’écritures différentes. Voyons cela de plus près. Supposons
que nous voulions définir la broche 13 au début du sketch. Nous pourrions
employer les formulations suivantes :

// Définition d’une variable (occupe de la RAM)
int ledPin = 13;
// Définition d’une constante (n’occupe pas de RAM)
const int ledPin = 13;
// Directive de prétraitement (n’occupe pas de RAM)
#define LEDPIN 13

Les différences résident dans les détails. Dans la première variante, une
variable du type de donnée Integer est définie, ce qui occupe de la place

Montage 9. Les feux de circulation 	 185

dans la mémoire vive. Quand les sketches sont assez courts, cela ne pose
pas trop de problèmes. D’ailleurs, de nombreux exemples utilisent cette
possibilité. La seconde variante utilise aussi le mot-clé const, ce qui signifie
qu’une constante est définie. Contrairement à la méthode précédente, la
valeur ne peut alors pas être modifiée. Il s’agit presque d’une variable de
type lecture seule qui n’occupe pas d’espace dans la mémoire vive. C’est
donc un bon choix pour économiser de la capacité de stockage. Dans le
dernier cas, il s’agit d’une directive de prétraitement qui ne doit pas se
terminer par un point-virgule. Cette directive remplace chaque occur-
rence de l’indicateur défini LEDPIN à l’intérieur du sketch par la séquence
de caractères suivante 13 et elle n’utilise pas non plus de mémoire. Nous
pouvons donc en conclure que la deuxième méthode employant le mot-clé
const est le meilleur choix.

Vous trouverez de plus amples informations aux adresses suivantes :

https://www.arduino.cc/en/Reference/int

https://www.arduino.cc/en/Reference/Const

https://www.arduino.cc/en/pmwiki.php?n=Reference/Define

Revue de code
Nous utilisons des constantes numériques ou symboliques pour pouvoir
modifier facilement certaines valeurs du sketch. Les modifications sont
effectuées de façon centralisée, ce qui présente l’avantage qu’elles sont
appliquées automatiquement au reste du code. Cette méthode réduit le
travail de saisie, tout en rendant le code plus lisible et en réduisant le risque
d’erreurs qui pourraient se glisser dans le code.

En fait, l’instruction #define n’est pas une véritable instruction, mais une
directive de prétraitement. Rappelez-vous la directive de prétraitement
#include, reconnaissable au point-virgule manquant en fin de ligne qui
caractérise normalement la fin d’une instruction. Quand le compilateur
entreprend de traduire le code source, une partie spéciale de celui-ci appe-
lée préprocesseur suit les directives de prétraitement, qui sont toujours
introduites par le signe dièse #. Vous croiserez encore d’autres directives
de ce type au cours de ce livre. La directive #define permet d’utiliser des
noms symboliques et des constantes. La syntaxe pour l’utiliser est celle du
haut de la page suivante.

	 186	 Partie II. Les montages

Figure 9-4 u
La directive #define

#define DELAY1 10000

Directive Identi�ant Valeur

Cette ligne agit comme suit : partout où le compilateur trouve l’identifiant
DELAY1 dans le code du sketch, il le remplace par la valeur 10000. Vous pou-
vez vous servir de la directive #define partout où vous souhaitez utiliser
des constantes dans le code. J’ai déjà soulevé ce problème auparavant :
pas de magic numbers !

Mais pourquoi n’avons-nous pas utilisé #define partout où des broches ont
été définies ? Ce sont pourtant également des constantes qui ne varient
plus au cours du sketch.

Vous avez raison ! J’aurais pu le faire partout et certains sketches Arduino,
que vous trouverez sur Internet, emploient ce mode d’écriture. Au lieu de

int ledPinRed = 7;

on peut alors écrire :

#define ledPinRed 7

Le sketch agit comme avant et cela ne change rien que vous utilisiez la
première ou la seconde variante – mais il est important de vous en tenir
à celle choisie et de ne pas en changer au gré de votre humeur. Pour ma
part, j’emploie dans mon sketch la déclaration et l’initialisation de variables
quand il s’agit de broches, et la directive #define pour les constantes.
Revenons à notre sketch et voyons comment il fonctionne.

Pour que les feux de signalisation fonctionnent correctement, il faut non
seulement penser à allumer les diverses LED, mais aussi à les éteindre.
Le traitement s’effectue en continu, de haut en bas, à l’intérieur de la
fonction loop. Examinons les différentes phases avec leurs commandes
dans le sketch.

Montage 9. Les feux de circulation 	 187

 Figure 9-5
Commande des différentes
phases de signalisation

Au passage de la phase 1 à la phase 2, seule une LED orange vient s’ajouter
à la LED rouge. La rouge continue à briller. Mais au passage de la phase 2
à la phase 3, veillez à ce que les LED rouge et orange s’éteignent avant que
la LED verte ne s’allume. Ensuite, au passage de la phase 4 à la phase 1,
lorsque les phases recommencent au début, la LED orange doit s’éteindre.
Jetez un coup d’œil au chronogramme pour voir comment les LED sont
allumées à tour de rôle pendant les différentes phases.

t Figure 9-6
Chronogramme des feux
de circulation

 digitalWrite(ledPinRed, HIGH);	 // Allumage LED rouge
 delay(DELAY1);	 // Attendre 10 secondes
 digitalWrite(ledPinOrange, HIGH);	// Allumage LED orange
 delay(DELAY2);	 // Attendre 2 secondes
 digitalWrite(ledPinRed, LOW);	 // Extinction LED rouge
 digitalWrite(ledPinOrange, LOW);	 // Extinction LED orange
 digitalWrite(ledPinGreen, HIGH);	 // Allumage LED verte
 delay(DELAY1);	 // Attendre 10 secondes
 digitalWrite(ledPinGreen, LOW);	 // Extinction LED verte
 digitalWrite(ledPinOrange, HIGH);	// Allumage LED orange
 delay(DELAY3);	 // Attendre 3 secondes
 digitalWrite(ledPinOrange, LOW);	 // Extinction LED orange

	 188	 Partie II. Les montages

Variante utilisant le port B
Examinons une variante intéressante qui met en pratique les connaissances
que nous avons acquises sur la commande directe du port à l’aide du registre
afin de manipuler directement les différentes broches. Nous utilisons de
nouveau le port B et nous modifions le circuit comme illustré :

Figure 9-7 u
Schéma

Le code du sketch de commande est le suivant :

#define DELAY1 10000 // Pause 1, 10 secondes
#define DELAY2 2000 // Pause 2, 2 secondes
#define DELAY3 3000 // Pause 3, 3 secondes

void setup() {
 DDRB = 0b00000111; // Broches 8, 9, 10 comme sortie
}

void loop() {
 PORTB = 0b00000100;	 // Mise de la broche 10 au niveau HIGH (rouge)
 delay(DELAY1);	 // Attendre 10 secondes
 PORTB = 0b00000110;	 // Mise des 10,9 au niveau HIGH (rouge, orange)
 delay(DELAY2);	 // Attendre 2 secondes
 PORTB = 0b00000001;	 // Mise de la broche 8 au niveau HIGH (vert)
 delay(DELAY1);	 // Attendre 10 secondes
 PORTB = 0b00000010;	 // Mise de la broche 9 au niveau HIGH (orange)
 delay(DELAY3);	 // Attendre 3 secondes
}

Les trois bits inférieurs sont chargés de commander les trois LED. L’avantage
de ce mode de programmation est évident : une seule commande PORTB
permet de modifier le niveau de plusieurs broches. Il n’est donc plus néces-
saire de s’assurer que les autres LED sont éteintes avant d’en allumer une
nouvelle.

Montage 9. Les feux de circulation 	 189

Des feux de circulation interactifs
Jusque-là, le sketch était relativement simple. Nous allons donc le modifier
légèrement. Imaginons maintenant des feux pour piétons installés sur un
tronçon droit d’une route nationale. Il n’est pas utile que les phases pour
les automobilistes changent sans cesse si aucun piéton ne veut traver-
ser la voie de circulation. Comment les feux doivent-ils fonctionner avec
leurs phases ? Quel matériel supplémentaire faut-il et comment faire pour
étendre la logique ? Voici ce qu’il faut prendre en compte.

	● Si aucun piéton ne se présente pour traverser la route, le feu reste vert
pour les automobilistes et rouge pour les piétons.

	● Si un piéton appuie sur le bouton gérant les feux pour traverser en
toute sécurité, le feu passe à l’orange puis au rouge pour les automo-
bilistes. Le feu passe ensuite au vert pour les piétons. Après un temps
prédéfini, le feu repasse au rouge pour les piétons, et le feu rouge
passe à l’orange puis au vert pour les automobilistes.

La situation de départ ressemble à ceci :

1re phase

Automobiliste Piéton Explications

Ces deux signaux lumineux restent allumés
jusqu’à ce qu’un piéton s’approche et appuie sur
le bouton gérant les feux. C’est alors seulement
que les changements de phase se déclenchent et
font en sorte que le feu passe au rouge pour les
automobilistes et au vert pour les piétons.

Examinons cela de plus près.

2e phase

Automobiliste Piéton Explications

Le changement de phase est déclenché par
l’appui sur le bouton gérant les feux. Le feu
passe à l’orange pour les automobilistes, ce qui
signifie qu’il va passer au rouge sous peu.

Durée : 3 s

	 190	 Partie II. Les montages

3e phase

Automobiliste Piéton Explications

Pour des raisons de sécurité, le feu est d’abord
rouge pour les automobilistes et pour les
piétons. Cela permet aux automobilistes de
libérer le cas échéant le passage piéton.

Durée : 1 s

4e phase

Automobiliste Piéton Explications

Le feu passe au vert pour le piéton après un
court moment.

Durée : 10 s

5e phase

Automobiliste Piéton Explications

Le feu repasse au rouge pour les piétons.

Durée : 1 s

Montage 9. Les feux de circulation 	 191

6e phase

Automobiliste Piéton Explications

Le feu passe du rouge à l’orange pour les
automobilistes, ce qui les avertit que le feu va
bientôt passer au vert.

Durée : 2 s

7e phase

Automobiliste Piéton Explications

Le feu repasse au vert pour les automobilistes et
au rouge pour les piétons. Cette dernière phase
est semblable à la première.

Durée : jusqu’au prochain appui sur le bouton

Schéma
Le schéma est un peu plus complexe.

t Figure 9-8
Circuit des feux de
circulation interactifs

	 192	 Partie II. Les montages

Réalisation du circuit
Sur la plaque d’essais sont venues s’ajouter les deux LED supplémentaires
avec les résistances série, ainsi que le bouton-poussoir avec la résistance
pull-up :

Figure 9-9 u
Réalisation du circuit

Le sketch élargi est le suivant :

#define DELAY0 10000 // Pause 0, 10 secondes
#define DELAY1 1000 // Pause 1, 1 seconde
#define DELAY2 2000 // Pause 2, 2 secondes
#define DELAY3 3000 // Pause 3, 3 secondes
int ledPinRedCar = 7; �// La broche 7 commande la LED rouge

// (feux pour les automobilistes)
int ledPinOrangeCar = 6; // La broche 6 commande la LED orange
int ledPinGreenCar = 5; // La broche 5 commande la LED verte
int ledPinRedWalk = 3; �// La broche 3 commande la LED rouge

// (feux pour les piétons)
int ledPinGreenWalk = 2; // La broche 2 commande la LED verte
int buttonPinLight = 8; // Bouton gérant les deux reliés à la broche 8
int buttonLightValue = LOW; �// Variable pour l’état du bouton

// gérant les feux

void lightChange() {
 digitalWrite(ledPinGreenCar, LOW);
 digitalWrite(ledPinOrangeCar, HIGH); delay(DELAY3);
 digitalWrite(ledPinOrangeCar, LOW);
 digitalWrite(ledPinRedCar, HIGH); delay(DELAY1);
 digitalWrite(ledPinRedWalk, LOW);
 digitalWrite(ledPinGreenWalk, HIGH); delay(DELAY0);
 digitalWrite(ledPinGreenWalk, LOW);
 digitalWrite(ledPinRedWalk, HIGH); delay(DELAY1);
 digitalWrite(ledPinOrangeCar, HIGH); delay(DELAY2);
 digitalWrite(ledPinRedCar, LOW);

Montage 9. Les feux de circulation 	 193

 digitalWrite(ledPinOrangeCar, LOW);
 digitalWrite(ledPinGreenCar, HIGH);
}

void setup() {
 pinMode(ledPinRedCar, OUTPUT);	 // Broche comme sortie
 pinMode(ledPinOrangeCar, OUTPUT);	 // Broche comme sortie
 pinMode(ledPinGreenCar, OUTPUT);	 // Broche comme sortie
 pinMode(ledPinRedWalk, OUTPUT);	 // Broche comme sortie
 pinMode(ledPinGreenWalk, OUTPUT);	 // Broche comme sortie
 pinMode(buttonPinLight, INPUT);	 // Broche comme entrée
 digitalWrite(ledPinGreenCar, HIGH);	// Valeurs de départ (vert
		 // pour automobilistes)
 digitalWrite(ledPinRedWalk, HIGH);	 // Valeurs de départ (rouge
		 // pour piétons)
}

void loop() {
 // Lire l’état du bouton gérant les feux dans la variable
 buttonLightValue = digitalRead(buttonPinLight);
 // Si bouton pressé, fonction appelée
 if(buttonLightValue == HIGH)
 lightChange();
}

Le nombre de ports nécessaires est passé à 6, mais cela ne signifie pas
pour autant que les choses sont devenues plus difficiles. Vous devez seu-
lement soigner un peu plus le câblage et l’affectation des broches. Les
différentes broches sont programmées comme entrées ou sorties, et la
valeur de démarrage LOW est attribuée à la variable buttonLightValue au
sein de la fonction setup. Parce qu’aucun changement de phase ne survient
tant qu’on n’appuie pas sur le bouton, le circuit doit présenter un état de
départ bien défini. Aussi les feux pour automobilistes et piétons sont-ils
initialisés par les deux lignes :

digitalWrite(ledPinGreenCar, HIGH);
digitalWrite(ledPinRedWalk, HIGH);

Au sein de la fonction loop, l’état du bouton-poussoir est constamment
interrogé par la fonction digitalRead et le résultat est affecté à la variable
buttonLightValue. L’évaluation intervient immédiatement dans le test de
la structure de contrôle if :

if(buttonLightValue == HIGH)
 lightChange();

En cas de niveau HIGH, on passe directement à la fonction lightChange, qui
déclenche alors les changements de phase.

	 194	 Partie II. Les montages

Et que se passe-t-il si nous appuyons une deuxième fois sur le bou-
ton-poussoir ? Le déroulement s’en trouve-t-il d’une manière ou d’une
autre perturbé ?

Cette question vient à point nommé. Récapitulons le déroulement du
sketch. L’organigramme suivant devrait répondre à la question.

Figure 9-10 u
Appel de la fonction

lightChange

Bouton-
poussoir
pressé

Non

Oui

loop

lightChange

Comme vous pouvez le voir, l’état du bouton-poussoir est constamment
interrogé et évalué en début de traitement dans la fonction loop. Ce sont
les seules étapes de traitement dans cette fonction. Elle n’a donc rien
d’autre à faire que d’observer l’état du bouton-poussoir et de bifurquer
dans la fonction lightChange quand le niveau passe de LOW à HIGH. Une fois
la fonction appelée, les divers changements de phase sont lancés et les
phases sont maintenues par différents appels de la fonction delay. Nous
venons alors tout juste quitter la fonction loop. Un nouvel appui sur le
bouton-poussoir ne serait donc pas enregistré par la logique, car la fonction
digitalRead n’est plus constamment appelée. Il ne le serait qu’après avoir
quitté la fonction lightChange.

Figure 9-11 u
Appel et retour

Montage 9. Les feux de circulation 	 195

Avant de passer au schéma, voici encore un chronogramme montrant les
différentes durées d’allumage l’une par rapport à l’autre. La situation de
départ nous montre que le feu est vert pour les automobilistes et rouge pour
les piétons. Un piéton ayant l’intention de traverser la route à un endroit
supposé plus sûr appuie sur le bouton gérant les feux, ce qui amorce les
changements de phase.

t Figure 9-12
Chronogramme des feux
interactifs

Autre sketch élargi
Je vais maintenant modifier encore un peu le sketch gérant les feux de cir-
culation, afin que vous fassiez travailler davantage votre matière grise. Dans
la programmation du circuit pour feux de circulation, j’ai toujours oublié
d’éteindre l’une ou l’autre LED lors d’un changement de phase avant d’al-
lumer la suivante lors du premier essai, ce qui m’a gêné. J’ai donc imaginé
de configurer plus simplement l’allumage et l’extinction des LED. Certes,
cela demande un peu de préparation, mais peut s’avérer utile pour vos
montages à venir. Mais avant de commencer, je dois d’abord vous parler un
peu des bits et des octets. Le circuit ne change pas. L’ordinateur et la carte
Arduino stockent toutes les données au niveau le plus bas de la mémoire
sous forme de bits et d’octets (8 bits). J’ai déjà abordé ce thème dans le
montage n° 7 sur l’extension de port numérique. En voici les grandes lignes.

128

1
64

0
32

0
16

1
8

1
4

1
2

0
1

1

2021222324252627Puissances

Valeur

Combinaison
de bits

t Figure 9-13
Combinaison binaire
pour le nombre entier 157

	 196	 Partie II. Les montages

Le nombre qui s’écrit en binaire 10011101 s’écrit en décimal :

1 × 20 + 0 × 21 + 1 × 22 + 1 × 23 + 1 × 24 + 0 × 25 + 0 × 26 + 1 × 26 = 157
10

Il suffit maintenant que certains bits de cet octet servent à commander
les différentes LED de nos feux de circulation pour pouvoir allumer ou
éteindre toutes les LED au moyen d’une seule valeur exprimée en décimal.
On pourrait faire encore plus clair :

Figure 9-14 u
Quel bit pour quelle LED ? 4

1
1

1
2

0
8

1
16

1
128

1
64

0
32

0

Ne sont pas nécessaires

On voit que 5 bits de cet octet suffisent à commander les feux. Mais com-
ment fait-on au juste ? J’ai reporté dans le tableau 9-3 les nombres déci-
maux correspondants, que j’ai déterminés à partir des différentes phases.

Tableau 9-3 u
Nombres décimaux

pour commander les LED

Piéton Automobiliste

LED Verte Rouge Verte Orange Rouge Nombre
décimal

Poids 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

Phase 1 0 1 1 0 0 12

Phase 2 0 1 0 1 0 10

Phase 3 0 1 0 0 1 9

Phase 4 1 0 0 0 1 17

Phase 5 0 1 0 0 1 9

Phase 6 0 1 0 1 1 11

Reste à trouver, à partir des nombres décimaux correspondants, quel bit
commande une LED particulière. C’est possible avec l’opérateur ET bit
à bit &. Le tableau suivant montre que le résultat n’est 1 que si les deux
opérandes ont 1 pour valeur.

Montage 9. Les feux de circulation 	 197

Opérande 1 Opérande 2 Opération ET t Tableau 9-4
Opération ET bit à bit1 0 0

0 0 0

0 1 0

1 1 1

Voici un exemple : vérifions que la LED rouge des feux pour piétons s’allume
pendant la phase 1 de notre commande pour feux de circulation.

Piéton Automobiliste t Tableau 9-5
Contrôle de
correspondance du bit

LED Verte Rouge Verte Orange Rouge Nombre
décimal

Poids 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

Phase 1 0 1 1 0 0 12

Opérande 0 1 0 0 0 8

Résultat 0 1 0 0 0 8

Le deuxième opérande avec la valeur décimale 8 sert en quelque sorte de
filtre. Il vérifie, seulement dans la position du bit de poids 23, qu’un 1 se
trouve bien dans le premier opérande. C’est le cas dans notre exemple
et le résultat est 8. Le tableau suivant donne les nombres décimaux pour
lesquels des opérations ET bit à bit doivent être effectuées avec les valeurs
provenant des différentes phases pour déterminer l’état voulu de la LED.

LED Valeur du 2e opérande t Tableau 9-6
Valeurs pour déterminer
les bits à 1 ou à 0

LED rouge (automobiliste) 1

LED orange (automobiliste) 2

LED verte (automobiliste) 4

LED rouge (piéton) 8

LED verte (piéton) 16

Nous nous servons de l’opérateur conditionnel ? pour la vérification. Il s’agit
d’une forme d’évaluation spéciale d’une expression. La syntaxe générale
est la suivante.

Condition?Instruction1:Instruction2 t Figure 9-15
Opérateur conditionnel ?

	 198	 Partie II. Les montages

Quand l’exécution du programme arrive à cette ligne, la condition est
d’abord évaluée. Si le résultat est vrai, Instruction1 est exécutée, sinon c’est
Instruction2 qui l’est. Pour commander toutes les LED avec cette structure,
les lignes de code suivantes doivent être écrites, le nombre décimal pour
commander les LED étant mémorisé dans la variable lightValue.

 digitalWrite(ledPinRedCar, (lightValue&1) == 1?HIGH:LOW);
 digitalWrite(ledPinOrangeCar, (lightValue&2) == 2?HIGH:LOW);
 digitalWrite(ledPinGreenCar, (lightValue&4) == 4?HIGH:LOW);
 digitalWrite(ledPinRedWalk, (lightValue&8) == 8?HIGH:LOW);
 digitalWrite(ledPinGreenWalk, (lightValue&16)==16?HIGH:LOW);

Ces 5 lignes de code permettent de commander l’état (allumé ou éteint)
des 5 LED.

Vous vous demandez peut-être comment on obtient les différentes durées
d’allumage des diverses phases de signalisation, car on ne voit pas l’ins-
truction delay qui sert à définir les pauses.

Effectivement, aussi ces lignes de code sont-elles insérées dans une fonc-
tion à part et complétées par lightValue et une deuxième valeur pour la
fonction delay. Cela donne :

void putLEDs(int lightValue, int pause) {
 digitalWrite(ledPinRedCar, (lightValue&1) == 1?HIGH:LOW);
 digitalWrite(ledPinOrangeCar, (lightValue&2) == 2?HIGH:LOW);
 digitalWrite(ledPinGreenCar, (lightValue&4) == 4?HIGH:LOW);
 digitalWrite(ledPinRedWalk, (lightValue&8) == 8?HIGH:LOW);
 digitalWrite(ledPinGreenWalk, (lightValue&16)==16?HIGH:LOW);
 delay(pause);
}

Pour commander les différentes phases de signalisation, il ne vous reste
plus qu’à appeler cette fonction avec les valeurs correspondantes qui
figurent dans le tableau 9-3. Les appels sont alors les suivants :

void lightChange() {
 putLEDs(10, 2000);
 putLEDs(9, 1000);
 putLEDs(17, 10000);
 putLEDs(9, 1000);
 putLEDs(11, 2000);
 putLEDs(12, 0);
}

On voit que la fonction putLEDs est appelée dans la fonction lightChange.
Regardons maintenant les choses de plus près à l’aide d’un exemple. La
fonction présentant plusieurs paramètres, il est certainement utile de savoir
dans quel ordre ils sont transmis lors de l’appel.

Montage 9. Les feux de circulation 	 199

void putLEDs(int lightValue, int pause)
{
 // ...
}

L’ordre de transmission des arguments 10 et 2000 aux paramètres de la
fonction putLEDs est exactement celui dans lequel vous les avez écrits entre
parenthèses. Les paramètres de la fonction sont définis par les variables
locales lightValue et pause, dans lesquelles les valeurs transmises sont
copiées.

ATTENTION À L’ORDRE DES ARGUMENTS
Respectez impérativement l’ordre des arguments lors de l’appel de la fonction.
Cela ne ferait pas planter le sketch, mais le circuit ne réagirait pas comme
prévu. Il faut donc que :
•	le nombre des arguments coïncide avec celui des paramètres ;
•	les types de données des arguments transmis correspondent à ceux des
paramètres ;
•	l’ordre soit respecté lors de l’appel.

Nous avons employé encore une fois l’expression « variable locale ». Mais
avez-vous bien saisi la différence entre variable locale et variable globale ?

La différence est toute simple. Les variables globales sont déclarées et ini-
tialisées en début de sketch et sont visibles partout, même à l’intérieur des
fonctions, pendant le fonctionnement. La ligne de code suivante montre
une variable globale de notre sketch :

int ledPinRedCar = 7; �// Broche 7 commande la LED rouge (feux pour
// les automobilistes)

// ...

Celle-ci est utilisée plus tard dans la fonction setup. Elle y est donc visible
et vous pouvez y accéder.

void setup() {
 pinMode(ledPinRedCar, OUTPUT); // Broche comme sortie
}

Les variables locales sont déclarées ou initialisées dans des fonctions ou,
par exemple, dans une boucle for. Elles ont une durée de vie limitée et ne
sont visibles que dans la fonction ou le bloc d’exécution. « Durée de vie »
signifie qu’une zone spéciale est mise à la disposition des variables locales
lorsque la fonction est appelée dans la mémoire. Une fois la fonction quit-

	 200	 Partie II. Les montages

tée, ces variables ne sont plus utiles et la mémoire est libérée. Une variable
locale n’est jamais visible hormis dans la fonction où elle a été déclarée et
elle ne peut pas non plus être utilisée depuis l’extérieur.

Mais qu’en est-il des valeurs définies avec #define au début du sketch ? Quel
comportement ont-elles ?

Vous pouvez aussi les considérer comme des définitions globales qui sont
visibles et accessibles partout dans le sketch. Maintenant que vous connais-
sez la directive #define, je peux vous dire que des constantes telles que HIGH,
LOW, INPUT ou OUTPUT – et de nombreuses autres encore – ont été également
définies par ces directives.

Dans le répertoire suivant :

...\Arduino\hardware\arduino\avr\cores\arduino

vous trouverez, entre autres, un fichier nommé Arduino.h. Ce fichier de
l’EDI d’Arduino contient beaucoup de définitions importantes, notamment
celles dont je viens de parler. En voici un court extrait :

Cela ne vous rappelle rien ? Vous en saurez bientôt davantage sur ce qu’est
un fichier d’en-tête. Contentez-vous pour l’instant de savoir qu’il est intégré
par le compilateur dans le projet et que toutes les définitions qu’il contient
sont globales et disponibles dans le sketch.

Montage 9. Les feux de circulation 	 201

Problèmes courants
Si les LED ne s’allument pas les unes après les autres, débranchez le port
USB de la carte pour plus de sécurité et vérifiez ce qui suit.

	● Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

	● Pas de court-circuit éventuel ?

	● Les différentes LED sont-elles correctement branchées ? La polarité
est-elle correcte ?

	● Les résistances ont-elles bien les bonnes valeurs ?

	● Le code du sketch est-il correct ?

	● Le bouton-poussoir est-il correctement câblé ? Vérifiez encore une fois
les contacts en question avec un testeur de continuité.

Qu’avez-vous appris ?
	● Vous avez découvert comment évaluer le niveau d’une sortie numé-

rique à l’aide de la fonction digitalRead.

	● Vous avez réalisé un circuit pour feux de circulation à la fois simple,
car il lance automatiquement les différents changements de phase
indépendamment des influences externes, mais aussi interactif car il
réagit avec un capteur (ici, un bouton-poussoir) à des impulsions de
l’extérieur et déclenchant alors seulement les changements de phase.

	● Utiliser la directive de prétraitement #define ne devrait plus vous
poser de problèmes. Elle est employée la plupart du temps là où des
constantes sont définies. Le compilateur remplace partout dans le code
le nom de l’identifiant par l’expression correspondante.

	● L’opérateur conditionnel ? peut être employé pour retourner diffé-
rentes valeurs en fonction de l’évaluation d’une expression. Le mode
d’écriture est vraiment compact et n’est pas toujours immédiatement
compréhensible.

	● Vous avez appris à transmettre plusieurs valeurs à une fonction, et
vous savez en détail à quoi il faut faire attention.

	● Vous connaissez la différence entre variable locale et variable globale,
et vous savez ce que visibilité et durée de vie signifient dans ce cas.

	 202	 Partie II. Les montages

Cadeau !
Je vous propose ici une carte à construire facilement, qui vous servira à
réaliser le circuit pour feux de circulation avec feux pour piétons.

Figure 9-16 u
Circuit pour feux de

circulation avec feux pour
piétons

	 203

Montage

10Le dé électronique

En microélectronique, il existe de multiples applications de jeux de dés ou
de plateaux connus dont l’adaptation ne manquera pas de vous divertir. La
construction d’un circuit et la programmation d’un dé sont de beaux projets
qui nous permettront d’aborder différentes problématiques. Et même si
cela paraît assez simple, vous devrez néanmoins éviter de tomber dans
quelques pièges qui seront autant d’occasions d’apprentissage.

Vous apprendrez notamment à utiliser des tableaux bidimensionnels.
Vous utiliserez le moniteur série non seulement pour saisir le contenu de
variables, mais aussi pour rechercher des erreurs dans le code. Enfin, je
vous expliquerai comment calculer la résistance lorsque deux LED sont
branchées l’une derrière l’autre.

Qu’est-ce qu’un dé électronique ?
Bien que les derniers montages vous aient donné
quelques bases pour programmer la carte Arduino,
vous pensez sûrement être encore loin du compte…
Aussi allons-nous appliquer, approfondir et élargir nos
connaissances en étudiant quelques circuits intéres-
sants. La construction d’un dé électronique est tou-

jours plaisante. Il y a quelques années de cela, quand les microprocesseurs
n’existaient pas ou étaient hors de prix, on utilisait plusieurs circuits inté-
grés. Vous trouverez pour ce faire de nombreuses instructions de bricolage
sur Internet.

Notre but est ici de commander le dé électronique avec la seule carte
Arduino. Tout le monde a déjà joué aux dés, que ce soit au 421, au 5 000
ou au Yams. Aussi notre prochain circuit sera celui d’un dé électronique.

	 204	 Partie II. Les montages

Il se compose d’une unité d’affichage avec sept LED et un bouton-poussoir
pour lancer le dé. Voici d’abord la disposition des LED qui est celle des
points d’un véritable dé. Les points portent tous un numéro pour mieux
se repérer au moment de commander les LED. Le numéro 1 se trouve en
haut à gauche, la numérotation se poursuivant vers le bas puis vers la droite
jusqu’au numéro 7 qui se trouve en bas à droite.

Figure 10-1 u
Numérotation des

points du dé

Même si un dé ne comporte habituellement que six faces, nous avons
néanmoins besoin de sept LED pour pouvoir représenter les six résultats
pouvant être produits par un dé. Bien qu’il soit possible de représenter le
quatre avec les quatre LED des coins, par exemple, nous avons aussi besoin
de la LED au milieu du circuit pour le un, le trois et le cinq.

Notre construction doit comporter un bouton-poussoir qui lance le dé.
Lorsqu’on appuie dessus, toutes les LED clignotent irrégulièrement et
quand on le relâche, l’affichage s’arrête sur une certaine combinaison de
LED, laquelle représente le nombre obtenu. Les différentes combinaisons
de points sont répertoriées dans le tableau ci-dessous.

Tableau 10-1 u
 Quelles LED s’allument

pour quel nombre ?

Dé Nombre LED

1 2 3 4 5 6 7

1 ✓

2 ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓

Montage 10. Le dé électronique 	 205

Il est certes tout à fait possible de construire le circuit sur votre plaque
d’essais, mais ce n’est pas toujours simple compte tenu de la symétrie
des LED. Dans un second montage, nous construirons le circuit sur une
carte spéciale appelée shield, que nous insérerons au-dessus de la carte
Arduino. C’est la manière la plus propre et la plus pratique de fabriquer
un dé électronique durable. Mais utilisons d’abord la plaque d’essais. Quel
matériel nous faut-il ?

PROTOTYPAGE
Nous réalisons tout d’abord le circuit sur la plaque d’essais en enfichant les
LED, les résistances et le bouton-poussoir, ainsi que les câbles, uniquement
sur la plaque. Cela nous permet de vérifier que le circuit fonctionne. Si tout va
bien, nous pouvons ensuite souder le circuit sur une platine pour lui donner
une forme durable. Le fait de tester un circuit sur une plaque d’essais se
nomme le prototypage.

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 10-2
Liste des composants

7 LED rouges

7 résistances de 330 Ω

1 résistance de 10 kΩ

1 bouton-poussoir miniature

Schéma
Le schéma montre les 7 LED du dé avec leur résistance série de 330 Ω et
le bouton-poussoir avec sa résistance pull-down.

	 206	 Partie II. Les montages

Figure 10-2 u
Carte Arduino commandant

chacune des LED du dé

Réalisation du circuit
La figure suivante montre la construction du circuit sur une seule plaque,
mais il a fallu « jongler » un peu pour y arriver. Ceci dit, il devrait très bien
fonctionner.

Figure 10-3 u
Réalisation du dé

électronique sur une plaque
d’essais

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Montage 10. Le dé électronique 	 207

Code du sketch
Voici le code du sketch pour commander le dé électronique :

#define WAITTIME 20
int pips[6][7] = {{0, 0, 0, 1, 0, 0, 0}, // Nombre sorti 1
 {1, 0, 0, 0, 0, 0, 1}, // Nombre sorti 2
 {1, 0, 0, 1, 0, 0, 1}, // Nombre sorti 3
 {1, 0, 1, 0, 1, 0, 1}, // Nombre sorti 4
 {1, 0, 1, 1, 1, 0, 1}, // Nombre sorti 5
 {1, 1, 1, 0, 1, 1, 1}}; // Nombre sorti 6
int pin[] = {2, 3, 4, 5, 6, 7, 8};
int pinOffset = 2; // Première LED sur broche 2
int buttonPin = 13; // Bouton-poussoir sur broche 13

void displayPips(int value) {
 for(int i = 0; i < 7; i++)
 digitalWrite(i + pinOffset, (pips[value - 1][i] == 1)?HIGH:LOW);
 delay(WAITTIME); // Ajouter une courte pause
}

void setup() {
 for(int i = 0; i < 7; i++)
 pinMode(pin[i], OUTPUT);
 pinMode(buttonPin, INPUT);
}

void loop() {
 if(digitalRead(buttonPin) == HIGH)
 displayPips(random(1, 7)); // Générer un nombre aléatoire entre 1 et 6
}

Examinons la signification de ce sketch.

Revue de code
La programmation est déjà plus compliquée et nous n’avons pas seulement
affaire cette fois à un tableau unidimensionnel comme dans le montage n° 6
sur le séquenceur de lumière. Un tableau bidimensionnel est ici nécessaire
pour mémoriser les numéros des LED qui doivent s’allumer en fonction
du nombre obtenu. Rappelons-nous encore une fois, par l’intermédiaire
de la figure suivante, comment un tableau unidimensionnel fonctionne et
comment nous pouvons y accéder.

Index

Contenu
du tableau

t Figure 10-4
Tableau unidimensionnel

	 208	 Partie II. Les montages

La déclaration et l’initialisation du tableau sont assurées par la ligne
suivante :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Le tableau contient ici sept éléments. Un tableau unidimensionnel est
reconnaissable à sa paire de crochets derrière le nom de variable. On
accède à un élément particulier en indiquant l’index entre les crochets.
Vous écrivez donc ce qui suit pour accéder au 4e élément :

ledPin[3]

N’oubliez pas que l’on compte à partir de 0 !

Comme la première LED de notre montage ne se trouve pas sur la broche 0,
j’ai utilisé la variable pinOffset qui contient une valeur de décalage pour
définir la position de départ pour une boucle for afin de commander la
première LED et toutes les autres.

Un tableau bidimensionnel possède au sens figuré une dimension spatiale
de plus, passant ainsi quasiment d’une droite unidimensionnelle à une
surface.

Figure 10-5 u
Tableau bidimensionnel

Index

Colonnes (LED)

Lig
ne

s (
no

m
br

e)

Il se comporte de la même manière que pour trouver une pièce sur un
jeu d’échecs. On la localise plus facilement grâce à des coordonnées : par
exemple Dame sur D1, D indiquant la colonne et 1 la rangée. Le tableau
présenté ici dispose de 6 × 7 = 42 éléments. Déclaration et initialisation
se font comme d’habitude. Seule la paire de crochets étant rajoutée pour
la nouvelle dimension.

Montage 10. Le dé électronique 	 209

int pips[6][7] = {{0, 0, 0, 1, 0, 0, 0},	 // Nombre sorti 1
 {0, 0, 1, 0, 0, 0, 1},	 // Nombre sorti 2
 {0, 0, 1, 1, 0, 0, 1},	 // Nombre sorti 3
 {1, 0, 1, 0, 1, 0, 1},	 // Nombre sorti 4
 {1, 0, 1, 1, 1, 0, 1},	 // Nombre sorti 5
 {1, 1, 1, 0, 1, 1, 1}};	 // Nombre sorti 6

La première valeur [6] entre crochets indique le nombre de lignes, le
deuxième [7] le nombre de colonnes. La double paire de crochets permet
aussi d’accéder à un élément :

pips[ligne][colonne]

Vous pouvez ainsi procéder ligne par ligne et lire les valeurs de LED cor-
respondantes pour y accéder. La figure suivante montre l’affectation des
différentes valeurs.

t Figure 10-6
Affectation des valeurs
des colonnes du tableau
aux LED correspondantes

Peut-être trouvez-vous bizarre que le graphique commence par 0 et finisse
par 5 à la place de 6, alors qu’on ne peut pas faire 0 avec un dé. La réponse
est simple. Ce ne sont pas les points du dé qui sont énumérés, mais l’index
du tableau. Rappelez-vous que l’index commence toujours à 0 et présente

	 210	 Partie II. Les montages

donc un décalage numérique de -1 par rapport aux points du dé. Voici
maintenant un petit sketch qui affiche les contenus du tableau bidimen-
sionnel sur le moniteur série :

int pips[6][7] = {{0, 0, 0, 1, 0, 0, 0},	 // Nombre sorti 1
 {1, 0, 0, 0, 0, 0, 1},	 // Nombre sorti 2
 {1, 0, 0, 1, 0, 0, 1},	 // Nombre sorti 3
 {1, 0, 1, 0, 1, 0, 1},	 // Nombre sorti 4
 {1, 0, 1, 1, 1, 0, 1},	 // Nombre sorti 5
 {1, 1, 1, 0, 1, 1, 1}};	 // Nombre sorti 6

void setup() {
 Serial.begin(9600);
 for(int row = 0; row < 6; row++){
 for(int col = 0; col < 7; col++)
 Serial.print(pips[row][col]);
 Serial.println();
 }
}

void loop() { /* ... */ }

Il s’agit ici de deux boucles for imbriquées. La boucle extérieure, qui
contient la variable de contrôle row (ligne), commence à compter à partir
de sa valeur de départ 0. Vient ensuite la boucle intérieure, qui commence
elle aussi par la valeur 0 de sa variable de contrôle col (colonne). La boucle
intérieure doit cependant avoir fini de traiter toutes ses valeurs pour que
la boucle extérieure incrémente la sienne.

IMBRICATION DE BOUCLES
Dans le cas de boucles imbriquées l’une dans l’autre, le traitement se fait de
l’intérieur vers l’extérieur. Autrement dit, la boucle intérieure doit avoir exécuté
tous ses passages avant que la boucle extérieure ne compte un de plus et
que la boucle intérieure ne poursuive avec ses passages. Le cycle continue
jusqu’à ce que toutes les boucles aient été traitées.



Montage 10. Le dé électronique 	 211

La figure 10-7 présente le contenu du tableau affiché sur le moniteur série.

t Figure 10-7
Contenu du tableau affiché
ligne par ligne sur le
moniteur série

Comparez ce résultat à l’initialisation du tableau : ils coïncident. Passons
maintenant à l’analyse du code proprement dite. La fonction setup a encore
pour tâche d’initialiser les différentes broches :

void setup() {
 for(int i = 0; i < 7; i++)
 pinMode(pin[i], OUTPUT);
 pinMode(buttonPin, INPUT);
}

Les broches pour commander les LED, broches programmées comme
OUTPUT dans la fonction setup, sont également regroupées dans un tableau.
Il n’y a qu’au bouton-poussoir, qui est relié à une entrée numérique, qu’une
variable normale est affectée. La tâche principale est encore exécutée par
la fonction loop :

void displayPips(int value) {
 for(int i = 0; i < 7; i++)
 digitalWrite(i + pinOffset, (pips[value - 1][i] == 1)?HIGH:LOW);
 delay(WAITTIME);
}

void loop() {
 if(digitalRead(buttonPin) == HIGH)
 displayPips(random(1, 7)); �// Générer un nombre aléatoire

// entre 1 et 6
}

Quand le bouton-poussoir est enfoncé, la fonction displayPips est appelée.
Un chiffre aléatoire compris entre 1 et 6 lui est transmis comme argument.
Voyons maintenant de plus près le mode d’exploitation de la fonction.

	 212	 Partie II. Les montages

Il s’agit essentiellement d’une boucle for, qui commande les différentes
LED correspondant au chiffre transmis. Supposons qu’un 4 soit sorti : la
fonction reçoit cette valeur comme argument. La boucle for commence
son travail. Elle commande les broches et détermine le niveau HIGH/LOW
nécessaire pour la LED en question :

La variable pinOffset a pour valeur 2 et établit que la première broche à
traiter se trouve à cette place. La première broche, portant le numéro 0,
est RX et la deuxième, portant le numéro 1, est TX. Ces deux broches sont
en principe à éviter. La boucle for commençant par la valeur 0, la valeur
de pinOffset lui est rajoutée. Mais revenons à notre exemple, dans lequel
un 4 est sorti. La boucle for traite la 4e ligne du tableau pour déterminer
les niveaux HIGH/LOW nécessaires. Mais cette valeur doit être diminuée de
1 du fait que l’on commence par la valeur d’index 0.

Figure 10-8 u
Sélection de l’élément

du tableau pertinent pour
un nombre préalablement

sorti

4 - 1
3

Index

{{0, 0, 0, 1, 0, 0, 0}, //Nombre sorti 1
 {1, 0, 0, 0, 0, 0, 1}, //Nombre sorti 2
 {1, 0, 0, 1, 0, 0, 1}, //Nombre sorti 3
 {1, 0, 1, 0, 1, 0, 1}, //Nombre sorti 4
 {1, 0, 1, 1, 1, 0, 1}, //Nombre sorti 5
 {1, 1, 1, 0, 1, 1, 1}}; //Nombre sorti 6

La ligne sélectionnée dans le tableau comporte les valeurs 1, 0, 1, 0, 1, 0,
1 qui sont traitées une à une par la boucle for. Ceci est amorcé par l’ex-
pression suivante :

(pips[Value - 1][i] == 1)?HIGH:LOW)

Celle-ci vérifie que les valeurs sont bien 1 ou 0. Le niveau HIGH est appliqué
si c’est 1 et le niveau LOW si c’est 0. Les LED correspondant au nombre sorti
sont ainsi activées ou désactivées. Tant que le bouton-poussoir est main-
tenu enfoncé, un nouveau nombre est déterminé et les LED clignotent
toutes très vite l’une derrière l’autre. Une fois le bouton-poussoir relâché,
le dernier nombre reste affiché. La constante WAITTIME permet de régler
la vitesse à laquelle les nombres changent quand le bouton-poussoir est
enfoncé, soit ici 20 ms.

Vous vous souvenez du tableau unidimensionnel ? Nous avons vu qu’il est
inutile d’écrire la dimension du tableau entre les crochets si celui-ci est
initialisé aussitôt dans la même ligne. Vous vous dites alors peut-être qu’en

Montage 10. Le dé électronique 	 213

utilisant un tableau bidimensionnel, le compilateur déduirait des valeurs
transmises les dimensions que doit avoir le tableau.

L’idée n’est pas mauvaise mais vous obtiendriez une erreur. En effet, si vous
omettez toutes les indications sur la taille du tableau et écrivez

int pips[][] = {{0, 0, 0, 1, 0, 0, 0}, 	 // Nombre sorti 1
 {1, 0, 0, 0, 0, 0, 1}, 	 // Nombre sorti 2
 {1, 0, 0, 1, 0, 0, 1}, 	 // Nombre sorti 3
 {1, 0, 1, 0, 1, 0, 1}, 	 // Nombre sorti 4
 {1, 0, 1, 1, 1, 0, 1}, 	 // Nombre sorti 5
 {1, 1, 1, 0, 1, 1, 1}}; 	 // Nombre sorti 6

le compilateur renâcle, comme vous le constatez. Le message d’erreur dit,
pour résumer, que dans le cas d’un tableau multidimensionnel, toutes les
limites, hormis la première, doivent être indiquées. Vous pouvez donc
écrire la ligne suivante :

int pips[][7] = ...

Le compilateur acceptera ce code.

Que pouvons-nous encore améliorer ?
Il est presque toujours possible d’améliorer ou de simplifier les choses. Il
vous suffit de prendre un peu de recul et de considérer le projet dans son
ensemble. Ne vous creusez pas trop la tête. Les idées viennent souvent
quand on est occupé à autre chose. Revenons à notre dé. Si vous regardez
les différents points d’un dé pour différentes valeurs, vous remarquerez
peut-être quelque chose. Retournez pour ce faire au tableau « Quelle LED
s’allume pour quel nombre ? » Question : les huit LED s’allument-elles
toutes indépendamment les unes des autres ? Ou se peut-il que certaines
forment un groupe ? Question idiote, non ? C’est le cas, bien évidemment :
la figure suivante montre les différents groupes.

 Figure 10-9
Groupes de LED sur le dé
électronique

Pris séparément, le groupe A et le groupe B sont utilisables, ce qui est
moins le cas pour les groupes C et D. Quoi qu’il en soit, les configurations
souhaitées sont générées par un groupe ou une combinaison de plusieurs

	 214	 Partie II. Les montages

groupes. Voyons maintenant lequel ou lesquels des groupes est ou sont
concerné(s) par quels points du dé :

Tableau 10-3 u
Points du dé

et groupes de LED
Dé

Groupe A ✓ ✓ ✓

Groupe B ✓ ✓ ✓ ✓ ✓

Groupe C ✓ ✓ ✓

Groupe D ✓

Ainsi, nous pouvons contrôler les LED avec 4 lignes de commandes au
lieu de 7.

Nous devons interconnecter deux LED dans les groupes B, C, et D. Dans le
montage n° 3, nous avions calculé la résistance série pour une LED rouge.
Relisez-le si besoin. Si plusieurs LED doivent être commandées, il faut les
brancher en série. Il y a environ 2 V aux bornes d’une seule LED rouge,
autrement dit la résistance série doit faire chuter 3 V. Deux LED étant ici
branchées l’une derrière l’autre, il est possible de déterminer ce qui suit
pour la chute de tension aux bornes de la résistance série R

V
:

URV = Utotale – ULED1 – ULED2 = +5 V – 2 V – 2 V = 1 V

1 V doit donc être « absorbé » par la résistance série R
V
 pour que 2 V sub-

sistent aux bornes de chaque LED. Pour ce qui est du courant, qui circule
de la même façon dans tous les composants (rappelez-vous comment le
courant se comporte dans un montage en série), je le fixe à 10 mA (10
mA = 0,01 A). On obtient donc les valeurs suivantes dans la formule pour
calculer la résistance série :

RV = = 100 Ω
I 0,01 A

Utotale – U
--LED1 + LED2- = ----------------------5 V – 4 V-

Montage 10. Le dé électronique 	 215

Le circuit ressemble à ceci :

t Figure 10-10
Deux LED avec une
résistance série

ATTENTION AU SENS DES LED !
Veillez à ce que les deux LED soient dans le même sens, sinon pas d’allumage.
L’anode de la LED 1 est reliée à la cathode de la LED 2.

Ici aussi, j’ai vérifié le calcul de manière pratique pour m’assurer que tout
est également en ordre.

t Figure 10-11
Mesure du courant sur le
circuit de commande avec
deux LED
et une nouvelle résistance

Le courant de 7,84 mA est absolument correct et encore inférieur à la pres-
cription de 10 mA maxi. Deux LED ayant naturellement besoin du double
de tension d’alimentation par rapport à une seule, la résistance série doit
être plus faible pour que la luminosité des deux LED, soit la même que
celle d’une seule LED. Vous pouvez bien sûr utiliser la même résistance
de 330 Ω pour tous les groupes A à D, ce qui signifie toutefois en théorie
que la luminosité du groupe A sera plus forte avec une seule LED que le
reste des groupes.

Passons maintenant à la programmation. Par quoi commencer ? Je vous
suggère de revenir au tableau 10-3 et de voir s’il s’en dégage une systéma-
tique établissant quel groupe de LED doit être commandé, à quel moment
et pour quelles configurations de points du dé. Procédez étape par étape

	 216	 Partie II. Les montages

et observez un groupe après l’autre. Vous pouvez les traiter complètement
à part l’un de l’autre, car la logique de commande se charge ensuite de
les rassembler pour un affichage en commun des véritables points du
dé. Je vous montre encore une fois de manière simplifiée le groupe A du
tableau 10-3.

Dé 1 2 3 4 5 6

Groupe A ✓ ✓ ✓

Encore un indice : qu’est-ce que les nombres 1, 3 et 5 ont en commun ?
Ce sont tous des nombres impairs !

Formulation pour commander le groupe A
Commander le groupe A si le nombre aléatoire déterminé est impair.

Passons maintenant au groupe B. Voici l’extrait correspondant du
tableau 10-3 :

Dé 1 2 3 4 5 6

Groupe B ✓ ✓ ✓ ✓ ✓

Que constatez-vous ici ? Tous les nombres sont concernés sauf le 1.

Mais à quoi pourrait bien ressembler une formulation que le microcontrô-
leur comprendrait sans problème ? Une description quelque peu maladroite
donnerait ceci : commander le groupe B si le nombre est 2 ou 3 ou 4 ou
5 ou 6. Cherchez là encore le point commun et vous pourrez raccourcir
fortement la formulation.

Formulation pour commander le groupe B
Commander le groupe B si le nombre aléatoire déterminé est supérieur à 1.

Voyons maintenant le groupe C. Tous les nombres supérieurs à 3 sont
concernés.

Dé 1 2 3 4 5 6

Groupe C ✓ ✓ ✓

Formulation pour commander le groupe C
Commander le groupe C si le nombre aléatoire déterminé est supérieur à 3.

Passons pour finir au groupe D.

Montage 10. Le dé électronique 	 217

Dé 1 2 3 4 5 6

Groupe C ✓

Formulation pour commander le groupe D
Commander le groupe D si le nombre aléatoire déterminé est égal à 6.

Passons maintenant à la programmation. Vous verrez que cette solution
est beaucoup plus simple que l’utilisation d’un tableau. Mais il faut suivre
mentalement quelques pistes jusqu’au bout avant de s’apercevoir que 4
broches au lieu de 7 sont nécessaires pour commander les LED. Cela per-
met cependant d’aborder cette thématique par le côté ludique. Voici le
code du sketch pour commander le dé électronique avec moins de lignes
de commande :

#define WAITTIME 20
int GroupA = 8; 	 // LED 4
int GroupB = 9; 	 // LED 1 + 7
int GroupC = 10; 	 // LED 3 + 5
int GroupD = 11; 	 // LED 2 + 6
int buttonPin = 13;	 // Bouton-poussoir sur broche 13

void displayPips(int value) {
 // Éteindre tous les groupes
 digitalWrite(GroupA, LOW);
 digitalWrite(GroupB, LOW);
 digitalWrite(GroupC, LOW);
 digitalWrite(GroupD, LOW);
 // Commande de tous les groupes
 if(value�2 != 0) // La valeur est-elle impaire ?
 digitalWrite(GroupA, HIGH);
 if(value > 1)
 digitalWrite(GroupB, HIGH);
 if(value > 3)
 digitalWrite(GroupC, HIGH);
 if(value == 6)
 digitalWrite(GroupD, HIGH);
 delay(WAITTIME); // Ajouter une courte pause
}

void setup() {
 pinMode(GroupA, OUTPUT);
 pinMode(GroupB, OUTPUT);
 pinMode(GroupC, OUTPUT);
 pinMode(GroupD, OUTPUT);
}

void loop() {
 if(digitalRead(buttonPin) == HIGH)
 displayPips(random(1, 7)); // Générer un nombre entre 1 et 6
}

	 218	 Partie II. Les montages

Peut-être pensez-vous que nous avons oublié quelque chose ! En effet,
nous avons programmé les broches pour les groupes A à D comme sortie,
mais nous n’avons pas défini le bouton-poussoir comme entrée.

Effectivement, je n’ai pas programmé cette entrée sur la broche 13 comme
entrée. Vous avez raison sur ce point. Mais je n’ai pas non plus oublié
puisque toutes les broches numériques sont définies comme entrée de
manière standard et n’ont donc pas besoin d’être explicitement program-
mées en cas d’utilisation appropriée. Vous pouvez bien entendu le faire
partout dans votre sketch, car cela aide certainement à comprendre.

Examinons la ligne qui détermine si la valeur est impaire. L’opérateur �
(opérateur modulo) permet de calculer le reste d’une division. Si le nombre
est divisible par 2, il s’agit d’un nombre pair, le reste de la division étant
dans ce cas toujours égal à 0. La ligne

if(value�2 != 0)

me permet cependant de demander si le reste est différent de 0 pour ainsi
commander le groupe A.

Encore une remarque avant d’en venir au circuit : cela ne change pas grand-
chose si, au lieu de la résistance série de 100 Ω calculée pour les groupes B
à D, vous utilisez ici les anciennes résistances de 330 Ω. La luminosité
semble être la même, mais ce n’est qu’approximatif.

La figure suivante montre qu’il faut moins de résistances série pour les
LED que dans le montage précédent.

Figure 10-12 
Carte Arduino commandant
les 7 LED du dé par groupe

de LED

Montage 10. Le dé électronique 	 219

Problèmes courants
Si les LED ne se mettent pas à clignoter après avoir appuyé sur le bou-
ton-poussoir ou si les points du dé qui s’affichent sont bizarres, voire
incohérents, débranchez le port USB de la carte pour plus de sécurité et
vérifiez ce qui suit.

	● Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

	● Pas de court-circuit éventuel ?

	● Les différentes LED sont-elles correctement branchées ? La polarité
est-elle correcte ?

	● Les résistances ont-elles les bonnes valeurs ?

	● Le code du sketch est-il correct ?

	● Le bouton-poussoir est-il correctement câblé ? Vérifiez encore une fois
les contacts en question avec un testeur de continuité.

Montage du dé électronique
sur une platine
Il est possible de créer soi-même ses platines afin de les utiliser ensuite
comme extensions de la carte Arduino. Je vais vous présenter la solution
que j’ai imaginée pour le dé électronique.

t Figure 10-13
Dé électronique
sur une platine

Qu’en pensez-vous ? C’est une jolie extension dont la réalisation et la mise
en œuvre m’ont bien amusé. Plein d’idées me sont venues au cours du
montage ! Ça donne envie d’aller encore plus loin ! Vous aussi, si vous le
souhaitez, vous pouvez réaliser ce circuit imprimé comme un vrai profes-

	 220	 Partie II. Les montages

sionnel. La figure 10-14 montre la platine, ou shield, terminée, mais encore
sans ses composants.

Figure 10-14 
Dé électronique sur une

platine après la production

C’est une véritable platine qui ressemble déjà beaucoup à un shield, avec
tous ses marquages et ses trous forés. Il ne me reste plus qu’à y fixer les
composants afin de voir ce que ça donne.

Je suis très fier du résultat !

Figure 10-15 
Circuit imprimé

du dé électronique

Montage 10. Le dé électronique 	 221

Exercice complémentaire
L’objet de cet exercice est déjà un peu plus délicat. Vous vous souvenez
sûrement du registre à décalage 74HC595 avec ses 8 sorties. Essayez de
réaliser un circuit ou de programmer un sketch qui commande un dé élec-
tronique au moyen du registre à décalage. Combien de broches numériques
économisez-vous avec cette variante ? Est-ce un avantage par rapport à la
réalisation avec des groupes de LED ?

Qu’avez-vous appris ?
	● Vous avez appris dans ce montage comment déclarer et initialiser un

tableau bidimensionnel et comment accéder aux différents éléments
de ce tableau.

	● Vous savez comment afficher des contenus de variables dans le moni-
teur série pour vérifier l’exactitude de ces valeurs. Vous pouvez ainsi
rechercher une erreur et analyser le code en cas de comportement
incorrect. Vous devez cependant être sûr que le circuit est correcte-
ment câblé, sinon vous chercherez dans le code source une erreur qui,
en réalité, se situe au niveau du matériel. Cela vous évitera de perdre
du temps et vous épargnera peut-être même une crise de nerfs.

	● Vous avez appris comment calculer une résistance série pour deux
LED montées en série, de manière à ce que la luminosité demeure
pratiquement inchangée.

	 223

Montage

11Des détecteurs
de lumière

Dans ce montage, nous allons connecter un capteur à la carte Arduino afin
de recevoir une valeur mesurée qui sera ensuite analysée. Nous sommes
soumis à d’innombrables influences extérieures auxquelles nous ne pou-
vons pas nous soustraire, comme

	● la température

	● la luminosité

	● l’humidité de l’air

	● la pression atmosphérique

	● le champ magnétique

	● …

pour n’en citer que quelques-unes.

Maintenant que l’on sait prélever une valeur mesurée, il n’y a plus
qu’un pas à franchir pour influencer le courant en fonction de la gran-
deur mesurée. Le moyen le plus simple pour y parvenir est d’utiliser
une résistance. Ce n’est évidemment pas une résistance fixe, comme
nous en avons utilisé jusqu’ici, mais une résistance variable. Si seule
la mesure de la luminosité nous intéresse, c’est très facile à réaliser au
moyen d’une photorésistance, également nommée résistance photo-
sensible (en anglais, Light Dependent Resistor (LDR). Il s’agit d’un semi-
conducteur, dont la résistance dépend de la lumière. Plus la quantité de
lumière atteignant la LDR est élevée, plus la résistance est faible. Notre
circuit doit commander dix LED en fonction de la luminosité. Plus la lumi-
nosité est élevée, plus le nombre de LED allumées est important. Le circuit
ressemble à celui du séquenceur de lumière, à ceci près que les différentes
LED ne sont pas commandées l’une après l’autre par une boucle, mais
par une logique qui évalue la luminosité sur la résistance photosensible.

	 224	 Partie II. Les montages

La résistance variable
La résistance fixe n’a désormais plus aucun secret pour vous. Mais, dans
ce montage, nous allons procéder autrement. Il existe une résistance dont
la valeur varie en fonction de la luminosité ambiante, comme je l’ai déjà
évoqué. C’est la LDR. Sa courbe caractéristique traduit son comportement
en fonction de la variation de son éclairement.

Figure 11-1 u
Courbe caractéristique

d’une LDR

Plus la lumière incidente est forte, plus la résistance de la LDR est faible.
Sur la figure suivante, vous pouvez voir une LDR et son symbole. C’est ce
symbole qui est utilisé pour représenter une LDR dans un schéma.

Figure 11-2 u
Une LDR et son symbole

La plage de résistance de la LDR dépend du matériau employé et présente
approximativement une résistance dans l’obscurité comprise entre 1 et
10M. Une intensité d’éclairement de 1 000 lux (lx) environ engendre une
résistance comprise entre 75 et 300 Ω. Le lux est l’unité de mesure de
l’éclairement. Voyons d’abord la liste des composants.

Composants nécessaires
Ce montage ne nécessite pas grand-chose et il peut même se passer de
composants supplémentaires. En effet, la carte Arduino comporte une LED

Montage 11. Des détecteurs de lumière 	 225

qui est désignée par la lettre L. Toutefois, j’aimerais compléter ce montage
par quelques composants que nous réutiliserons pour d’autres montages
– et que vous utiliserez aussi pour vos projets personnels.

Composant t Tableau 11-1
Liste des composants

7 LED jaunes

10 résistances de 330 Ω

1 résistance de 10 kΩ

1 LDR

Schéma
La seule inconnue éventuelle de ce schéma est le diviseur de tension, mais
nous y reviendrons très vite.

t Figure 11-3
Circuit de mesure de
l’énergie lumineuse

	 226	 Partie II. Les montages

Réalisation du circuit
La réalisation du circuit vous demandera un peu de travail, car vous devez
connecter dix LED, ainsi que leurs résistances série.

Figure 11-4 u
La réalisation du circuit

sur une petite plaque
de prototypage

Sketch Arduino
Voici le code du sketch :

int pin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Tableau des broches
int analogPin = A0; // Broche de l’entrée analogique

// Fonction pour commander les LED
void controlLEDs(int value){
 int bargraphValue = map(value, 0, 1023, 0, 9);
 for(int i = 0; i < 10; i++)
 digitalWrite(pin[i], (bargraphValue >= i)?HIGH:LOW);
}

void setup() {
 for(int i = 0; i < 10; i++)
 pinMode(pin[i], OUTPUT); // Toutes les broches comme sorties
}

void loop() {
 controlLEDs(analogRead(analogPin));
}

Montage 11. Des détecteurs de lumière 	 227

UTILISATION D’ALIAS
À la place de nombres entiers pour les entrées analogiques, vous pouvez
aussi utiliser les alias A0, A1, A2, A3, A4 et A5. Le code est sans doute un peu
plus parlant.

Revue de code
Pour simplifier la configuration et la commande des LED au moyen des
broches numériques, nous utiliserons un tableau qui ici se nomme pin.
Le tableau est déclaré et initialisé dans la première ligne, les valeurs étant
placées entre deux accolades. Toutefois, comme la carte Arduino ne peut
travailler en interne qu’avec des valeurs binaires, cela impose de convertir
les valeurs analogiques d’une quelconque façon. Cette tâche est réalisée par
un convertisseur numérique/analogique, (ou convertisseur A/D). La carte
Arduino dispose d’un convertisseur A/D à six entrées qui sont numérotées
de A0 à A5. L’illustration ci-dessous présente le connecteur comportant
les entrées analogiques.

t Figure 11-5
Connecteur
à entrées analogiques

Chacune de ces entrées peut supporter des tensions comprises entre 0
et 5 V, la tension existante étant convertie en un nombre entier compris
entre 0 et 1023.

Vous trouverez de plus amples informations sur les entrées analogiques
aux adresses suivantes :

https://www.arduino.cc/en/Tutorial/AnalogInputPins

https://www.arduino.cc/en/Reference/AnalogRead

Pour ce montage, nous utiliserons uniquement l’entrée A0. Cette configu-
ration est stockée dans la variable analogPin. La fonction setup programme
toutes les broches numériques comme sorties en se référant au tableau.
La commande est effectuée à l’aide d’une fonction qui a été programmée
dans ce but. Elle se nomme controlLEDs et est exécutée en continu dans
la fonction loop. La valeur analogique mesurée A0 est transmise comme
argument. Intéressons-nous maintenant à fonction programmée :

	 228	 Partie II. Les montages

void controlLEDs(int value){
 int bargraphValue = map(value, 0, 1023, 0, 9);
 for(int i = 0; i < 10; i++)
 digitalWrite(pin[i], (bargraphValue >= i)?HIGH:LOW);
}

Elle possède un paramètre qui stocke la valeur mesurée sur l’entrée analo-
gique. Ce code me donne l’occasion d’introduire une nouvelle instruction
très intéressante qui permet de transposer un domaine de valeur dans un
autre domaine. J’ai déjà précisé que la tension mesurée était convertie en
nombre entier compris entre 0 et 1023. Avec l’instruction ou la fonction
map, il est très facile de convertir le domaine des valeurs d’entrée, qui s’étend
de 0 à 1023, en un domaine de valeurs de sortie allant de 0 à 9.

Instruction
Valeur

d’entrée

value

Entrée Sortie

Vous trouverez de plus amples informations sur l’instruction map à l’adresse
suivante :

https://www.arduino.cc/en/Reference/Map

La figure suivante illustre le processus, les domaines d’entrée et de sortie
ayant été réduits pour plus de clarté. Au lieu de convertir 1024 en 10, j’ai
converti 9 en 3.

Figure 11-6 u
Conversion de 9 à 3

La représentation d’un grand domaine de valeurs par un domaine plus petit
nécessite une conversion qui entraîne obligatoirement une diminution de
la résolution. Les valeurs d’entrées sont représentées comme suit :

	● Valeur1 de 1 à 3 : représentée par 1

Montage 11. Des détecteurs de lumière 	 229

	● Valeur1 de 4 à 6 : représentée par 2

	● Valeur1 de 7 à 9 : représentée par 3

Les dix LED sont raccordées aux sorties numériques 2 à 11. Prenons un
circuit de base qui comporte deux résistances. La disposition suivante
correspond à celle d’un diviseur de tension. Nous en avons déjà vu une
similaire pour le calcul de la résistance série d’une diode.

t Figure 11-7
Diviseur de tension
avec deux résistances fixes

Comme son nom l’indique, un diviseur de tension divise une tension en
un certain nombre de parties. Sur le côté gauche, la tension d’origine U est
fournie à deux résistances R1 et R2 qui sont montées en série, c’est-à-dire
l’une derrière l’autre. La mesure de tension de sortie U2 se trouve sur le côté
droit et elle est parallèle à la résistance R2. Ce circuit comporte un nouveau
symbole pour la masse, qui est désignée par les lettres GND (Ground). Il
se situe sur le bord inférieur du circuit. Les tensions et les résistances sont
liées par la relation de proportionnalité suivante :

Si nous appliquons cette formule à notre circuit, nous obtenons :

	 230	 Partie II. Les montages

Pour calculer la tension de sortie, il faut simplement isoler U2 de cette
équation :

Si nous remplaçons maintenant l’une des deux résistances fixes par une
résistance variable, que nous utiliserons comme photorésistance pour les
besoins de notre montage, nous obtenons alors le circuit suivant avec le
diviseur de tension modifié :

Figure 11-8 u
Diviseur de tension

avec une LDR
et une résistance fixe

Si la tension la plus élevée se trouve aux bornes de la plus grande résistance,
la tension la plus élevée doit se trouver à l’entrée analogique quand la LDR
s’assombrit ? Servez-vous du schéma précédent. À droite du circuit, j’ai
représenté les rapports de tension. La longueur de la flèche correspond
à la valeur de tension. Si le ciel est couvert, la résistance ou plutôt la ten-
sion est élevée sur la LDR. Mais si le soleil brille, résistance et tension sont
faibles. Comme le diviseur de tension est alimenté sous 5 V, cela signifie
qu’il ne reste que la différence de tension aux bornes de la résistance R2.
Cette tension est mesurée entre l’entrée analogique et la masse. Voici, pour
mémoire, le raccordement de la photorésistance sur le circuit :

Montage 11. Des détecteurs de lumière 	 231

Nous avons affaire à un diviseur de tension.

Devenons communicatifs
Il est certes intéressant à mes yeux d’observer le cycle des LED sous dif-
férentes conditions de lumière, mais le déroulement chronologique reste
difficile à voir sur une longue période. Aussi voudrais-je vous présenter ici
un projet qui vous plaira sûrement, puisqu’il est agréable à regarder. Le
langage de programmation Processing s’impose quand il s’agit de générer
des graphiques.

Vous trouverez l’environnement de développement pour le langage de
programmation Processing sur le lien suivant :

https://processing.org/

Le côté pratique de la chose est que, tout comme pour Arduino, il suffit de
décompresser le fichier téléchargé dans un répertoire. Aucune installation
n’est à faire. Ce qui prendrait un temps fou avec des langages de program-
mation tels que C++ ou C# sera plus vite fait et sera moins fastidieux avec
Processing.

Je vous montre d’emblée le résultat dans la fenêtre graphique de Processing
pour que vous sachiez à quoi vous attendre.

	 232	 Partie II. Les montages

Figure 11-9 u
Courbe des valeurs de

l’énergie lumineuse dans
la fenêtre graphique de

Processing

Les valeurs affichées sont actualisées en permanence, la courbe évoluant
de droite à gauche dans la fenêtre. Les nouvelles valeurs apparaissent à
droite et les anciennes valeurs disparaissent à gauche de la fenêtre.

Mais comment deux langages de programmation différents font pour
échanger des données ? Une base commune leur permettant de se com-
prendre doit être définie. L’interface série vous dit sûrement déjà quelque
chose. Tout langage de programmation ou presque a dans son vocabu-
laire des instructions pour envoyer ou recevoir par cette interface. Notre
exemple montre un émetteur et un récepteur. La communication est uni-
directionnelle, autrement dit se fait dans un seul sens. Certes, l’interface
est capable de communiquer presque simultanément dans les deux sens,
mais nous nous contenterons d’un seul.

Arduino ProcessingSérie

Émetteur Récepteur

Tout ce que votre carte Arduino doit faire, c’est enregistrer les valeurs
mesurées et envoyer les données via l’interface série. Plus vite à dire qu’à
faire ?! Non, pas du tout, car la plupart du travail de calcul se fait du côté de
Processing. Voyons d’abord du côté de l’émetteur ce qu’Arduino doit faire.

Montage 11. Des détecteurs de lumière 	 233

Arduino l’émetteur
Côté matériel, il ne vous faut que le diviseur de tension avec sa LDR et
sa résistance de 10K fixe, connecté à l’entrée analogique broche 0, pour
envoyer les valeurs de luminosité à l’interface série. Le sketch est le suivant :

void setup() {
 Serial.begin(9600); // Initialise le port série

}

void loop() {
 Serial.println(analogRead(0));	 // Transmet la valeur au port série
 delay(10);	 // Courte pause (très important !!!)
}

Voyons maintenant ce que ce bout de code donne. Dans la fonction setup,
l’interface série est préparée pour la transmission. Vous avez eu vos pre-
miers contacts avec la programmation orientée objet lors de la création
de votre propre bibliothèque dans le montage n° 8. L’interface série est
considérée comme étant un objet logiciel nommé Serial. Vous disposez
de quelques méthodes, que nous entendons maintenant utiliser.

La méthode pour initialiser l’interface a pour nom begin et reçoit une valeur
qui détermine la vitesse de la transmission. Il s’agit dans notre cas de 9600.
L’unité de mesure est ici le baud, le nombre indiquant la cadence. 1 baud
signifie 1 changement d’état par seconde.

La deuxième méthode que nous utiliserons se nomme println. Elle envoie
la valeur qui lui a été transmise à l’interface série. Il s’agit de la valeur mesu-
rée sur la broche analogique 0 dans notre bout de sketch. L’interrogation
de la broche analogique et la transmission à l’interface ont lieu continuel-
lement dans la fonction loop.

TAUX DE TRANSFERT
Pour que la communication entre émetteur et récepteur puisse se faire, le
réglage du taux de transfert doit être le même sur les deux stations.

	 234	 Partie II. Les montages

Vous pouvez suivre la transmission des valeurs déterminées en temps
réel, de préférence en ouvrant le moniteur série de l’environnement de
développement.

Figure 11-10 u
Édition des données

dans le moniteur série

Cela fonctionne évidemment aussi avec n’importe quel autre programme
de terminal ayant accès à l’interface série. Pensez ici aussi à régler le taux
de transfert tout en bas à droite de la fenêtre.

Processing le récepteur
Venons en maintenant au programme en question, chargé principalement
de représenter graphiquement les valeurs reçues. Le code est assez consé-
quent, mais voici quand même une courte description pour que vous ne
soyez pas perdu.

import processing.serial.*;

Serial mySerialPort;
int xPos = 1;
int serialValue;
int[] yPos;

void setupsetup() {
 size(400, 300);
 println(Serial.list());
 mySerialPort = new Serial(this, Serial.list()[0], 9600);
 mySerialPort.bufferUntil('\n');
 // Définir la couleur d’arrière-plan
 background(0);
 yPos = new int[width];
}

void drawdraw() {
 background(0);

Montage 11. Des détecteurs de lumière 	 235

 stroke(255, 255, 0, 120);
 for(int i=0; i < width; i+=50)
 line(i, 0, i, height);
 for(int i=0; i < height; i+=50)
 line(0, i, width, i);

 stroke(255, 0, 0);
 strokeWeight(1);
 int yPosPrev = 0, xPosPrev = 0;
 println(serialValue);
 // Décaler les valeurs du tableau vers la gauche
 for(int x = 1; x < width; x++)
 yPos[x-1] = yPos[x];
 // Joindre les nouvelles coordonnées de la souris
 // à l’extrémité droite du tableau
 yPos[width - 1] = serialValue;
 // Affichage du tableau
 for(int x = 0; x < width; x++){
 if(x >0)
 line(xPosPrev, yPosPrev, x, yPos[x]);
 xPosPrev = x;	 // Stockage de la dernière position x
 yPosPrev = yPos[x];	// Stockage de la dernière position y
 }
}

void serialEvent(Serial mySerialPort) {
 String portStream = mySerialPort.readString();
 float data = float(portStream);
 serialValue = height - (int)map(data, 0, 1023, 0, height);
}

Processing comprend également deux fonctions principales, qui res-
semblent à celles d’Arduino.

t Figure 11-11
Correspondance entre
deux fonctions principales

La fonction setup est appelée une seule fois elle aussi en début de sketch
et sert à initialiser des variables. La fonction draw est une boucle sans
fin semblable à la fonction loop dans Arduino, qui doit son nom au fait
qu’elle sert à dessiner (en anglais, drawing) les éléments graphiques dans
la fenêtre d’édition. Pour pouvoir traiter l’interface série dans Processing,
vous devez écrire la ligne :

import processing.serial.*;

	 236	 Partie II. Les montages

qui permet d’importer un paquet en langage Java. Eh oui, Processing est un
langage basé sur Java, contrairement à Arduino qui, lui, utilise C ou C++.
Mais ces langages ont une syntaxe très similaire, si bien que la programma-
tion dans Processing ne semblera pas compliquée à ceux qui connaissent
bien C ou C++. Si vous écrivez la ligne :

println(Serial.list());

Processing vous donne une liste de toutes les interfaces série disponibles.
L’affichage dans la fenêtre de messagerie ressemble alors à ceci.

Figure 11-12 u
Affichage des ports COM

disponibles

Elle indique que deux ports sériels sont disponibles. Arduino utilisant le
premier port COM3 correspondant à la première entrée de la liste [0], cet
index est reporté dans la ligne ci-après :

mySerialPort = new Serial(this, Serial.list()[0], 9600);

Si, sur votre ordinateur, le port série utilisé n’est pas le premier de la liste, il
faut alors remplacer dans la ligne précédente Serial.list()[0] par "COMn",
où n est le numéro du port série effectivement utilisé par Arduino. Un
nouvel objet sériel est ainsi généré, et instancié avec le mot-clé new dans
Processing. La valeur 9600 apparaît une fois de plus, elle doit correspondre
à celle qui est dans le sketch Arduino. Tous les éléments graphiques tels
que trame de fond et courbe sont alors dessinés dans la fonction draw. Les
valeurs Arduino transmises s’accumulent dans la fonction serialEvent et

Montage 11. Des détecteurs de lumière 	 237

sont stockées dans la variable serialValue. Cette variable sert à dessiner
la courbe dans la fonction draw.

UTILISATION D’UN MONITEUR SÉRIE
Si vous avez ouvert un programme de terminal, par exemple un moniteur série,
pour visualiser les valeurs envoyées par Arduino, vous aurez des problèmes
si vous démarrez en même temps l’affichage graphique des valeurs dans
Processing. Le port COM concerné est en effet exclusivement utilisé par le
programme de terminal, interdisant tout accès supplémentaire par un autre
programme. Fermez par conséquent le moniteur série avant de démarrer
Processing pour évaluer les données.

Problèmes courants
Si les différentes LED ne réagissent pas aux modifications des conditions
lumineuses ou si aucun changement du tracé de la courbe n’est à observer
par la suite dans la fenêtre d’édition, il peut y avoir plusieurs raisons.

	● Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

	● Pas de court-circuit éventuel ?

	● Les résistances ont-elles bien les bonnes valeurs ?

	● Toutes les LED sont-elles correctement polarisées ?

	● Vérifiez encore une fois l’exactitude du code du sketch côté Arduino
et côté Processing.

	● Ouvrez le moniteur série dans l’IDE Arduino pour vous assurer que
des valeurs différentes sont transmises à l’interface série, lorsque les
conditions lumineuses varient. Dans le code de Processing, vous pou-
vez ajouter la ligne println(serialValue) de manière à ce que les
valeurs transmises (pour peu qu’elles le soient) s’affichent également
dans la fenêtre de messagerie.

	● Vérifiez que l’interface série utilisée n’est pas bloquée par un autre
processus et que seul Processing y accède.

Exercice complémentaire
Créez un sketch Arduino faisant clignoter régulièrement toutes les LED
concernées quand par exemple un certain seuil de flux lumineux est franchi,
pour vous avertir qu’un état critique est maintenant atteint et qu’une crème
solaire avec indice de protection 75+ doit être utilisée.

	 238	 Partie II. Les montages

Qu’avez-vous appris ?
	● Vous savez comment interroger une entrée analogique à laquelle est

reliée une résistance photosensible (LDR) avec l’instruction analogRead.

	● Un diviseur de tension sert à diviser la tension appliquée à ses bornes
dans un rapport déterminé. Nous avons utilisé cette propriété pour
amener à l’entrée analogique une tension fonction de l’intensité
lumineuse.

	● Vous savez comment échanger des données entre deux programmes
au moyen de l’interface série. L’émetteur est ici la carte Arduino et le
récepteur un sketch Processing reproduisant visuellement les données
reçues sous forme de courbe.

	 239

Montage

12L’afficheur
sept segments

Pour visualiser des états logiques (vrai ou faux) ou des données (14, 2.5,
"Hello User") sous une forme quelconque, il nous faut commander les
LED dans un premier temps et revenir au moniteur série dans un deu-
xième temps. Il existe en électronique d’autres éléments d’affichage que les
LED, l’afficheur sept segments étant l’un d’eux. Comme son nom l’indique,
cet afficheur se compose de sept segments qui, disposés d’une certaine
manière, peuvent représenter des chiffres et, dans une moindre mesure,
des signes.

Qu’est-ce qu’un afficheur sept segments ?
La figure 12-1 présente un tel afficheur de manière schématisée.

t Figure 12-1
Afficheur 7 segments

On voit que chaque segment est pourvu d’une petite lettre. L’ordre
n’est pas primordial, mais la forme montrée ici s’est imposée et a été
adoptée pratiquement partout. Aussi l’utiliserons-nous également tou-
jours sous cette forme. Si maintenant nous commandons les différents

	 240	 Partie II. Les montages

Afficheur a b c d e f g

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

Le chiffre 1 dans ce tableau ne signifie pas forcément niveau HIGH, mais c’est
la commande de l’allumage du segment concerné. Celle-ci peut se faire soit
avec le niveau HIGH que nous connaissons (+5 V résistance série incluse),
soit avec un niveau LOW (0 V). Vous voulez peut-être savoir maintenant en
fonction de quoi on choisit une commande. Cela dépend en fait du type
de l’afficheur sept segments. Deux approches sont possibles :

	● la cathode commune ;

	● l’anode commune.

En cas de cathode commune, toutes les cathodes des diverses LED de
l’afficheur sept segments sont réunies en interne et reliées à la masse à
l’extérieur. Les différents segments sont commandés par des résistances
série dûment raccordées au niveau HIGH. Notre exemple porte cependant
sur un afficheur sept segments avec anode commune. Ici, c’est exactement
le contraire : toutes les anodes des diverses LED sont reliées entre elles en
interne et raccordées au niveau LOW à l’extérieur. Les segments sont com-
mandés par des résistances série correctement dimensionnées, en passant
par les différentes cathodes des LED qui sont accessibles à l’extérieur.

segments avec habileté, nous pouvons afficher des chiffres allant de 0 à
9. On peut aussi afficher des lettres, nous y reviendrons plus tard. Votre
quotidien est sûrement rempli de ces afficheurs sept segments sans que
vous n’y ayez jamais prêté attention. Faites un tour en ville et vous verrez à
quel point ils sont courants. Voici d’ailleurs une petite liste des possibilités
d’utilisation :

	● l’affichage des prix dans les stations-service (toujours en hausse
hélas !) ;

	● l’affichage de l’heure sur certains bâtiments ;

	● l’affichage de la température ;

	● les montres digitales ;

	● les tensiomètres médicaux ;

	● les thermomètres numériques.

Le tableau 12-1 indique une fois pour toutes, en vue de la programmation,
quels sont les segments à allumer pour chacun des chiffres.

Afficheur a b c d e f gTableau 12-1 u
Commande

des sept segments
1 1 1 1 1 1 0

0 1 1 0 0 0 0

1 1 0 1 1 0 1

1 1 1 1 0 0 1

0 1 1 0 0 1 1

Montage 12. L’afficheur sept segments 	 241

Afficheur a b c d e f g

1 0 1 1 0 1 1

1 0 1 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 0 1 1

Le chiffre 1 dans ce tableau ne signifie pas forcément niveau HIGH, mais c’est
la commande de l’allumage du segment concerné. Celle-ci peut se faire soit
avec le niveau HIGH que nous connaissons (+5 V résistance série incluse),
soit avec un niveau LOW (0 V). Vous voulez peut-être savoir maintenant en
fonction de quoi on choisit une commande. Cela dépend en fait du type
de l’afficheur sept segments. Deux approches sont possibles :

	● la cathode commune ;

	● l’anode commune.

En cas de cathode commune, toutes les cathodes des diverses LED de
l’afficheur sept segments sont réunies en interne et reliées à la masse à
l’extérieur. Les différents segments sont commandés par des résistances
série dûment raccordées au niveau HIGH. Notre exemple porte cependant
sur un afficheur sept segments avec anode commune. Ici, c’est exactement
le contraire : toutes les anodes des diverses LED sont reliées entre elles en
interne et raccordées au niveau LOW à l’extérieur. Les segments sont com-
mandés par des résistances série correctement dimensionnées, en passant
par les différentes cathodes des LED qui sont accessibles à l’extérieur.

	 242	 Partie II. Les montages

Figure 12-2 u
Afficheur 7 segments

avec anode commune

Sur la figure suivante, vous pouvez voir que toutes les anodes de l’afficheur
sept segments sont reliées à la tension d’alimentation +5 V. Les cathodes
sont reliées par la suite aux sorties numériques de votre carte Arduino
et pourvues des différents niveaux de tension conformes au tableau de
commande. Nous utilisons pour notre essai un afficheur sept segments
avec anode commune de type SA 39-11 GE. La figure suivante illustre le
brochage de cet afficheur.

Figure 12-3 u
Commande de l’afficheur

sept segments
de type SA 39-11 GE

Le graphique de gauche montre les broches utilisées de l’afficheur sept
segments, et le graphique de droite le brochage du type utilisé. DP est la
forme abrégée de Decimal Point (point décimal).

Montage 12. L’afficheur sept segments 	 243

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 12-2
Liste des composants

1 afficheur sept segments
(par exemple de type SA 39-11 GE
avec anode commune)

7 résistances de 330 Ω

Schéma
Le circuit ressemble à celui du séquenceur de lumière. Toutefois, les dif-
férentes sorties numériques ne sont évidemment pas commandées suc-
cessivement, mais dans une combinaison précise, puisqu’elles doivent
composer un chiffre particulier :

 Figure 12-4
Carte Arduino commandant
l’afficheur 7 segments

Réalisation du circuit
La réalisation du circuit montre les sept résistances sur le bord supérieur
et l’afficheur 7 segments sur le bord inférieur de la plaque d’essais.

	 244	 Partie II. Les montages

Figure 12-5 u
Réalisation du circuit

de l’afficheur 7 segments

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino
Pour faciliter la commande des sept segments, le sketch fait ici aussi appel
à un tableau.

int segments[10][7] = {	{1, 1, 1, 1, 1, 1, 0}, // 0
 	 {0, 1, 1, 0, 0, 0, 0}, // 1
 	 {1, 1, 0, 1, 1, 0, 1}, // 2
 	 {1, 1, 1, 1, 0, 0, 1}, // 3
 	 {0, 1, 1, 0, 0, 1, 1}, // 4
 	 {1, 0, 1, 1, 0, 1, 1}, // 5
 	 {1, 0, 1, 1, 1, 1, 1}, // 6
 	 {1, 1, 1, 0, 0, 0, 0}, // 7
 	 {1, 1, 1, 1, 1, 1, 1}, // 8
 	 {1, 1, 1, 1, 0, 1, 1}}; // 9
int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup() {
 for(int i = 0; i < 7; i++)
 pinMode(pinArray[i], OUTPUT);
}

void loop() {

Montage 12. L’afficheur sept segments 	 245

 for(int i = 0; i < 10; i++) {
 for(int j = 0; j < 7; j++)
 digitalWrite(pinArray[j], (segments[i][j]==1)?LOW:HIGH);
 delay(1000); // Pause de 1 seconde
 }
}

Revue de code
Un tableau bidimensionnel s’impose d’emblée pour stocker les informa-
tions sur les segments à allumer pour chaque chiffre de 0 à 9. Ces valeurs
sont définies dans la variable globale segments en début de sketch :

int segments[10][7] = {{...},
 ...
 {...}};

Le tableau comprend 10 × 7 cases mémoire, le contenu de chacune pouvant
être obtenu par les coordonnées :

segments[x][y]

La coordonnée x sert pour tous les chiffres de 0 à 9 (soit 10 cases mémoire),
et la coordonnée y pour tous les segments de a à g (soit 7 cases mémoire).
On détermine par exemple les segments à allumer du chiffre 3 en écrivant
la ligne :

segments[3][y]

les résultats pour la variable y allant de 0 à 6 étant obtenus par une boucle
for. Les données des segments sont alors celles de la figure suivante.

Pour plus de clarté, j’ai uniquement dessiné les flèches des segments à
allumer.

	 246	 Partie II. Les montages

Peut-être vous demandez-vous pourquoi il y a un 1 là où il devrait y avoir
une mise à la masse dans le tableau des segments, alors que nous avons
dit que ce type d’afficheur sept segments disposait d’une anode commune.

En fait, j’ai dit qu’un 1 ne voulait pas forcément dire niveau HIGH, mais sim-
plement que le segment en question devait être allumé. Dans le cas d’un
afficheur sept segments à cathode commune, on commande l’allumage du
segment souhaité avec le niveau HIGH, tandis que dans le cas d’un afficheur
sept segments à anode commune, on le commande avec le niveau LOW. On
écrit ainsi la ligne suivante :

digitalWrite(pinArray[j], (segments[i][j]==1)?LOW:HIGH);

Si l’information est un 1, LOW est alors transmis comme argument à la fonc-
tion digitalWrite. Sinon, c’est HIGH. Le segment correspondant s’allume
si c’est LOW, et se voit géré de manière à rester éteint si c’est HIGH. Notre
sketch affiche tous les chiffres de 0 à 9 au rythme d’une seconde. Le code
suivant est utilisé pour ce faire :

for(int i = 0; i < 10; i++) {
 for(int j = 0; j < 7; j++)
 digitalWrite(pinArray[j], (segments[i][j]==1)?LOW:HIGH);
 delay(1000); // Pause de 1 seconde
}

La boucle extérieure avec la variable de contrôle i sélectionne dans le
tableau le chiffre à afficher tandis que la boucle intérieure avec la variable
j sélectionne les segments à allumer.

Sketch amélioré
Les divers segments d’un chiffre étaient commandés jusqu’ici au moyen
d’un tableau bidimensionnel, la première dimension servant à sélectionner
le chiffre désiré, et la deuxième les différents segments. Le sketch suivant va
nous permettre de tout faire avec un tableau unidimensionnel. Comment ?
C’est simple puisque bits et octets n’ont déjà plus de secret pour vous.
L’information de segment doit maintenant tenir dans une seule valeur.
Quel type de donnée s’impose ici ? Nous avons affaire à un afficheur sept
segments, et à un point décimal que nous laisserons de côté pour l’instant.
Cela fait donc 7 bits, qui tiennent idéalement dans un seul octet de 8 bits.
Chaque bit est simplement affecté à un segment et tous les segments
nécessaires peuvent être commandés avec un seul octet. J’en profite pour
vous montrer comment initialiser directement une variable par le biais
d’une combinaison de bits :

Montage 12. L’afficheur sept segments 	 247

void setup() {
 Serial.begin(9600);
 byte a = B10001011;	 // Déclarer + initialiser la variable
 Serial.println(a, BIN);	// Afficher en tant que valeur binaire
 Serial.println(a, HEX);	// Afficher en tant que valeur hexadécimale
 Serial.println(a, DEC);	// Afficher en tant que valeur décimale
}

void loop(){ /* vide */ }

La ligne décisive est bien sûr la suivante :

byte a = B10001011;

Ce qui est remarquable pour ne pas dire génial là-dedans, c’est le fait que le
préfixe B permet de représenter une combinaison de bits qui sera affectée
à la variable située à gauche du signe =. Cela simplifie les choses quand par
exemple vous connaissez une combinaison de bits et souhaitez la sauve-
garder. Il vous faudrait sinon convertir la valeur binaire en valeur décimale
avant de sauvegarder. Cette étape intermédiaire n’est ici plus nécessaire.

Peut-être vous interrogez-vous sur le type de donnée byte qui est bien un
nombre entier. Or type de donnée et nombres entiers sont bien composés
de chiffres allant de 0 à 9. Alors pourquoi maintenant peut-on commencer
par la lettre B et la faire suivre d’une combinaison de bits ? Ou s’agit-il
d’une chaîne de caractères ?

Effectivement, le type de donnée byte est un type de nombre entier. Vous
avez raison sur ce point. Là où vous avez tort, c’est sur le fait qu’il pourrait
s’agir d’une chaîne de caractères. Celle-ci serait alors entre guillemets. Il
s’agit en fait de tout autre chose. Aucune idée ? Je ne dirai qu’un mot :
#define. Ça vous dit quelque chose ? Voyez plutôt. Il existe dans les tréfonds
d’Arduino un fichier nommé binary.h qui se trouve dans le répertoire ...\
Arduino\hardware\arduino\avr\cores\arduino. Voici un court extrait de ce
fichier, dont les nombreuses lignes n’ont pas toutes besoin d’être montrées.

	 248	 Partie II. Les montages

Ce fichier contient toutes les combinaisons de bits possibles pour les valeurs
de 0 à 255, qui y sont définies en tant que constantes symboliques. Je me
suis permis de retirer la ligne pour la valeur 139 (déconseillé, à moins de
restaurer ensuite l’état initial !) pour voir comment le compilateur réagit.
Voyez plutôt :

Figure 12-6 u
Message d’erreur

intentionnelle

Montage 12. L’afficheur sept segments 	 249

Le message d’erreur indique que le nom B10001011 n’a pas été trouvé. Il me
faut encore vous expliquer les lignes suivantes avant d’en revenir au projet :

Serial.println(a, BIN); // Afficher en tant que valeur binaire
Serial.println(a, HEX); // Afficher en tant que valeur hexadécimale
Serial.println(a, DEC); // Afficher en tant que valeur décimale

La fonction println peut accueillir, en plus de la valeur à afficher, un autre
argument qui peut être indiqué séparé par une virgule. Je vous ai mis ici
les trois plus importants. Vous en trouverez d’autres sur la page de réfé-
rence des instructions Arduino sur Internet. Des explications figurent sous
forme de commentaires derrière les lignes d’instructions. L’affichage dans
le moniteur série est alors la suivante :

10001011
8B
139

Passons maintenant à la commande de l’afficheur sept segments au moyen
du tableau bidimensionnel. Voici auparavant le sketch complet que nous
allons analyser :

byte segments[10]= {	B01111110, // 0
		 B00110000, // 1
		 B01101101, // 2
		 B01111001, // 3
		 B00110011, // 4
		 B01011011, // 5
		 B01011111, // 6
		 B01110000, // 7
		 B01111111, // 8
		 B01111011}; // 9
int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup() {
 for(int i = 0; i < 7; i++)
 pinMode(pinArray[i], OUTPUT);
}

void loop() {
 for(int i = 0; i < 10; i++) {	// Commande du chiffre
 for(int j = 6; j >= 0; j--){	 // Interrogation des bits pour les segments
 digitalWrite(pinArray[6 - j], bitRead(segments[i], j) ==
1?LOW:HIGH);
 }
 delay(500); // Attendre une demi-seconde
 }
}

	 250	 Partie II. Les montages

Sur la figure 12-7, on voit très bien quel bit est en charge de quel segment
au sein de l’octet.

Figure 12-7 u
Un octet gère les segments

de l’afficheur (ici par
exemple pour le chiffre 4).

Ayant seulement sept segments à commander et ne tenant pas compte
du point décimal, j’ai constamment donné au MSB (rappelez-vous : MSB
= bit le plus significatif) la valeur 0 pour tous les éléments du tableau.
Tout se joue bien entendu encore – et comment en serait-il autrement – à
l’intérieur de la fonction loop. Jetons-y un coup d’œil :

void loop() {
 for(int i = 0; i < 10; i++) { // Commande du chiffre
 for(int j = 6; j >= 0; j--){ // Interrogation des bits pour les segments
 digitalWrite(pinArray[6 - j], bitRead(segments[i], j) == 1?LOW:HIGH);
 }
 delay(500); // Attendre une demi-seconde
 }
}

La boucle extérieure for avec la variable de contrôle i commande encore
les divers chiffres de 0 à 9. C’était déjà le cas dans la première solution.
Le code est ensuite différent. La boucle intérieure for avec la variable de
contrôle j est chargée de choisir le bit dans le chiffre sélectionné. Je com-
mence du côté gauche par la position 6, qui est en charge du segment a.
Le tableau des broches gérant cependant la broche 8 pour le segment g à
la position 6 de l’index, la commande doit se faire en sens inverse. On y
parvient en soustrayant le nombre 6 puisque j’ai gardé tel quel le tableau
des broches du premier exemple :

pinArray[6 - j]

Montage 12. L’afficheur sept segments 	 251

Voici maintenant à une fonction intéressante, permettant de lire un bit
déterminé dans un octet. Elle porte le nom bitRead.

(139, 3);

Instruction

bitRead

Valeur Position du bit

Arguments t Figure 12-8
Instruction bitRead

Cet exemple donne le bit de la position 3 pour la valeur décimale 139
(binaire : 10001011). Le comptage commence pour l’index 0 au LSB (bit le
moins significatif) du côté droit. La valeur renvoyée serait par conséquent
un 1. La ligne :

digitalWrite(pinArray[6 - j], bitRead(segments[i], j) == 1?LOW:HIGH);

permet de vérifier que la lecture du bit sélectionné renvoie bien un 1. Si c’est
le cas, la broche sélectionnée est commandée avec le niveau LOW, autrement
dit le segment s’allume. N’oubliez pas : anode commune ! Sauriez-vous
expliquer la différence entre les deux solutions ?

Dans la première version avec le tableau bidimensionnel, le chiffre à affi-
cher est sélectionné par la première dimension tandis que les segments
à commander le sont par la deuxième. Cette information se trouve dans
les différents éléments du tableau. Dans la deuxième version, le chiffre à
afficher est également sectionné par la première dimension. S’agissant d’un
tableau unidimensionnel, elle est cependant la seule dimension. Seulement,
l’information pour commander les segments est contenue dans les diverses
valeurs de l’octet. Ce qui était fait auparavant par la deuxième dimension
est maintenant fait par les bits d’un octet.

Problèmes courants
Si l’affichage ne correspond pas aux chiffres 1 à 9 ou si des combinaisons
incohérentes s’affichent, vérifiez les choses suivantes.

	● Vos fiches de raccordement sur la plaque correspondent-elles vraiment
au circuit ?

	● Pas de court-circuit éventuel ?

	 252	 Partie II. Les montages

	● Le code du sketch est-il correct ?

	● Si des caractères incohérents s’affichent, il se peut que vous ayez inter-
verti des lignes de commande. Vérifiez le câblage avec le schéma ou
la fiche technique de l’afficheur sept segments.

	● Le tableau des segments est-il initialisé avec les bonnes valeurs ?

Exercice complémentaire
Élargissez la programmation du sketch de telle sorte que certaines lettres
puissent s’afficher à côté des chiffres 0 à 9. Ce n’est certes pas possible pour
tout l’alphabet, donc à vous de trouver lesquelles pourraient convenir. La
figure suivante vous fournit quelques exemples pour commencer.

Notez qu’il existe un nombre infini de déclinaisons d’afficheurs sept seg-
ments. L’affichage peut être de différentes couleurs, telles que :

	● jaune ;

	● rouge ;

	● vert ;

	● rouge très clair.

	● Il faut bien entendu s’assurer du type de connexion avant d’acheter :

	● l’anode commune ;

	● la cathode commune.

Elles ont des tailles différentes. En voici deux proposées par le fournisseur
Kingbright :

	● type SA-39 : hauteur des chiffres = 0,39" = 9,9 mm ;

	● type SA-56 : hauteur des chiffres = 0,56" = 14,2 mm.

Montage 12. L’afficheur sept segments 	 253

Qu’avez-vous appris ?
	● Dans ce montage, les principes de la commande d’un afficheur sept

segments vous sont expliqués.

	● L’initialisation d’un tableau vous permet de définir les différents seg-
ments de l’affichage pour pouvoir les commander à votre aise par la
suite.

	● Le fichier d’en-tête binary.h contient un grand nombre de constantes
symboliques que vous pouvez utiliser dans votre sketch.

	● Vous savez comment convertir un nombre à afficher dans une autre
base numérique en ajoutant un deuxième argument (BIN, HEX ou DEC)
à la méthode println.

	● La fonction bitRead vous permet de lire l’état de certains bits d’un
nombre.

	 255

Montage

13La température

Dans le montage n° 12, nous avions vu comment commander des afficheurs
sept segments. Cette fois, nous irons encore plus loin. Vous avez certaine-
ment déjà vu ces thermomètres numériques qui affichent également l’heure
devant une pharmacie, par exemple. Nous allons voir ici comment afficher la
température ambiante à l’aide d’un afficheur sept segments. Mais avant cela,
nous devons revoir quelques notions fondamentales.

Chaud ou froid ?
Nous vivons dans un monde ou plutôt dans un environnement composé de
matières diverses. Ces dernières peuvent en principe présenter trois états dits
d’agrégation en physique. Un tel état d’agrégation peut être solide, liquide
ou gazeux et dépend souvent d’une grandeur physique appelée température.
Mais que signifie la température et comment se fait-elle sentir ou plutôt com-
ment peut-on la mesurer ? Toute matière est composée d’infimes particules
appelées atomes. Ceux-ci sont composés d’un nuage d’électrons (charge :
négative) et d’un noyau formé de protons (charge positive) et de neutrons
(charge : nulle). Ce ne sont pas là les plus petites particules, mais elles suffiront
à expliquer au moyen de notre exemple ce qu’est la température.

t Figure 13-1
Le mouvement des atomes

	 256	 Partie II. Les montages

Ces infimes particules sont en perpétuel mouvement, errant apparemment
sans but et dans des directions différentes. La température est donc un
moyen de mesurer cette agitation thermique des atomes ou des molécules
(assemblage de plusieurs atomes). Plus ils se déplacent rapidement, plus la
probabilité est grande qu’ils entrent en collision. C’est alors que l’énergie
cinétique se transforme en énergie calorifique. L’agitation thermique est
donc un moyen de mesurer la température d’une matière.

Comment peut-on mesurer la température ?
On utilise des capteurs, qui convertissent la température mesurée en
diverses valeurs de résistance ou de tension. Dans le cas le plus simple, on
utilise des résistances NTC ou PTC. Elles manquent cependant de précision,
et leur courbe caractéristique n’est pas forcément linéaire. De quel type de
résistance s’agit-il et comment se comportent-elles en cas de fluctuation
de la température ?

La résistance NTC
NTC signifie Negative Temperature Coefficient ou résistance à coefficient de
température négatif. La résistance diminue avec la hausse de la température
et conduit mieux le courant.

Figure 13-2 u
Résistance NTC

Sa forme ressemble à celle d’un condensateur céramique, ce qui peut par-
fois donner lieu à des confusions. Une inscription, par exemple 4K7, laisse
pourtant présumer de la valeur de résistance, et l’appellation « Thermistor
NTC 4K7 » permet de l’identifier formellement. Le symbole est le suivant :

Montage 13. La température 	 257

t Figure 13-3
Symbole de la résistance
NTC

Vous pouvez voir deux flèches à côté du symbole de la résistance. La pre-
mière, à gauche, désigne la température et la deuxième, à droite, corres-
pond à la résistance. Quand la température augmente, comme le signale la
flèche pointée vers le haut, la résistance diminue, ce qui est indiqué par la
flèche pointée vers le bas. Une NTC se reconnaît à sa courbe caractéristique.

t Figure 13-4
Courbe caractéristique
d’une thermistance NTC

On remarque qu’il s’agit bel et bien d’une courbe et non d’une droite, ce
qui est important pour la précision de la mesure de la température. La
principale caractéristique de cette résistance est sa valeur de référence, R

20
,

qui est annoncée à une température ambiante de 20 ̊ C. Sur la courbe, j’ai
opté pour une valeur fictive de 10K.

La résistance PTC
La résistance de la thermistance PTC varie inversement à celle d’une ther-
mistance NTC. PTC signifie Positive Temperature Coefficient. La conduc-
tance d’une PTC diminue (et la résistance augmente) en fonction de la
température. Le symbole est le suivant :

t Figure 13-5
Symbole de la PTC
(thermistance PTC)

Le sens des flèches permet là aussi d’identifier le type de thermistance. Une
hausse de la température entraîne une hausse de la résistance. La courbe
caractéristique d’une PTC est l’inverse de celle de la NTC, avec quelques

	 258	 Partie II. Les montages

particularités supplémentaires. En effet, elle peut avoir un minimum dans
la région des basses températures et un maximum dans celle des tempé-
ratures élevées.

Figure 13-6 u
Courbe caractéristique

d’une PTC

Le tableau suivant résume le comportement des deux types de résistances
sensibles à la température (NTC et PTC).

Tableau 13-1 u
Comportement des NTC

et PTC selon la
tempréature

Type Température Résistance Courant

NTC ↑ ↓ ↑

↓ ↑ ↓

PTC ↑ ↑ ↓

↓ ↓ ↑

Le capteur de précision LM35
Nous avons vu que les courbes caractéristiques des deux thermistances
n’étaient pas linéaires. Aussi voudrais-je vous présenter un capteur de tem-
pérature qui fait fort bien les choses en produisant une tension de sortie
linéaire proportionnelle à la température. Il a pour nom LM35 et présente
trois pattes de raccordement. Deux d’entre elles servent à l’alimentation,
la troisième de sortie.

Figure 13-7 u
Capteur de température

LM35 en boîtier plastique
T0-92, avec son brochage

Montage 13. La température 	 259

On pourrait croire que ce composant s’apparente à un transistor ordinaire
mais les apparences sont trompeuses. Ce n’est pas parce qu’il ressemble à
un transistor que c’en est un. En cas de doute, consultez sa dénomination
qui indique bien qu’il s’agit d’un capteur de température.

Ce capteur convertit la température mesurée en une valeur de tension
analogique qui est proportionnelle à la température. Cela s’appelle un
comportement de tension proportionnel à la température. Le capteur a une
sensibilité de 10 mV/°C et une gamme de température comprise entre 0
et 100 °C. La formule pour calculer la température en fonction de la valeur
mesurée à l’entrée analogique est la suivante :

Les valeurs de la formule se justifient ainsi :

	● 5.0 : tension de référence Arduino de 5 V ;

	● 100.0 : valeur maximale mesurable par le capteur de température ;

	● 1024 : résolution de l’entrée analogique.

Avant d’envoyer la valeur mesurée à l’afficheur sept segments, il paraît
intéressant de représenter graphiquement l’évolution de la courbe de tem-
pérature dans Processing. Voilà ce que cela donne :

t Figure 13-8
Courbe de température
dans Processing

La température s’affiche sous la forme d’une valeur de température et sous
celle d’une courbe graphique en fonction du temps.

	 260	 Partie II. Les montages

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 13-2 u
Liste des composants

Composant

1 capteur de température LM35

2 registres à décalage 74HC595

2 afficheurs sept segments (par
exemple de type
SA 39-11 GE avec anode commune)

14 résistances de 330 Ω

1 résistance de 10K

1 bouton-poussoir miniature

Schéma
Voici le schéma d’interrogation de la valeur de température à l’aide de la
thermistance LM35 :

Figure 13-9 u
Schéma de mesure

de la température

Montage 13. La température 	 261

Réalisation du circuit
Le circuit contient le capteur de température LM35 qui a été raccordé à
un petit connecteur tripolaire afin de pouvoir raccorder facilement un
câble de rallonge.

t Figure 13-10
Réalisation du circuit de
mesure de la température
avec le LM35

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino
Le sketch suivant lit la valeur sur l’entrée analogique A0 et stocke plu-
sieurs valeurs mesurées dont la valeur moyenne est ensuite transmise à
l’interface série.

#define LM35 A0	 // Connexion à la sortie du LM35
#define DELAY 10	 // Valeur de la pause
const int cycles = 20;	 // Nombre de mesures

void setup() {
 Serial.begin(9600);
}

void loop() {
 float resultTemp = 0.0;
 for(int i = 0; i < cycles; i++) {
 int analogValue = analogRead(LM35);
 float temperature = (5.0 * 100.0 * analogValue) / 1024;
 resultTemp += temperature;	// Addition des valeurs mesurées
 delay(DELAY);	 // Courte pause
 }
 resultTemp /= cycles;	 // Calcul de la moyenne
 Serial.println(resultTemp);	 // Envoi à l’interface série
}

	 262	 Partie II. Les montages

Examinons la signification de ce sketch.

Revue de code
La valeur déterminée par le capteur de température LM35 est calculée
avec la formule ci-après :

float temperature = (5.0 * 100.0 * analogValue) / 1024;

et moyennée à l’aide d’une boucle for. Les valeurs mesurées y sont addi-
tionnées, puis la moyenne est calculée. Cette dernière est enfin transmise
à l’interface série :

Serial.println(resultTemp);

Son traitement par Processing commence immédiatement.

Revue de code Processing
import processing.serial.*;
Serial mySerialPort;
float realTemperature;
int temperature, xPos;
int[] yPos;
PFont font;

void setup() {
 size(321, 250); smooth();
 println(Serial.list());
 mySerialPort = new Serial(this, Serial.list()[0], 9600);
 mySerialPort.bufferUntil('\n');
 yPos = new int[width];
 for(int i = 0; i < width; i++)
 yPos[i] = 250;
 font = createFont("Courier New", 40, false);
 textFont(font, 40); textAlign(RIGHT);
}

void draw() {
 background(0, 0, 255, 100);
 strokeWeight(2); stroke(255, 0, 0);
 fill(100, 100, 100); rect(10, 100, width - 20, 130);
 strokeWeight(1); stroke(0, 255, 0);
 int yPosPrev = 0, xPosPrev = 0;
 // Décaler les valeurs du tableau vers la gauche
 for(int x = 1; x < width; x++)
 yPos[x-1] = yPos[x];
 �// Ajout des nouvelles coordonnées de la souris
// à l’extrémité droite du tableau

Montage 13. La température 	 263

 yPos[width-1] = temperature;
 // Affichage du tableau
 for(int x = 10; x < width - 10 ; x++)
 point(x, yPos[x]);
 fill(255);
 text(realTemperature + " °C", 250, 30); // Celsius
 delay(100);
}

void serialEvent(Serial mySerialPort) {
 String portStream = mySerialPort.readString();
 float data = float(portStream);
 realTemperature = data;
 temperature = height - (int)map(data, 0, 100, 0, 130) - 25;
 println(realTemperature);
}

Nous en arrivons bientôt à l’objectif de ce montage qui est la réalisation
d’une mesure de la température et l’affichage de la valeur sur les deux
afficheurs à sept segments. Mais avant cela, j’aimerais revenir sur une
possibilité intéressante de l’IDE Arduino.

Affichage de valeurs analogiques
sur l’IDE Arduino
Vous avez vu comment représenter l’évolution des valeurs mesurées à l’aide
de Processing, ce qui permet de rendre la variation des températures plus
lisible. Toutefois, l’IDE Arduino dispose d’une fonctionnalité qui permet
de présenter très facilement cette évolution. Il s’agit du Serial Plotter ou
Traceur série. Chargez le premier sketch de ce montage sur votre carte
Arduino, puis sélectionnez la commande Outils | Traceur série.

La fenêtre qui apparaît représente l’évolution de la valeur de température
dans le temps.

	 264	 Partie II. Les montages

Figure 13-11 u
Traceur série

Schéma élargi
Voici le schéma pour l’interrogation de la valeur de température à l’aide
de la thermistance LM35 et l’affichage sur les afficheurs sept segments :

Figure 13-12 
Schéma de mesure

de la température et
d’affichage sur les

afficheurs sept segments

Montage 13. La température 	 265

Réalisation du circuit étendu
Le circuit contient le capteur de température LM35 qui a été raccordé à
deux afficheurs sept segments.

t Figure 13-13
Réalisation du circuit de
mesure de la température
avec le LM35

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino
Le sketch suivant lit la valeur sur l’entrée analogique A0 et stocke plu-
sieurs valeurs mesurées dont la valeur moyenne est ensuite transmise à
l’interface série.

#define LM35 A0 	 // Broche LM35
byte segments[10]= {	B01000000,	 // 0
		 B01111001,	 // 1
		 B00100100,	 // 2
		 B00110000,	 // 3
		 B00011001,	 // 4
		 B00010010,	 // 5
		 B00000010,	 // 6
		 B01111000,	 // 7
		 B00000000,	 // 8
		 B00010000};	// 9
int shiftPin = 8; 	 // SH_CP
int storagePin = 9; 	 // ST_CP
int dataPin = 10; 	 // DS

	 266	 Partie II. Les montages

// Fonction de transmission des informations
void sendBytes(int value) {
 digitalWrite(storagePin, LOW);
 shiftOut(dataPin, shiftPin, MSBFIRST, value >> 8);
 shiftOut(dataPin, shiftPin, MSBFIRST, value & 255);
 digitalWrite(storagePin, HIGH);
}

void displayValue(int value) {
 byte tens = int(value / 10); // Calculer le chiffre des dizaines
 byte units = value - tens * 10; // Calculer le chiffre des unités
 sendBytes(segments[tens] << 8 | segments[units]); // Dizaines et unités
}

void setup() {
 Serial.begin(9600);
 pinMode(shiftPin, OUTPUT);
 pinMode(storagePin, OUTPUT);
 pinMode(dataPin, OUTPUT);
}

void loop() {
 int analogValue = analogRead(LM35);
 int temperature = (5.0 * 100.0 * analogValue) / 1024;
 displayValue(temperature); // Afficher la valeur
 Serial.println(temperature); // Envoi à l’interface série
 delay(500); // Courte pause
}

Examinons la signification de ce sketch.

Revue de code
Je n’ai pas grand-chose à ajouter, car vous connaissez déjà les bases. Comme
les afficheurs sept segments affichent uniquement des nombres entiers,
nous avons défini la valeur de température comme étant de type int, ce
qui signifie qu’un nombre décimal doit être converti en nombre entier.
J’ai choisi pour simplifier de ne pas calculer la moyenne des températures.

Peut-être avez vous remarqué que les modes d’écriture varient considé-
rablement sur Internet et dans les exemples de sketches d’interrogation
d’une entrée analogique. À certains endroits, l’entrée analogique 0 sera
uniquement désignée par le chiffre 0 et à d’autres par A0. Quelle est la
différence ?

En principe, il n’y a pas de différence. La forme d’écriture A0, qui est un
alias, a été permise, car elle est plus claire puisque l’on sait immédiatement
que l’on a affaire à une broche analogique.

Montage 13. La température 	 267

Vous trouverez de plus amples informations à l’adresse suivante :

https://www.arduino.cc/en/Tutorial/AnalogInputPins

Problèmes courants
	● Si l’afficheur sept segments affiche des chiffres qui ne paraissent pas

cohérents, vérifiez les valeurs transmises dans le moniteur série.

Qu’avez-vous appris ?
	● Vous avez vu la différence et les spécificités des thermistances NTC

et PTC.

	● Vous avez utilisé un capteur LM35 afin de mesurer la température.

	● Nous avons d’abord affiché les valeurs dans Processing, puis à l’aide
de deux afficheurs sept segments.

	● Vous avez représenté une courbe des valeurs de température mesu-
rées à l’aide du Traceur série de l’IDE Arduino de la même façon que
dans Processing.

	 269

Montage

14Le clavier numérique

Jusqu’à présent, comme entrée numérique, nous avons utilisé un ou plu-
sieurs boutons-poussoirs miniatures qui étaient disposés de manière assez
arbitraire sur la plaque d’essais. Dans ce montage, nous allons réunir plu-
sieurs boutons sur un shield Arduino afin de fabriquer un dispositif d’entrée
confortable. Nous en profiterons également pour voir comment fabriquer
son propre shield.

Qu’est-ce qu’un clavier numérique ?
Vous connaissez déjà le bouton-poussoir, dont nous avons parlé au cours
de certains montages. Mais ici, plusieurs boutons-poussoirs (touches) sont
réunis en une matrice – donc disposés en lignes et colonnes – de manière
à proposer les chiffres 0 à 9 et deux touches spéciales telles que * et #. À
quoi cela sert-il ? Eh bien, vous utilisez ce jeu de touches tous les jours,
entre autres pour téléphoner.

t Figure 14-1
Clavier de téléphone

	 270	 Partie II. Les montages

Il s’agit d’une matrice de 4 × 3 touches (4 lignes et 3 colonnes). Cette matrice
est également appelée keypad (clavier numérique) et peut être achetée
prête à l’emploi en différentes variantes. La figure 14-2 montre deux cla-
viers numériques à film. Celui de gauche possède même quelques touches
supplémentaires A à D, qui peuvent s’avérer très utiles si les 12 touches du
clavier numérique de droite ne suffisent pas pour votre projet.

Figure 14-2 u
Clavier numérique

à film 4 × 4 à 16 touches
et clavier numérique

à film 4 × 3 à 12 touches

Mais comment brancher par exemple le clavier numérique à film 4 × 4 sur
votre Arduino sans rencontrer des problèmes de broches ? On pourrait
bien sûr raccorder les 16 touches d’un côté au +5 V et les 16 prises corres-
pondantes aux entrées numériques.

Vous pourriez bien sûr procéder ainsi et cela fonctionnerait s’il n’y avait pas
les limites physiques de la carte Arduino Uno. Une solution consisterait à
utiliser la carte Arduino Mega, dont le nombre d’interfaces est bien élevé.
Mais soyons ingénieux ; il existe une bibliothèque pour claviers numériques
prête à l’emploi sur le site Internet Arduino, aussi allons-nous tout faire
par nous-mêmes. Nous utiliserons le clavier numérique 4 × 3 que nous
aurons fabriqué de nos propres mains. Voici la liste du matériel nécessaire.

Montage 14. Le clavier numérique 	 271

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 14-1
Liste des composants

12 boutons-poussoirs miniatures

1 jeu de connecteurs femelles
empilables
•  2 connecteurs à 8 broches
•  1 connecteur à 6 broches
•  1 connecteur à 10 broches

1 carte de dimensions 10 × 10 ou mieux
16 × 10 (vous pourrez alors en faire
deux shields). La découpe du shield est
déjà indiquée, et je reviendrai bientôt
sur cette dernière.

Réflexions préliminaires
Nous venons de voir que notre clavier numérique 4 × 4 nécessitait 16 lignes
pour interroger toutes les touches. Un clavier numérique 4 × 3 n’aurait
quant à lui besoin que de 12 lignes. Mais ce serait encore beaucoup trop à
mon avis. Une solution astucieuse existe, dont l’idée de base a déjà servi
pour commander les deux afficheurs sept segments. Vous vous deman-
dez sûrement ce que des afficheurs sept segments ont à voir avec ces
touches. Le mot commun est multiplexage. Il signifie que certains signaux
sont regroupés et envoyés par un moyen de transmission pour minimiser
l’utilisation des lignes et en tirer profit le plus possible. Sur les afficheurs
sept segments, les lignes de commande de deux segments sont montées
en parallèle et utilisées pour commander les deux. Sept ou huit lignes par
segment sont ainsi économisées. La solution trouvée pour interroger les
différentes touches d’un clavier numérique est relativement simple. Voici
le câblage des 12 touches.

	 272	 Partie II. Les montages

Figure 14-3 u
Câblage des 12 touches
d’un clavier numérique

4 × 3 1 2 3

4 5 6

7 8 9

* 0 #

Colonnes

Lignes

2 1 0

0

1

2

3

Imaginez une grille composée de 4 × 3 fils métalliques posés l’un sur l’autre
sans pour autant se toucher. Voilà à quoi ressemble ce graphique. On voit
que les 4 fils horizontaux, en bleu, forment des lignes numérotées de 0
à 3. Au-dessus, les trois fils verticaux en rouge forment à peu de distance
des colonnes numérotées de 0 à 2. Chaque intersection présente des petits
contacts reliant, quand on appuie sur la touche, la ligne et la colonne en
question pour former un tronçon de circuit électrique. Regardez bien la
figure 14-4, où la touche numéro 5 est enfoncée.

Figure 14-4 u
La touche 5 est enfoncée

(les lignes en gras montrent
le passage du courant). 1 2 3

4 5 6

7 8 9

* 0 #

Colonnes

Lignes

2 1 0

0

1

2

3

Le courant peut alors passer de la ligne 2 via l’intersection numéro 5 dans
la colonne 1 et y être détecté. Plus tard, nous utiliserons les résistances
pull-up internes du microcontrôleur, ce qui nous épargnera un raccorde-
ment externe avec des résistances séparées. La commande se fait aussi
avec un niveau LOW. Nous y reviendrons.

Montage 14. Le clavier numérique 	 273

Mais si une tension est appliquée simultanément à toutes les lignes, la
touche 2 au-dessus peut tout aussi bien être pressée et nous enregistre-
rions une impulsion correspondante sur la colonne 1. Comment faire la
différence ?

Disons grossièrement que nous envoyons tour à tour un signal par les
lignes 0 à 3 et interrogeons ensuite également tour à tour le niveau sur
les colonnes 0 à 2. Le déroulement est alors le suivant, la commande se
faisant avec un niveau LOW, comme je l’ai déjà mentionné :

	● Niveau LOW sur le fil de la rangée 0

	– Interrogation du niveau sur la colonne 0

	– Interrogation du niveau sur la colonne 1

	– Interrogation du niveau sur la colonne 2

	– …

	● Niveau LOW sur le fil de la rangée 1

	– Interrogation du niveau sur la colonne 0

	– Interrogation du niveau sur la colonne 1

	– Interrogation du niveau sur la colonne 2

	– …

Cette interrogation est bien sûr si rapide que suffisamment de passages ont
lieu en une seule seconde pour que pas un appui de touche ne soit omis.
Le shield a été câblé à demeure avec les numéros de broches des entrées
et sorties indiqués sur la figure 14-5.

1 2 3

4 5 6

7 8 9

* 0 #

Lignes

Broche 2

Broche 3

Colonnes
Broche 8 Broche 7 Broche 6

Broche 4

Broche 5

t Figure 14-5
Câblage des différentes
lignes et colonnes avec les
broches numériques

	 274	 Partie II. Les montages

Pimentons ici un peu les choses et créons notre propre bibliothèque qui
servira plus tard à d’autres montages. Elle offre une certaine fonctionnalité
de base et pourra bien entendu être modifiée ou élargie si besoin est. Le
sketch principal demande continuellement au shield quelle touche a été
pressée. Le résultat est affiché dans le moniteur série pour visualisation.
Pour vérifier le bon fonctionnement de la bibliothèque, fixons-nous les
spécifications suivantes :

	● si vous n’appuyez sur aucune touche, aucun caractère n’est affiché
dans le moniteur série ;

	● si vous n’appuyez que brièvement sur une touche, le chiffre ou le
caractère s’affiche dans le moniteur ;

si vous appuyez sur une touche un long moment, qui peut être préalable-
ment défini en conséquence, le chiffre ou le caractère s’affiche plusieurs
fois l’un derrière l’autre jusqu’à ce que la touche soit relâchée. Examinons
le schéma avant de nous lancer dans la programmation.

Schéma
Nous utilisons uniquement les sept connexions du clavier numérique vers
la carte Arduino.

Figure 14-6 u
Circuit de commande
du clavier numérique

Montage 14. Le clavier numérique 	 275

Réalisation du circuit
Voici comment le shield du clavier numérique est branché sur la carte
Arduino :

t Figure 14-7
Réalisation du circuit
de commande du clavier
numérique

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino
La programmation se divise en un sketch principal et une bibliothèque.

Sketch principal avec revue de code
#include "MyKeyPad.h"
int rowArray[] = {2, 3, 4, 5};	 // Initialiser le tableau avec les numéros 	
		 // de broche des lignes
int colArray[] = {6, 7, 8};	 // Initialiser le tableau avec les
		 // numéros de broche des colonnes
MyKeyPad myOwnKeyPad(rowArray, colArray); // Instanciation d’un objet

void setup() {
 Serial.begin(9600); // Préparer la sortie série
 myOwnKeyPad.setDebounceTime(500); // Régler le temps du rebond à 500 ms
}

void loop() {
 char myKey = myOwnKeyPad.readKey();	 // Lecture de la touche pressée
 if(myKey != KEY_NOT_PRESSED)	 // Une touche quelconque a-t-elle 	
		 // été pressée ?
 Serial.println(myKey);	 // Affichage du caractère de la 	
		 // touche
}

	 276	 Partie II. Les montages

Tout comme vous l’avez appris dans le montage n° 8 « Comment créer une
bibliothèque ? », la première ligne permet d’inclure le fichier d’en tête per-
mettant d’utiliser la bibliothèque. Nous verrons bientôt ce qu’il contient.
Déclarons pour commencer deux tableaux, que nous initialisons avec les
numéros des broches de connexion aux lignes et aux colonnes du clavier
numérique. Cela offre une plus grande flexibilité et permet d’adapter les
réalisations différentes. La ligne

MyKeyPad myOwnKeyPad(rowArray, colArray);

génère l’instance myOwnKeyPad de la classe MyKeyPad qui est définie dans la
bibliothèque, et transmet les deux tableaux au constructeur de la classe. Ces
informations lui sont nécessaires pour commencer à évaluer sur laquelle
des 12 touches on a appuyé. Le temps de rebond est déterminé par la
ligne suivante :

myOwnKeyPad.setDebounceTime(500);

La méthode setDebounceTime avec l’argument 500 est ainsi appelée.
L’instance est ensuite continuellement interrogée au sein de la fonction
loop, la question posée étant : « Indique-moi la touche qui est actuelle-
ment pressée sur le clavier numérique ! » Pour y arriver, il faut écrire la
ligne suivante :

char myKey = myOwnKeyPad.readKey();

Elle affecte le résultat de la requête à la variable myKey du type char. On
peut maintenant réagir en conséquence. Il le faut, car la méthode renvoie
toujours une valeur, qu’une touche ait été pressée ou non. Mais vous sou-
haitez sûrement voir à l’écran si une touche a été enfoncée. Aussi la valeur
KEY_NOT_PRESSED est-elle renvoyée quand aucune touche n’est pressée.

if(myKey != KEY_NOT_PRESSED)
 Serial.println(myKey);

n’envoie donc le caractère correspondant à la touche au moniteur série
que si une touche est véritablement appuyée.

Il se peut que vous vous demandiez ce qu’il y a derrière KEY_NOT_PRESSED.
Question pertinente, car j’en serais venu de toute façon à parler du fichier
d’en-tête. De nombreuses constantes symboliques y sont définies. Parmi
ces constantes se cache le caractère -, qui est toujours envoyé lorsqu’au-
cune touche n’est pressée. Je lui ai donné ce nom évocateur pour que le
code soit plus lisible.

Montage 14. Le clavier numérique 	 277

Fichier d’en-tête avec revue de code
Le fichier d’en-tête sert, comme nous l’avons déjà expliqué, à faire connaître
les variables et les méthodes nécessaires à la définition de la classe en
question. Voyons maintenant ce qu’on y trouve :

#ifndef MYKEYPAD_H
#define MYKEYPAD_H
#include <Arduino.h>
#define KEY_NOT_PRESSED '-' // Nécessaire si aucune touche n’est pressée
#define KEY_1 '1'
#define KEY_2 '2'
#define KEY_3 '3'
#define KEY_4 '4'
#define KEY_5 '5'
#define KEY_6 '6'
#define KEY_7 '7'
#define KEY_8 '8'
#define KEY_9 '9'
#define KEY_0 '0'
#define KEY_STAR '*'
#define KEY_HASH '#'

class MyKeyPad {
 public:
 MyKeyPad(int rowArray[], int colArray[]); // Constructeur paramétré
 void setDebounceTime(unsigned int debounceTime); �// Réglage du temps

// de rebond
 char readKey(); �// Détermine la touche

// pressée sur le clavier numérique
 private:
 unsigned int debounceTime;	// Variable locale pour temps de rebond
 long lastValue;	 // Dernière valeur de la fonction millis
 int row[4];	 // Tableau pour les lignes
 int col[3];	 // Tableau pour les colonnes
};
#endif

La partie supérieure est consacrée aux constantes symboliques et aux carac-
tères correspondants. Vient ensuite la définition formelle de la classe sans
formulation du code qui, comme chacun sait, se trouve dans le fichier .cpp.

Mais que veut dire unsigned int dans la déclaration des variables ? Le type
de donnée int vous est déjà familier. Son domaine s’étend des valeurs néga-
tives aux valeurs positives. Le mot-clé unsigned placé devant indique que
la variable est déclarée sans signe, autrement dit son domaine de valeurs
double puisque les valeurs négatives sont supprimées. Ce type de donnée
nécessite également (comme int) deux octets pour que les valeurs posi-
tives soient toutes représentées. Le domaine de valeurs va de 0 à 65 535.

	 278	 Partie II. Les montages

Fichier ccp avec revue de code
Voici maintenant un peu de code « fait maison » :

#include "MyKeyPad.h"
// Constructeur paramétré
MyKeyPad::MyKeyPad(int rowArray[], int colArray[]) {
 // Copier le tableau des broches
 for(int r = 0; r < 4; r++)
 row[r] = rowArray[r];
 for(int c = 0; c < 3; c++)
 col[c] = colArray[c];
 // Programmation des broches numériques
 for(int r = 0; r < 4; r++)
 pinMode(row[r], OUTPUT);
 for(int c = 0; c < 3; c++)
 pinMode(col[c], INPUT_PULLUP);
 // Définition initiale de debounceTime à 300 ms
 debounceTime = 300;
}

// Méthode pour régler le temps de rebond
void MyKeyPad::setDebounceTime(unsigned int time) {
debounceTime = time;
}

// Méthode pour déterminer la touche appuyée sur le clavier numérique
char MyKeyPad::readKey() {
 char key = KEY_NOT_PRESSED;
 for(int r = 0; r < 4; r++) {
 digitalWrite(row[r], LOW);
 for(int c = 0; c < 3; c++) {
 if((digitalRead(col[c]) == LOW)	&&(millis() - lastValue) >=

➥ debounceTime) {
 if((c==2)&&(r==3)) key = KEY_1;
 if((c==1)&&(r==3)) key = KEY_2;
 if((c==0)&&(r==3)) key = KEY_3;
 if((c==2)&&(r==2)) key = KEY_4;
 if((c==1)&&(r==2)) key = KEY_5;
 if((c==0)&&(r==2)) key = KEY_6;
 if((c==2)&&(r==1)) key = KEY_7;
 if((c==1)&&(r==1)) key = KEY_8;
 if((c==0)&&(r==1)) key = KEY_9;
 if((c==2)&&(r==0)) key = KEY_STAR; // *
 if((c==1)&&(r==0)) key = KEY_0;
 if((c==0)&&(r==0)) key = KEY_HASH; // #
 lastValue = millis();
 }
 }
 digitalWrite(row[r], HIGH); // Restauration du niveau initial
 }
 return key;
}

Montage 14. Le clavier numérique 	 279

Voyons d’abord le constructeur. Il sert à initialiser l’objet à créer et à lui don-
ner des valeurs initiales définies. Un constructeur doit permettre d’initiali-
ser, autant que possible complètement, l’instance, de telle sorte qu’aucun
appel de méthode ne soit plus en principe nécessaire pour l’initialisation.
Elles ne sont plus utilisées que pour corriger certains paramètres qui, le
cas échéant, doivent, ou peuvent, être modifiés en cours de sketch. Le
constructeur n’est appelé qu’une seule fois et de manière implicite lors de
l’instanciation, et après cela plus jamais dans la vie de l’objet. Dans notre
exemple, les tableaux des lignes et des colonnes lui sont communiqués
lors de l’appel, de manière à pouvoir être transmis ensuite aux tableaux
locaux au moyen de deux boucles for :

 // Copie des tableaux de broches
 for(int r = 0; r < 4; r++)
 row[r] = rowArray[r];
 for(int c = 0; c < 3; c++)
 col[c] = colArray[c];

Les broches numériques sont ensuite initialisées et leurs sens de transfert
sont définis :

 // Programmation des broches numériques
 for(int r = 0; r < 4; r++)
 pinMode(row[r], OUTPUT);
 for(int c = 0; c < 3; c++)
 pinMode(col[c], INPUT_PULLUP);
 // Définition initiale de debounceTime à 300 ms
 debounceTime = 300;

Nous avons vu qu’un objet devait toujours être complètement instancié au
moyen d’un constructeur. Mais ici nous lui transmettons uniquement les
tableaux de broches pour les lignes et les colonnes. Un autre paramètre
important est néanmoins le temps de rebond. Celui-ci n’est pourtant pas
transmis à l’objet par le constructeur. Nous avons pour ce faire une méthode
propre. Cela ne contredit-il pas ce qui vient d’être dit ?

Oui et non ! Il est vrai que le constructeur ne connaît pas le temps de
rebond. Mais regardez sa dernière ligne. Le temps y est réglé sur 300 ms. Il
s’agit pratiquement d’une initialisation câblée en dur, comme on dit si bien
dans les milieux de la programmation. Si la valeur ne vous dit rien, vous
pouvez toujours l’adapter à vos besoins, tout comme je l’ai fait d’ailleurs
pour la méthode setDebounceTime. La valeur de 300 (ms) m’a semblé ici
convenir. J’aurais évidemment pu la définir directement, mais je voulais
vous montrer cette possibilité. La tâche en question est accomplie par
la méthode readKey, qui est appelée sans cesse dans la boucle loop pour
pouvoir réagir immédiatement à un appui sur une touche. Au début de

	 280	 Partie II. Les montages

l’appel de la méthode, la ligne suivante fait en sorte que la variable key soit
immédiatement pourvue d’une valeur initiale :

char key = KEY_NOT_PRESSED;

Allez voir dans le fichier d’en-tête de quelle valeur il s’agit. Si aucune touche
n’est en effet pressée, c’est précisément ce signe qui est réexpédié comme
résultat. Vient ensuite l’appel des deux boucles for imbriquées l’une dans
l’autre. La première ligne du clavier numérique est mise au niveau LOW par :

digitalWrite(row[r], LOW);

Les niveaux de toutes les colonnes sont ensuite testés.

...
for(int r = 0; r < 4; r++) {
 digitalWrite(row[r], LOW);
 for(int c = 0; c < 3; c++) {
 if((digitalRead(col[c]) == LOW)	&&(millis() - lastValue) >=

➥ debounceTime) {
 if((c==2)&&(r==3)) key = KEY_1;
 if((c==1)&&(r==3)) key = KEY_2;
 if((c==0)&&(r==3)) key = KEY_3;
 if((c==2)&&(r==2)) key = KEY_4;
 if((c==1)&&(r==2)) key = KEY_5;
 if((c==0)&&(r==2)) key = KEY_6;
 if((c==2)&&(r==1)) key = KEY_7;
 if((c==1)&&(r==1)) key = KEY_8;
 if((c==0)&&(r==1)) key = KEY_9;
 if((c==2)&&(r==0)) key = KEY_STAR; // *
 if((c==1)&&(r==0)) key = KEY_0;
 if((c==0)&&(r==0)) key = KEY_HASH; // #
 lastValue = millis();
 }
 }
...

Si une colonne présente également un niveau LOW et si en plus le temps de
rebond a été pris en compte, alors la première condition if est remplie
et toutes les conditions if subséquentes sont évaluées. Si une condition
est vérifiée pour le compteur de lignes r et le compteur de colonnes c, la
variable key est initialisée avec la valeur initiale correspondante et renvoyée
à l’appelant, en fin de méthode, par l’instruction return. Une fois la boucle
intérieure terminée, les lignes qui viennent d’être mises au niveau LOW
doivent être remises dans leur état initial, qui est le niveau HIGH.

Montage 14. Le clavier numérique 	 281

digitalWrite(row[r], HIGH); // Restauration du niveau initial

Si l’état LOW était conservé, une interrogation ciblée d’une certaine ligne
ne serait alors plus possible. Toutes les lignes auraient un niveau LOW une
fois la boucle extérieure terminée, ce qui mettrait toute la logique d’inter-
rogation sens dessus dessous.

La fonction millis renvoie le nombre de millisecondes écoulées depuis le
début du sketch. La dernière valeur est pour ainsi dire stockée temporaire-
ment dans la variable lastValue, une fois la boucle intérieure terminée. Si
la boucle est de nouveau appelée, la différence entre la valeur actuelle en
millisecondes et la valeur précédente est calculée. Ce n’est que si elle est
supérieure au temps de rebond défini que la condition est jugée vérifiée. Elle
se trouve cependant liée avec l’expression qui la précède par un & logique.

if((digitalRead(col[c]) == HIGH)	&&(millis() - lastValue) >=
➥ debounceTime)...

Ce n’est que si les deux conditions délivrent le résultat logique vrai à
l’instruction if que la ligne se poursuit avec l’accolade. Cette structure
permet d’obtenir une interruption temporelle, qui se produit aussi toute
seule dans certains sketches.

Réalisation du shield

La construction du shield n’est pas mal du tout, n’est-ce pas ? Je vous avais
dit au début que je vous montrerais comment faire une carte à la bonne
taille. La carte présentée dans le tableau 14-1 comporte un marquage cor-
respondant à la taille définitive du shield.

 Figure 14-8
Réalisation du clavier
numérique avec son
propre shield

	 282	 Partie II. Les montages

Figure 14-9 u
Taille du shield basée

sur les écarts entre les
trous

Ligne de
découpe

Ligne de découpe
Br

oc
he

s a
na

lo
gi

qu
es

Br
oc

he
s n

um
ér

iq
ue

s

20 trous

25
 tr

ou
s

On voit sur l’image les positions exactes des connecteurs femelles et des
touches. Il suffit de compter les trous sur la carte et de positionner ensuite
les composants. Ne commencez à souder que quand vous avez tout placé
sur la carte. Vous évitez ainsi les positionnements incorrects, et les erreurs
vous sautent tout de suite aux yeux. Si vous soudez les composants aussitôt
après les avoir placés, il se peut que vous vous aperceviez plus tard que vous
avez commis une erreur, et que vous ayez tout à dessouder.

La figure 14-10 illustre l’envers de la carte une fois tous les composants
soudés et tous les fils raccordés.

Figure 14-10 u
Taille du shield basée

sur les écarts entre
les trous

Montage 14. Le clavier numérique 	 283

Les fils verts établissent les liaisons vers les lignes, et les fils jaunes vers les
colonnes. Les fils rouges sont les connexions intermédiaires des colonnes,
qui passent au-dessus des fils horizontaux. Ce shield permet de fabriquer
des claviers spéciaux à partir de modèles adaptés à vos besoins personnels,
comme celui illustré sur la figure suivante.

t Figure 14-11
Le robot motorisé mBot
avec sa commande
par pavé numérique

Que diriez-vous de construire un robot motorisé tel que celui-là dans un
prochain montage ? Le clavier à film est très facile à fabriquer avec une
plastifieuse. Cela présente aussi l’avantage de le protéger contre les doigts
gras. Ce clavier numérique fourni avec trois connexions est extrêmement
simple d’emploi. Mais, trêve de digressions, pour l’instant, nous allons
nous consacrer à la construction d’un shield personnel puisque c’est le
sujet de ce montage.

	 284	 Partie II. Les montages

Construction d’un shield Arduino
Le shield Arduino le plus simple disponible dans le commerce est à mon
avis le Proto Shield, qui est illustré ci-dessous.

Figure 14-12 u
Proto Shield d’Adafruit

Il y a suffisamment de place sur la face supérieure du Proto Shield pour une
petite plaque d’essais afin d’y réaliser de petits circuits. Le shield d’Adafruit
(Arduino Kit vR3) illustré n’est pas fourni avec une plaque d’essais, mais
vous pouvez y remédier moyennant une somme modique. Voici l’adresse
Internet du fabricant du Proto Shield :

https://www.adafruit.com/products/2077

Si je vous dis que la conception de la carte Arduino n’est pas parfaite, vous
aurez sans doute du mal à me croire. Pourtant, c’est vrai. Commençons par
la carte de circuit imprimé perforée, vendue dans différents formats. La
mienne mesure 100 mm × 100 mm et ressemble à celle illustrée ci-dessous.

Figure 14-13
Carte de circuit imprimé

perforée

La carte se compose d’un support isolant, par exemple en bakélite ou en
résine époxy, et d’une couche de cuivre conductrice. Comme son nom

Montage 14. Le clavier numérique 	 285

l’indique, la carte de circuit imprimé perforée présente une multitude de
trous régulièrement espacés, bordés d’une couche de cuivre circulaire. Le
fil de raccordement d’un composant est enfilé du recto vers le verso de la
carte et fixé par soudure à la couche de cuivre.

t Figure 14-14
Vue partielle grossie
d’une carte de circuit
imprimé perforée

Cette vue grossie montre la distance entre les trous, qui est en règle géné-
rale de 2,54 mm. Et c’est là que les choses commencent à se compliquer.
Si tout va bien côté carte de circuit imprimé perforée, cette norme n’est
en revanche pas respectée du tout côté carte Arduino, et je ne sais pas
pourquoi les développeurs l’ont voulue différente.

Les dimensions de la carte de circuit imprimé perforée sont alors les sui-
vantes :

	● largeur : 64 mm ;

	● hauteur : 53 mm.

Maintenant un peu de calcul pour comprendre les éloignements des dif-
férents trous les uns des autres : les deux rangées du haut pour Analog In
et Power, de 6 trous chacune, ne posent aucun problème, car elles sont
séparées par un trou libre, autrement dit l’écart est de 2 × 2,54 mm = 5,08
mm. Cela ne pose pas de problème pour la carte de circuit imprimé per-
forée. Passons aux rangées du bas pour Digital I/O. Pour une raison que
j’ignore, l’écart entre ces deux rangées, 3,81 mm environ, n’est même pas
un multiple de 2,54 mm, mais est inférieur à deux fois 2,54 mm (soit 5,08
mm). Il n’est donc pas possible en l’état d’utiliser les connecteurs femelles
et leurs broches sous cette forme. On voit cependant sur le shield fini que
je les ai quand même soudés dans les trous de la carte de circuit imprimé.

	 286	 Partie II. Les montages

Figure 14-15 u
Vue de dessus du shield

de prototypage

Vous remarquerez que pour adapter le shield fabriqué aux connecteurs de
la carte Arduino, il faut tordre les broches ! Ici, il faut déformer un peu les
broches du connecteur femelle de droite. On voit, sur la figure suivante,
ces broches tordues vers la gauche.

Figure 14-16 u
Broches des connecteurs

femelles numériques

Les deux figures suivantes « Avant » et « Après » permettent de mieux
comprendre ce qu’il faut faire.

Montage 14. Le clavier numérique 	 287

t Figure 14-17
Avec cet écart
de 2 × 2,54 mm = 5,08 mm
entre les broches, le shield
ne va pas sur la carte
Arduino.

t Figure 14-18
Les broches ayant été
tordues en conséquence, le
shield va désormais sur la
carte Arduino.

Les broches sont tordues vers la gauche au moyen de la petite pince.

t Figure 14-19
Petite pince universelle

Procédez avec soin et ne tordez pas les broches dans tous les sens, car
elles peuvent finir pas casser. Ne craignez rien ! Je l’ai fait moi-même et
ce n’est pas sorcier. La déformation des broches se fait en deux étapes.
On tord d’abord la broche vers la gauche, puis on descend légèrement
la pince et on tord à nouveau la broche vers la droite. On obtient ainsi
une orientation verticale qui est juste un peu décalée vers la gauche. La
broche doit alors se trouver au-dessus d’un trou du connecteur femelle.
Procédez de préférence de gauche à droite, en commençant par celle du
bout. Lorsque le shield est prêt, vous pouvez souder le bouton-poussoir
miniature et les connexions.

	 288	 Partie II. Les montages

Exercice complémentaire
La bibliothèque KeyPad fait pour le moment partie du sketch que vous avez
créé. Je pense que ce serait une bonne idée de la copier quelque part, à
l’attention de tous les autres sketches qui pourraient en avoir besoin. Si
vous ne savez plus où, relisez le montage n° 10 du dé électronique, au cours
duquel vous aviez créé votre première bibliothèque. Vous y trouverez les
informations nécessaires. Il faut pour ce faire rajouter le fichier keyword.
txt dans votre bibliothèque. Entrez-y les mots-clés nécessaires, qui sont
indiqués en couleurs dans l’IDE Arduino.

Problèmes courants
La réalisation de ce shield nécessitant beaucoup de soudure, les erreurs
peuvent être d’autant plus nombreuses.

	● Vérifiez que les fils sont bien raccordés aux bonnes broches.

	● Pas de court-circuit éventuel ? Le mieux est de prendre une loupe et
de vérifier chaque soudure. Un court-circuit de la taille d’un cheveu
n’est souvent pas visible à l’œil nu.

	● Avez-vous correctement relié les différentes touches entre elles, de
manière à ce qu’elles forment des lignes et des colonnes ? Servez-
vous du schéma.

Qu’avez-vous appris ?
	● Vous avez vu qu’on peut fabriquer soi-même un clavier numérique

avec des composants très simples et peu onéreux. Pour ceux qui ont
la patience nécessaire et qui ont envie de faire par eux-mêmes au
lieu de toujours se servir des composants tout prêts vendus dans les
magasins, ceci a pu être un bon début et leur a permis de montrer ou
plutôt d’entretenir leur créativité.

	● Le soudage qui, il y a des décennies, était excessivement pratiqué
dans les premiers bricolages électroniques, n’est selon moi plus à la
mode aujourd’hui. Mais j’espère du moins que l’odeur d’étain fondu
et de plastique brûlé vous aura charmé, comme elle a su le faire dans
ma jeunesse.

	● Nous avons créé ensemble notre propre classe, qui peut servir à inter-
roger la matrice de touches. Vous avez certainement tiré parti des
principes de la POO, qui vous avaient été expliqués auparavant.

	● Vous avez fabriqué votre propre shield de clavier numérique.

	 289

Montage

15Un afficheur
alphanumérique

Pour afficher des informations avec une carte Arduino, on ne peut pas
toujours se contenter d’une ou plusieurs LED. Même si cela présente cer-
tains avantages, il n’est pas possible de produire des messages nuancés.
Nous allons donc nous intéresser à d’autres afficheurs compatibles avec
la carte Arduino.

Qu’est-ce qu’un afficheur LCD ?
Que serait un microcontrôleur sans son afficheur pour correspondre avec
le monde extérieur sans passer par l’ordinateur ou le moniteur série ?
Bien sûr, on a déjà vu comment, par exemple, utiliser des afficheurs sept
segments pour représenter des chiffres. S’il s’agit de représenter plusieurs
chiffres ou des lettres ou encore des caractères spéciaux tels que *, #, %..., les
limites du possible sont vite atteintes. On utilise dans ces cas-là un afficheur
à cristaux liquides ou LCD (Liquid Cristal Display) sous sa forme abrégée.
Ces afficheurs contiennent des cristaux liquides capables de modifier leur
orientation en fonction d’une tension appliquée, et de jouer ainsi plus ou
moins sur l’incidence de la lumière. De tels éléments d’affichage utilisent
en général des motifs composés de points (Dot-Matrix) pour représenter à
peu près tous les signes (chiffres, lettres ou caractères spéciaux). Leur taille
et leur équipement varient. Dans l’environnement Arduino, un afficheur
LCD avec pilote HD44780 est relativement souvent utilisé. Ce pilote, qui
s’est imposé comme le quasi standard, est souvent adapté par beaucoup
d’autres fabricants. La figure 15-1 montre un afficheur de ce type.

	 290	 Partie II. Les montages

Figure 15-1 u
Afficheur LCD

Il existe pour cet élément une bibliothèque livrée avec l’IDE Arduino. Vous
pouvez bien entendu raccorder n’importe quel afficheur ou presque, à
condition de trouver une bibliothèque appropriée ou de la créer vous-
même. Nous utilisons pour notre montage l’afficheur ci-dessus, à 2 lignes
de 16 caractères chacune.

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 15-1 u
Liste des composants

Composant

1 LCDisplay HD44780 + barrette à 16
broches

1 trimmer de 10K ou 20K

Remarques sur l’utilisation de l’afficheur LCD
Si vous achetez un afficheur LCD tout neuf, il se peut que seuls des trous
de connexion soient présents sur le circuit imprimé, comme vous pouvez
le voir sur l’image ci-dessus. Vous pouvez alors, soit équiper de fils les
contacts nécessaires et vous en servir plus tard pour le circuit sur la plaque
d’essais, soit – et c’est le mieux – vous procurer une barrette à broches,
comme vous pouvez le voir également sur l’image en haut de la page
suivante. Des barrettes sont par exemple proposées avec une rangée de
40 broches et un pas de 2,54 mm. Coupez-les à une longueur de 15 bro-
ches en les pliant délicatement à l’endroit souhaité. Allez-y doucement,
car elles ont tendance à casser là où on ne veut pas. Enfilez ensuite les
broches de la barrette depuis le bas dans les trous et soudez-les sur la face
supérieure.

Montage 15. Un afficheur alphanumérique 	 291

Vous pouvez ainsi brancher sans problème le module sur votre plaque
d’essais.

Principes intéressants
Avant d’utiliser l’afficheur LCD, voici quelques principes importants et
intéressants à connaître. Comment un afficheur de ce type fonctionne-t-il ?
Nous avons déjà vu que les différents caractères étaient composés à partir
d’une matrice de points (Dot-Matrix). Dot signifie point et se trouve être
le plus petit élément représentable dans cette matrice. Tout caractère est
construit avec une matrice de points 5 × 8.

t Figure 15-2
La matrice de points 5 × 8
de l’afficheur LCD

Un emploi judicieux des différents points permet de générer les caractères
les plus divers. La figure suivante montre le mot Arduino et les différents
points à partir desquels les lettres sont composées.

t Figure 15-3
Le mot Arduino composé
à partir des différents points

	 292	 Partie II. Les montages

La commande de l’afficheur est parallèle, autrement dit tous les bits de
données sont envoyés en même temps au contrôleur. Il existe deux modes
différents (4 bits et 8 bits), le mode 4 bits étant le plus utilisé parce qu’un
nombre moindre de lignes de données doit être relié à l’afficheur, ce qui
fait diminuer le coût.

Mais peut-être vous dites-vous que si nous utilisons 4 bits au lieu de 8,
nous aurons un débit de données moindre et nous pourrons transmettre
moins d’informations différentes. Comment faire alors ?

En réalité, cela fonctionne sans diminution du volume d’informations.
En mode 4 bits, les 8 bits d’informations à transmettre sont simplement
scindés en deux moitiés : l’une contenant les quatre premiers bits, et l’autre
contenant les quatre derniers bits. Un nombre binaire de 4 bits est appelé
nibble (quartet) dans le traitement des données. Les 4 bits d’un nibble sont
transmis en parallèle, et les deux nibbles d’un octet en série. Surtout, ne
vous en faites pas. Le mode 4 bits est certes plus lent que le mode 8 bits,
mais ça n’a ici aucune importance. Venons-en maintenant au module d’af-
fichage LCD Hitachi HDD44780, à son brochage et aux branchements
nécessaires. Il existe deux variantes différentes : celle à 16 broches qui
possède un rétroéclairage, et celle à 14 broches qui n’en a pas besoin.

Figure 15-4 u
Branchements du module

d’affichage

Un Arduino me
commande :-)

 5D4D3D2D 1D0D D6 D7

Données 4 bits

G
N

D

+5
V

V
O

 (
10

K
-2

0K
 P

ot
i)

R
S

R
W

 (
G

N
D

)

E
na

bl
e

+ G
N

D
Rétroéclairage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sur les huit lignes de données, seules les quatre lignes supérieures (D4 à
D7) sont nécessaires. Le tableau 15-2 donne l’affectation des broches et
leur signification.

Montage 15. Un afficheur alphanumérique 	 293

Broche
LCD

Broche Arduino t Tableau 15-2
Affectation des broches
LCD pour la variante à 16
broches

1 GND Masse

2 + 5V + 5 V

3 – Réglage du contraste par un potentiomètre
de 10K ou 20K

4 12 RS (Register Select)

5 GND RW (Read/Write)/connecté à la masse (HIGH :
Read/LOW : Write)

6 11 E (Enable)

11 5 Ligne de données D4

12 4 Ligne de données D5

13 3 Ligne de données D6

14 2 Ligne de données D7

15 – Anode (+)/via résistance série de 220 Ω !

16 GND Cathode (-)

L’objectif du premier sketch LCD est de faire apparaître à l’écran la phrase
« Un Arduino me commande ».

Schéma
Le schéma de commande de l’afficheur LCD ne nécessite pas beaucoup de
composants supplémentaires :

 Figure 15-5
Connexions de l’afficheur
LCD

	 294	 Partie II. Les montages

Réalisation du circuit
La réalisation du circuit est rapide sur une petite plaque de prototypage.

Figure 15-6 u
Réalisation du circuit

de commande
de l’afficheur LCD

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Revue de code
Le sketch suivant permet d’afficher un texte de 2 lignes sur l’écran LCD.

#include <LiquidCrystal.h>
#define RS 12 // Register Select
#define E 11 // Enable
#define D4 5 // Ligne de données 4
#define D5 4 // Ligne de données 5
#define D6 3 // Ligne de données 6
#define D7 2 // Ligne de données 7
#define COLS 16 // Nombre de colonnes
#define ROWS 2 // Nombre de lignes
LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Instanciation de l’objet

Montage 15. Un afficheur alphanumérique 	 295

void setup() {
 lcd.begin(COLS, ROWS); // Nombres de lignes et de colonnes
 lcd.print("Un Arduino me"); // Affichage du texte
 lcd.setCursor(0, 1); // Passer à la 2e ligne
 lcd.print("commande :-)"); // Affichage du texte
}
void loop() { /* vide */ }

Examinons la signification de ce sketch.

La bibliothèque LiquidCrystal doit être incorporée afin de pouvoir utiliser
la fonctionnalité des commandes de l’afficheur LCD. Les paramètres sui-
vants doivent être communiqués au constructeur pour générer un objet
LCD :

	● broche Register Select (RS) ;

	● broche Enable (E) ;

	● broches des lignes de données D4 à D7.

LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Instanciation de l’objet

La classe LiquidCrystal met une série de méthodes à disposition, car on ne
peut envoyer un texte à l’afficheur LCD avec le seul constructeur. Pour que
ce soit possible, il nous faut transmettre à l’objet afficheur quelques infor-
mations supplémentaires pour poursuivre l’initialisation. Les afficheurs
LCD diffèrent quant au nombre de colonnes ou de lignes, et ce sont pré-
cisément ces informations qu’il lui faut. On voit bien que le constructeur
ne dispose pas de tout pour une initialisation complète. Une méthode est
ici nécessaire.

Méthode LCD : begin

Nom de la méthode

begin(Cols, Rows);

Nombre de colonnes Nombre de lignes t Figure 15-7
Méthode LCD : begin

La méthode begin communique les nombres de colonnes et de lignes à
l’objet LCD. Tout est alors prêt pour envoyer un texte.

Méthode LCD : print

print("Un Arduino me");

Nom de la méthode Texte à a�cher t Figure 15-8
Méthode LCD print

	 296	 Partie II. Les montages

La méthode print indique à l’objet LCD ce qui doit être affiché à l’écran.
Elle est comparable à celle du moniteur série.

Quand aucune indication n’est donnée sur la position du texte à afficher,
celui-ci se place au début de la première ligne. Comme vous pouvez le
voir dans l’exemple, une autre ligne est occupée par du texte. Venons-en
maintenant à la troisième méthode importante.

Méthode LCD : setCursor

Figure 15-9 u
Méthode LCD setCursor

(0, 1);

Nom de la méthode

setCursor

Colonne Ligne

La méthode setCursor permet de positionner le curseur à l’endroit où le
texte suivant doit commencer. lle est ici aussi – et comment pourrait-il
en être autrement – basée sur zéro, autrement dit la première ligne ou
colonne est pourvue de l’index 0. Pour atteindre la deuxième ligne, vous
devez – comme c’est le cas ici – utiliser la valeur 1. La figure suivante peut
vous aider à positionner l’affichage.

Figure 15-10 u
Coordonnées

des différentes lignes
accessibles avec

setCursor

Avant d’oublier : vous pouvez naturellement tout effacer jusqu’au dernier
caractère avec la méthode clear. La méthode suivante est utilisée pour
ce faire :

Méthode LCD : clear

Nom de la méthode

clear();

Figure 15-11 
Méthode LCD clear

Montage 15. Un afficheur alphanumérique 	 297

Elle n’a pas de paramètre, efface tous les caractères de l’afficheur et posi-
tionne le curseur sur la coordonnée 0,0 dans le coin supérieur gauche.

VARIANTES DU HD44780
Dans certaines variantes du HD44780, on peut brancher le rétroéclairage sur
+5 V sans résistance série ; dans d’autres, une résistance dimensionnée en
conséquence est nécessaire. Regardez la fiche technique avant de brancher la
tension d’alimentation. Vous pouvez au pire laisser tomber le rétroéclairage. Si
c’est trop sombre, vous pourrez toujours augmenter le contraste de manière
à pouvoir lire quand même l’affichage.

Jeu : deviner un nombre
Quoi de mieux que le jeu où il faut deviner des nombres pour une réalisa-
tion avec l’afficheur LCD ? Si ça fonctionne, vous n’aurez plus besoin d’un
ordinateur et gagnerez en indépendance grâce à l’unité d’affichage LCD.
J’ai fixé, pour le besoin de la réalisation, le LCD sur une carte de circuit
imprimé perforée, sur laquelle deux supports de circuit intégré à 16 broches
sont posés l’un à côté de l’autre.

t Figure 15-12
Support de circuit intégré
à 16 broches

Un support comparable – mais avec plus de broches bien sûr – se trouve
sur votre carte Arduino et maintient le microcontrôleur en position. De
tels connecteurs sont vraiment utiles, car si un circuit intégré vient à gril-
ler pour de bon, plus besoin de le dessouder péniblement. Il suffit de le
remplacer. La carte mesure 10 × 5 cm.

t Figure 15-13
Carte-support
pour l’afficheur LCD

	 298	 Partie II. Les montages

Comme vous pouvez le constater, j’ai également placé dessus le potentio-
mètre trimmer pour le réglage du contraste. De l’autre côté de la carte, on
voit comment j’ai relié entre elles les différentes broches des supports de
circuit intégré. Les broches opposées ont toutes été reliées par plusieurs
points de soudure.

Figure 15-14 u
Face soudée de la carte-

support pour l’afficheur LCD

Un câblage volant est parfois suffisant. La figure suivante montre l’afficheur
LCD déjà fixé sur la carte. Ses broches sont insérées dans les contacts de la
rangée inférieure des deux supports de circuit intégré. La rangée supérieure
servira plus tard pour la connexion au shield.

Figure 15-15 u
Afficheur LCD

sur sa carte-support

Il ne manque plus maintenant que les lignes de raccordement à votre cla-
vier analogique. Les liaisons passent par les barrettes à broches que vous
connaissez bien. Il vous faut :

	● 1 barrette à 16 broches ;

	● 2 barrettes à 8 broches ;

	● 1 barrette à 6 broches.

Montage 15. Un afficheur alphanumérique 	 299

La barrette à 16 broches est raccordée à la carte-support sur laquelle se
trouve l’afficheur LCD. La figure suivante illustre les lignes de raccordement
analogique.

t Figure 15-16
Barrette à 16 broches

Les deux barrettes à 8 broches et la barrette à 6 broches sont branchées
sur le clavier.

t Figure 15-17
Clavier analogique
avec ses trois barrettes
à broches

En utilisant les couleurs et l’affectation des broches indiquée,
vous ne devriez pas avoir de problème pour construire le petit faisceau
de câbles avec les barrettes à broches. La figure 15-18 montre à nouveau
les trois composants, à savoir la carte-support avec l’afficheur LCD, la carte
Arduino et le shield du clavier superposé, tous reliés entre eux.

	 300	 Partie II. Les montages

Figure 15-18 u
Réalisation du circuit

complet pour le jeu des
nombres
à deviner

Vous pouvez naturellement inscrire les différentes touches au marqueur
sur la carte. Mais le mieux est de fabriquer vous-même un clavier à film à
l’aide d’une plastifieuse.

ATTENTION AUX COURTS-CIRCUITS !
Si vous soudez sur les barrettes à broches des fils d’alimentation ou de masse
qui se trouvent directement l’un à côté de l’autre, vous risquez fort d’avoir un
jour ou l’autre, par déplacement, un court-circuit entre ces contacts ou les
fils avoisinants. Aussi ai-je pris soin de mettre chaque soudure sous gaine
thermorétractable pour l’isoler. Pour plus de sécurité, vous pouvez le faire
pour toutes les broches auxquelles des fils sont connectés :



Figure 15-19 u
Barrette à 6 pôles

avec deux morceaux de
gaine thermorétractable

(flèches rouges)

Montage 15. Un afficheur alphanumérique 	 301

Voici maintenant le code complet, qui est déjà un peu plus conséquent.

#include <LiquidCrystal.h>
#include "MyAnalogKeyPad.h"

#define analogPinKeyPad A0	// Définition de la broche analogique
#define MIN 10 	 // Limite inférieure du nombre aléatoire
#define MAX 1000 	 // Limite supérieure du nombre aléatoire
#define RS 12 	 // Broche Register Select du LCD
#define E 11 	 // Broche Enable du LCD
#define D4 5 	 // Ligne de données LCD broche 4
#define D5 4 	 // Ligne de données LCD broche 5
#define D6 3 	 // Ligne de données LCD broche 6
#define D7 2 	 // Ligne de données LCD broche 7
#define COLS 16 	 // Nombre de colonnes LCD
#define ROWS 2 	 // Nombre de lignes LCD

int arduinoNumber, tries;	 // Le nombre généré, nombre d’essais
char yourNumber[5]; 	 // Nombre à 5 chiffres maxi
byte place;
MyAnalogKeyPad myOwnKeyPad(analogPinKeyPad);	// Instanciation clavier
LiquidCrystal lcd(RS, E, D4, D5, D6, D7);	 // Instanciation LCD

void setup() {
 myOwnKeyPad.setDebounceTime(500);	// Régler le temps du rebond à 500 ms
 lcd.begin(COLS, ROWS);	 // Nombres de lignes et de colonnes
 lcd.blink();	 // Faire clignoter le curseur
 startSequence();	 // Appel de la séquence de démarrage
}

void loop() {
 char myKey = myOwnKeyPad.readKey(); // Lecture de la touche pressée
 if(myKey != KEY_NOT_PRESSED) { �// Interrogation si une touche quelconque

// est pressée
 yourNumber[place] = myKey;
 place++;
 lcd.print(myKey); // Afficher la touche sur le LCD
 }
 if(place == int(log10(MAX))+1) {
 tries++;
 int a = atoi(yourNumber);
 if(a == arduinoNumber) {
 lcd.clear();	 // Effacer écran LCD
 lcd.print("Exact !!!");	 // Affichage sur LCD
 lcd.setCursor(0, 1);	 // Positionnement curseur sur 2e ligne
 lcd.print("Essai : " + String(tries));
 delay(4000);	 // Attendre 4 secondes
 tries = 0;	 // Remise à zéro du nombre d’essais
 startSequence();	 // Appel de StartSequence
 }
 else if(a < arduinoNumber) {
 lcd.setCursor(0, 1);	 // Positionnement curseur sur 2e ligne
 lcd.print("Trop petit");	 // Affichage sur LCD

	 302	 Partie II. Les montages

 lcd.setCursor(0, 0);	 // Positionnement curseur sur 1re ligne
 }
 else {
 lcd.setCursor(0, 1);	 // Positionnement curseur sur 2e ligne
 lcd.print("Trop grand");	 // Affichage sur LCD
 lcd.setCursor(0, 0);	 // Positionnement curseur sur 1re ligne
 }
 lcd.setCursor(2, 0);	� // Positionnement curseur sur 3e emplacement

// de la 1re ligne
 place = 0;
 }
}

int randomNumber(int minimum, int maximum) {
 randomSeed(analogRead(5));
 return random(minimum, maximum + 1);
}

void startSequence() {
 arduinoZahl = randomNumber(MIN, MAX); // Générer le nombre à deviner
 lcd.clear(); // Effacer écran LCD
 lcd.print("Devine un nombre"); // Affiche sur LCD
 lcd.setCursor(0, 1); // Positionnement curseur sur 2e ligne
 lcd.print("de " + String(MIN) + " - " + String(MAX));
 delay(4000);	 // Attendre 4 secondes
 lcd.clear();	 // Effacer écran LCD
 lcd.print(">>");	 // Affiche sur LCD
}

Je ne souhaite pas trop m’étendre sur le sketch pour l’instant. J’ai fait en
sorte que l’affichage ait lieu sur le LCD. J’ai ajouté aussi une méthode qui
affiche un curseur clignotant à l’écran (voir figure 15-20).

Méthode LCD : blink

Figure 15-20 u
Méthode LCD blink

Nom de la méthode

blink();

blink est appelée une seule fois dans la fonction setup et fait clignoter un
curseur à l’endroit où on va écrire. Quand on regarde le début du sketch,
on voit qu’il est tout à fait possible d’incorporer plusieurs bibliothèques
dans un projet. Il n’y a théoriquement aucune limite. La mémoire flash
finit quand même à un moment par laisser entendre qu’elle est pleine et
qu’aucun code ne peut plus être ajouté.

Montage 15. Un afficheur alphanumérique 	 303

Étudions de près la ligne

lcd.print("de" + String(MIN) + " - "+ String(MAX));

Dans cette ligne, on affiche des chaînes de caractères et on utilise l’opéra-
teur +. Mais comment fait-on pour additionner des chaînes de caractères ?
Ça ne marche qu’avec des nombres, non ?

Évidemment ! Seules des valeurs mathématiques peuvent être addition-
nées. L’opérateur + ne peut évidemment rien additionner dans le cas de
chaînes de caractères. Comment le pourrait-il ? Les différentes chaînes
de caractères sont simplement réunies en une seule. On dit aussi qu’elles
sont concaténées. Si maintenant, comme dans notre sketch, des valeurs
numériques font partie de la chaîne de caractères à afficher, elles doivent
être préalablement converties en une string. C’est la fonction string qui
s’en charge, comme dans String(MIN).

Définir des caractères personnels
Les caractères standards pour l’affichage d’informations sont bien connus.
Toutefois, il est aussi possible de définir ses propres signes et symboles.
Souvenez-vous de la matrice composée de 5 × 8 pixels.

t Figure 15-21
Matrice de pixels

	 304	 Partie II. Les montages

Supposons que vous vouliez afficher un smiley gai et un smiley triste. Il
faudrait alors changer la matrice pour chaque icône. La figure 15-22 montre
la solution que je vous propose.

Figure 15-22 u
Matrice de pixels

pour les deux smileys

À droite des icônes, vous pouvez voir les valeurs binaires : un 1 correspond
à un pixel visible. Le mode d’écriture avec le préfixe 0b indique qu’il s’agit
d’un nombre binaire. Examinons le sketch commandant l’affichage des
deux smileys. Par manque de place, je vous épargne les lignes d’introduc-
tion consacrées à la définition des valeurs ou à l’instanciation de l’objet :

// Smiley joyeux
byte customChar0[8] = {
 0b00000,
 0b11011,
 0b11011,
 0b00000,
 0b00100,
 0b10001,
 0b01110,
 0b00000
};

// Smiley triste
byte customChar1[8] = {
 0b00000,
 0b11011,
 0b11011,
 0b00000,
 0b00100,
 0b00000,
 0b01110,
 0b10001
};

void setup() {
 lcd.createChar(0, customChar0);
 lcd.createChar(1, customChar1);
 lcd.begin(COLS, ROWS);
 lcd.write((byte)0);
 lcd.write((byte)1);

Montage 15. Un afficheur alphanumérique 	 305

}

void loop() { /* vide */ }

Pour plus d’informations sur la génération d’une matrice avec le code
correspondant, consultez le site Internet suivant :

https://omerk.github.io/lcdchargen/

Les deux tableaux contiennent les informations relatives aux pixels des
deux smileys. La méthode createChar est utilisée pour la création des
nouvelles icônes :

(Index, Array);

Nom de la méthode

createChar

Index d’adressage Données

La ligne

lcd.createChar(0, customChar0);

donne accès au tableau customChar0 avec l’index 0 dont nous aurons besoin
plus tard pour la méthode write. Pour plus d’informations, consultez la
page web :

https://www.arduino.cc/en/Reference/LiquidCrystalCreateChar

La méthode write affiche un caractère :

Nom de la méthode

write (Index);

Index d’adressage

La ligne

lcd.write((byte)0);

nécessite quelques explications. Elle ne définit pas simplement la valeur
d’index du tableau de caractères, mais elle est précédée d’un type de don-
nées entre parenthèses. Ce procédé appelé casting oblige presque la donnée
à prendre le type de données précisé. Elle peut donc être considérée comme
appartenant au type de données byte, comme le veut la bibliothèque. Cela
ne me paraît pas très heureux, mais c’est ainsi et l’on n’y peut rien. Pour
plus d’informations, consultez le lien suivant :

https://www.arduino.cc/en/Reference/LiquidCrystalWrite

	 306	 Partie II. Les montages

Un afficheur LCD multiligne
Si un afficheur à deux lignes vous paraît insuffisant et si vous préférez une
commande plus conviviale, alors le module suivant vaut certainement que
vous vous y attardiez.

Figure 15-23 u
Afficheur LCD à 4 lignes
(commande par bus I²C)

Si vous examinez cette photo attentivement, vous constatez que quatre fils
seulement sont raccordés à l’écran. Avant, il y en avait bien plus. Comment
cela se fait-il ? Manquerait-il quelque chose ?

Bien vu ! L’afficheur LCD que j’utilise ici est commandé via le bus I²C. Nous
verrons bientôt de quoi il s’agit précisément. Pour l’instant, sachez que deux
fils de commande suffisent. Les deux autres fils servent à l’alimentation
électrique et il est donc difficile de s’en passer. Si vous souhaitez trouver
plus d’informations sur ce module sur Internet, saisissez les critères de
recherche suivants :

ywrobot arduino lcm1602

Montage 15. Un afficheur alphanumérique 	 307

Le code du sketch permettant d’afficher le message illustré est relative-
ment simple :

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

void setup() {
 lcd.begin(20,4);
 lcd.backlight();
 lcd.setCursor(0,0); lcd.print("Bonjour !");
 lcd.setCursor(0,1); lcd.print("Cet écran offre");
 lcd.setCursor(0,2); lcd.print("beaucoup plus");
 lcd.setCursor(0,3); lcd.print("de possibilités !");
}

void loop() { /* vide */ }

Les trois premières lignes sont intéressantes :

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

Elles incorporent la fonctionnalité d’utilisation du bus I²C et de la biblio-
thèque I²C pour l’écran LCD. La dernière ligne contient divers paramètres,
comme les adresses de commande de l’afficheur. Vous en saurez plus
bientôt.

Exercice complémentaire
Réfléchissez un peu à une serrure à code de sécurité, du type de celles
installées aux entrées des zones sensibles. Un code à plusieurs chiffres
doit être saisi pour ouvrir la porte. On est bien entendu informé en cas de
saisie erronée que le code chiffré composé est trop bas ou trop élevé. Vous
pouvez par exemple brancher un servomoteur désengageant un pêne du
système de fermeture en cas de code correct. Il faut attendre un certain
temps, par exemple trois minutes, après avoir tapé trois fois de suite un
code erroné. Créez un contrôle d’accès à votre chambre pour décourager
les colocataires ou proches trop curieux.

	 308	 Partie II. Les montages

Problèmes courants
Si, après avoir raccordé le LCD et chargé le sketch, vous ne voyez rien à
l’écran, vérifiez les points suivants.

	● Le câblage est-il correct ?

	● Pas de court-circuit ?

	● Le trimmer du contraste est-il correctement branché ? Augmentez
le cas échéant le contraste jusqu’à ce que vous puissiez voir quelque
chose à l’écran.

Qu’avez-vous appris ?
	● Vous avez raccordé pour la première fois un élément d’affichage,

capable non seulement de clignoter comme une LED, mais aussi d’af-
ficher des nombres et du texte.

	● La bibliothèque LiquidCrystal vous a permis de commander facile-
ment un LCD avec un contrôleur HDD44780.

	● Vous avez ensuite clairement transposé le jeu des nombres à deviner.

	● D’autres types de LCD vous ont été présentés pour vos expériences à
venir, de telle sorte que vos créations puissent être sans limite.

	● Je vous ai présenté un afficheur LCD dont la commande ne nécessite
que deux fils, ce qui est rendu possible par le bus I²C.

	 309

Montage

16Le moteur pas-à-pas

Si vous voulez obtenir un positionnement précis et répétés à l’aide d’un
moteur, alors les moteurs à courant continu ne sont pas adaptés. L’axe
tourne quand une tension est appliquée et cesse de tourner quand la
tension n’est plus appliquée. Une certaine inertie est presque inévitable.
D’autres moteurs sont mieux adaptés.

Encore plus de mouvement
Un servomoteur permet de transformer le courant électrique en mouve-
ment. Cependant, son rayon d’action demeure limité, même si des modi-
fications peuvent être entreprises pour combler ce manque. Mais il s’avère
suffisant pour la plupart des applications. Le moteur pas-à-pas s’impose
en revanche si une plus grande liberté d’action est nécessaire. Par souci
d’économie, vous pouvez essayer d’en récupérer un sur un vieil appareil
quelconque :

	● imprimante ;

	● scanner à plat ;

	● lecteur de CD/DVD ;

	● imprimante 3D ;

	● lecteur de disquette de 3,5 pouces.

Ces lecteurs possèdent un petit moteur pas-à-pas, de type PL15S-020 la
plupart du temps, qui entraîne un petit chariot sur lequel se trouve la
tête d’écriture/lecture. La figure suivante montre une unité de ce genre
relativement bon marché.

	 310	 Partie II. Les montages

Figure 16-1 u
Moteur pas-à-pas 1208

de Pololu

Le moteur pas-à-pas dispose de 4 bornes, sur lesquelles nous allons revenir
en détail. Le schéma de raccordement d’un moteur pas-à-pas est illustré sur
la figure suivante. Attention aux repères couleur des fils associés par paire.

	● noir + vert

	● rouge + bleu

Figure 16-2 u
Branchements du moteur

pas-à-pas

Vu que ce moteur dispose de 4 bornes, il s’agit d’un moteur pas-à-pas
bipolaire. Sa tension de fonctionnement est de 10 V avec 500 mA/bobine.
Vous trouverez de plus amples informations à l’adresse suivante :

https://www.pololu.com/product/1208

Pour mettre le moteur en marche, les bornes en question doivent recevoir
certaines impulsions dans un ordre chronologique bien déterminé.

Figure 16-3 u
Séquence de commande
pour moteur pas-à-pas

1208

Quand on écrit un sketch pour traiter successivement les pas 1 à 4 et
envoyer les niveaux LOW ou HIGH correspondant au moteur pas-à-pas,
ce dernier tourne dans le sens horaire. Quand l’ordre des pas est inversé,

Montage 16. Le moteur pas-à-pas 	 311

le sens est antihoraire. Il y a une chose importante que je n’ai pas encore
dite : on ne peut pas se contenter de raccorder le moteur pas-à-pas aux
sorties numériques, car elles seraient alors tant sollicitées que la carte en
pâtirait. Aussi utilise-t-on ici un circuit de commande de moteur de type
L293 (voir figure 16-4).

t Figure 16-4
Commande de moteur
de type L293

Les petits triangles sont le symbole du circuit driver nécessaire pour fournir
la puissance dont un moteur raccordé a besoin pour fonctionner. Les bornes
A du circuit intégré sont les entrées et celles Y sont les sorties. Chaque paire
de drivers a une borne de validation commune, libellée 1,2EN ou 3,4EN (EN
pour enable, ou permettre). Ce circuit de commande de moteur peut fournir
un courant de 600 mA par sortie. Les circuits de commande suivants sont
capables de délivrer un courant plus élevé :

	● SN754410 (1 ampère) ;

	● L298 (2 ampères).

Expliquons à présent le fonctionnement d'un moteur pas-à-pas. Il existe
différents types de moteurs pas-à-pas : unipolaires et bipolaires, ces der-
niers étant plus faciles à commander. C’est aussi pour cette raison que je
m’en sers dans ce montage. Un moteur bipolaire pas-à-pas possède deux
bobines dont les quatre raccordements sortent du boîtier. Un moteur uni-
polaire pas-à-pas est construit sur le même modèle, à la différence que
chaque bobine possède en son milieu un raccordement qui sort du boîtier.
Un changement de direction du mouvement est obtenu en inversant les
pôles du champ magnétique c’est-à-dire du sens du courant. Sur la figure
suivante, vous pouvez voir les deux bobines avec les fils de raccordement
A/C et B/D, qui bougent en fonction de la polarité du rotor au milieu :

	 312	 Partie II. Les montages

Figure 16-5 u
Schéma du moteur
pas-à-pas bipolaire

Le symbole du moteur pas-à-pas bipolaire est le suivant :

Figure 16-6 u
Symbole du moteur pas-à-

pas bipolaire

Vous trouverez de plus amples informations à l’adresse suivante :

https://fr.wikipedia.org/wiki/Moteur_pas_à_pas

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 16-1 u
Liste des composants

Composant

1 moteur pas-à-pas bipolaire, par ex.
Pololu 1208

1 circuit de commande de moteur
L293DNE

1 clip pour pile de 9 V

Montage 16. Le moteur pas-à-pas 	 313

Schéma
Sur le schéma, vous pouvez voir le circuit de commande L293DNE du
moteur pas-à-pas raccordé à une source de tension externe fournie par
une pile de 9 V.

t Figure 16-7
Schéma de commande
du moteur pas-à-pas

Notez que la masse de la source de tension externe doit être raccordée à
la masse de la carte Arduino.

ATTENTION AU RACCORDEMENT DU PÔLE + !
Le pôle + de la carte Arduino ne doit jamais être raccordé à la source de tension
externe. Cela détruirait votre carte Arduino ou le port USB de votre ordinateur !

Réalisation du circuit
J’ai réalisé le circuit avec un Proto Shield, car tout tient à merveille sur
cette mini-plaque d’essais :

t Figure 16-8
Réalisation du circuit
de commande du moteur
pas-à-pas

	 314	 Partie II. Les montages

Pas de panique si vous ne trouvez pas de Pololu 1208 ! Vous pouvez en fait
prendre pratiquement n’importe quel moteur pas-à-pas bipolaire. Il vous
suffit de trouver la fiche technique correspondante sur Internet pour en
connaître les spécifications. Attention cependant au courant consommé
par le moteur pas-à-pas en service ; comparez-le à celui pour le circuit de
commande de moteur utilisé ici. Il ne doit en aucun cas dépasser 600 mA
par borne. Faute de quoi, vous devez prendre soit un autre moteur pas-à-
pas, soit un autre circuit de commande.

Si vous regardez le schéma, vous pouvez remarquer que la source de ten-
sion externe, d’après les données du moteur pas-à-pas, doit être de 5 V.
Mais vous pouvez utiliser une pile de 9 V, comme moi, car cela fonctionne
parfaitement. En cas d’utilisation prolongée, utilisez de préférence un bloc
secteur. Nous en arrivons à la programmation du sketch. Que dois-je ajouter
? Il existe une bibliothèque pour cet élément. Alors, pourquoi réinventer
la roue ? La bibliothèque est très bien fournie, car elle permet de com-
mander différents modèles de moteurs pas-à-pas. Plusieurs possibilités
s’offrent à nous :

	● variation de la cadence ;

	● saisie du déplacement ;

	● les valeurs positives correspondent à une rotation vers la droite, tan-
dis que les valeurs négatives produisent une rotation vers la gauche.

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Revue de code
Le sketch exploite les possibilités mentionnées, c’est-à-dire le réglage de
la cadence, du déplacement et du sens de rotation :

#include <Stepper.h>
#define NOIR 2
#define VERT 3
#define ROUGE 4
#define BLEU 5
#define SPEED 100 // 100 tr/min
const int stepsPerRevolution = 200; // Pas par tour

Stepper myStepper(stepsPerRevolution, BLEU, ROUGE, VERT, NOIR);

void setup() {
 myStepper.setSpeed(SPEED); // Réglage de la vitesse
}

Montage 16. Le moteur pas-à-pas 	 315

void loop() {
 myStepper.step(stepsPerRevolution);
 delay(500); // Courte pause
 myStepper.step(-stepsPerRevolution);
 delay(500); // Courte pause
}

Examinons la signification de ce sketch.

La bibliothèque Stepper est liée au sketch à l’aide de l’instruction include :

 #include <Stepper.h>

Cela vous permet d’appeler diverses méthodes ou d’effectuer des confi-
gurations fondamentales dans le constructeur (nombre de pas par tour et
brochages) qui ne sont plus modifiées dans le sketch. L’objet Stepper est
créé par l’instanciation de la classe dans la ligne :

Stepper myStepper(stepsPerRevolution, BLEU, ROUGE, VERT, NOIR);

Le constructeur possède ici cinq paramètres qui doivent être communiqués
dans l’ordre indiqué. Nous en arrivons à la première méthode qui définit
la vitesse du moteur pas-à-pas. Nous utilisons setSpeed :

myStepper.setSpeed(SPEED);

La ligne

myStepper.step(stepsPerRevolution);

met le moteur en marche par l’activation de la méthode step. L’inversion
du signe de l’argument transmis permet d’inverser le sens de rotation. Une
courte pause doit être marquée lors du changement de sens. La biblio-
thèque stepper est programmée de façon à pouvoir être utilisée avec des
moteurs pas-à-pas ayant différents nombres de broches. Nous avons déjà
vu ensemble les bases de la programmation orientée objet et la signification
d’une surcharge. Voici un extrait du fichier Stepper.h :

class Stepper {
 public:
 // constructors:
 Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2);
 Stepper(int number_of_steps, �int motor_pin_1, int motor_pin_2,

➥ int motor_pin_3, int motor_pin_4);
 Stepper(int number_of_steps, �int motor_pin_1, int motor_pin_2,

➥ int motor_pin_3, int motor_pin_4,
➥ int motor_pin_5);

 // ...
};

	 316	 Partie II. Les montages

Vous pouvez voir ici trois constructeurs qui portent tous le même nom,
mais qui se différencient par leur signature, c’est-à-dire leur nombre de
paramètres. Ainsi, lors de l’instanciation, le compilateur saura précisément
combien votre moteur pas-à-pas possède de broches (2, 4 ou 5).

Construire un shield pour moteur
Vous pouvez évidemment acheter un shield pour moteur prêt à l’emploi
pour commander des moteurs à courant continu ou pas-à-pas, mais j’ai
décidé d’en construire un moi-même, comme celui illustré sur la figure
suivante.

Figure 16-9 u
Shield pour moteur

Quelques composants suffisent pour réaliser ce type de montage.

Commande de servomoteurs
Si vous souhaitez commander des servomoteurs avec la bibliothèque
Stepper, jetez un œil à la bibliothèque suivante que vous trouverez à l’em-
placement indiqué ci-dessous :

C:\Program Files (x86)\Arduino\libraries\Stepper\src

Montage 16. Le moteur pas-à-pas 	 317

Vous y trouverez le fichier d’en-tête, ainsi que le fichier cpp :

Programmation d’un sketch personnalisé
Si vous souhaitez savoir comment programmer vous-même ce type de
commande, alors examinez le code suivant. J’expliquerai le sketch direc-
tement dans la foulée. Les broches ont été définies à l’aide de l’instruction
define et la séquence de commande correspond à celle présentée dans le
tableau de la figure 16-3.

#define Stepper_A1 5 // Broche pour connexion A1
#define Stepper_A3 4 // Broche pour connexion A3
#define Stepper_B1 3 // Broche pour connexion B1
#define Stepper_B3 2 // Broche pour connexion B3
byte stepValues[5][4] = {{LOW, LOW, LOW, LOW}, // Moteur à l’arrêt
 {HIGH, LOW, HIGH, LOW}, // Pas 1
 {LOW, HIGH, HIGH, LOW}, // Pas 2
 {LOW, HIGH, LOW, HIGH}, // Pas 3
 {HIGH, LOW, LOW, HIGH}}; // Pas 4

La fonction setup programme les broches numériques comme sorties et
active la fonction action qui possède quant à elle deux paramètres qui
sont chargés de définir le nombre de pas, puis d’aménager une pause. La
boucle for permet de faire tourner le moteur pas-à-pas vers la gauche et
vers la droite, puis de le mettre hors courant.

void setup() {
 pinMode(Stepper_A1, OUTPUT);
 pinMode(Stepper_A3, OUTPUT);
 pinMode(Stepper_B1, OUTPUT);
 pinMode(Stepper_B3, OUTPUT);
 for(int i = 0; i < 10; i++){
 action(30, 2); // 30 pas vers la droite avec pause de 2 ms
 action(-30, 10); // 30 pas vers la gauche avec pause de 10 ms
 }
 action(0, 0); // Mise hors courant
}

La fonction loop reste ici sans effet puisque la commande s’effectue exclu-
sivement dans la fonction setup.

void loop(){ /* vide*/ }

	 318	 Partie II. Les montages

Venons-en maintenant à la fonction action. Elle active les différentes étapes
de la séquence de commande qui activent à leur tour la fonction moveStep-
per dans laquelle les valeurs du tableau sont précisées. Le sens de rotation
du moteur pas-à-pas est défini par le signe de la variable count. La séquence
de commande est activée une fois vers l’avant et une fois vers l’arrière :

void action(int count, byte delayValue){
 if(count > 0) // Rotation vers la droite
 for(int i = 0; i < count; i++)
 for(int sequenceStep = 1; sequenceStep <= 4; sequenceStep++)
 moveStepper(sequenceStep, delayValue);
 if(count < 0) // Rotation vers la gauche
 for(int i = 0; i < abs(count); i++)
 for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
 moveStepper(sequenceStep, delayValue);
 if(count == 0) // Mise hors courant
 moveStepper(0, delayValue);
}

void moveStepper(byte s, byte delayValue){
 digitalWrite(Stepper_A1, stepValues[s][0]);
 digitalWrite(Stepper_A3, stepValues[s][1]);
 digitalWrite(Stepper_B1, stepValues[s][2]);
 digitalWrite(Stepper_B3, stepValues[s][3]);
 delay(delayValue); // Pause
}

Ce n’est évidemment que l’une des possibilités et il existe une multitude
de variantes.

Problèmes courants
Si le moteur pas-à-pas ne bouge pas ou ne fait que bourdonner ou vibrer,
vérifiez :

	● que le câblage est correct ;

	● qu’il n’y a pas de court-circuit ;

	● que le moteur pas-à-pas ne change pas de position ou qu’il ne bour-
donne pas ou ne vibre pas en début de sketch. Si tel est le cas, il y a de
fortes chances pour que vous ayez interverti les quatre branchements ;

	● que la connexion de masse commune est bien établie entre la carte
Arduino et la source de tension externe ;

	● que vous n’ayez pas raccordé ensemble les deux pôles de tension
d’alimentation de la carte et de la source de tension externe, qui sont
marqués d’un +. Sinon, destruction de la carte Arduino assurée !

Montage 16. Le moteur pas-à-pas 	 319

Qu’avez-vous appris ?
	● Vous avez découvert comment commander un moteur pas-à-pas

bipolaire.

	● La commande a été réalisée au moyen du circuit de commande du
moteur L293DNE.

	● Vous avez vu comment programmer vous-même une commande de
moteur pas-à-pas.

	 321

Montage

17Commande
d’un ventilateur

Dans le montage n° 13, vous avez appris à utiliser une thermistance afin
d’afficher la valeur mesurée. Dans ce montage, nous verrons comment
la fluctuation de la température va déclencher une réaction qui sera non
seulement visible, mais aussi perceptible.

Un peu de pratique
Il est temps maintenant de construire quelque chose de bien avec le capteur
de température. Que diriez-vous d’ajouter directement plusieurs com-
posants au circuit ? Je pense qu’un ventilateur pour améliorer le climat
ambiant et un afficheur pour donner les informations utiles seraient des
projets intéressants. Le circuit et le sketch doivent être en mesure de mettre
en route un moteur de ventilateur quand une certaine température est
atteinte et de l’arrêter quand elle ne l’est plus. Nous touchons ici à l’art et
la manière de commander un moteur.

Comme un moteur a assurément besoin de plus de courant et de ten-
sion pour fonctionner que la carte Arduino ne peut en fournir, il nous
faut trouver autre chose. Cette fois-ci, nous n’utiliserons pas de circuit de
commande de moteur. En effet, cette situation de commande d’un seul
moteur étant légèrement différente, nous explorerons une autre voie. Je
vous exposerai une mesure de sécurité incontournable dans le cadre de
la commande d’un composant qui possède une bobine. C’est notamment
le cas du moteur ou du relais. Le circuit de commande L293 se termine
par les lettres DNE, ce qui signifie que le composant possède un circuit de
protection qui bloque l’inductance, c’est-à-dire les courants induits très
forts lors de la commutation des bobines. Nous y reviendrons bientôt.

	 322	 Partie II. Les montages

Voyons tout d’abord les composants nécessaires pour ce montage.

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 17-1 u
Liste des composants

Composant

1 ventilateur de 12 V

1 transistor de puissance TIP 120

1 thermistance LM35

1 diode 1N4004

2 résistances de 10K

1 résistance de 1K

1 module afficheur LCD YwRobot I²C

Avant de nous intéresser au circuit de commande, nous allons nous attarder
sur la problématique évoquée plus haut.

Schéma d’un circuit de commande
de moteur
Dans le circuit suivant, un moteur est commandé au moyen d’un transistor
Darlington.

Montage 17. Commande d’un ventilateur 	 323

t Figure 17-1
Circuit de commande
d’un moteur avec une diode
de roue libre

Le transistor qui est utilisé ici est un peu particulier. J’ai déjà mentionné
qu’il s’agit d’un transistor Darlington – ici de type TIP 120. Il se compose
effectivement de deux transistors qui sont montés l’un à la suite de l’autre
et qui ont donc pour effet de produire une plus forte amplification en
courant. Par conséquent, il sera utilisé en présence d’une charge élevée
lorsque la tension de commande ne doit pas être sollicitée. La figure 17-2
représente le schéma de connexion d’un transistor de type NPN.

t Figure 17-2
Schéma de connexion
d’un transistor de type NPN

Revenons-en au circuit de commande du moteur qui, parallèlement à ses
raccordements, possède une diode de roue libre. À quoi cela sert-il ? Pour
qu’un moteur puisse tourner, il doit notamment comporter une bobine,
ou inductance, qui crée un champ magnétique. Cette inductance est dotée
d’une propriété spéciale qui fait qu’elle s’efforce de corriger une modifica-
tion voulue. Quand une tension est appliquée, un courant circule plutôt à
contresens à l’intérieur du très long fil enroulé de la bobine, ce qui crée un

	 324	 Partie II. Les montages

champ magnétique. Ce dernier a non seulement pour effet de faire tourner
l’axe du moteur, mais il induit à son tour une tension à l’intérieur de la
bobine. Ce processus est appelé auto-induction. La bobine se rebelle en
quelque sorte, car la tension induite est orientée de manière à s’opposer
au courant qui l’a provoquée, ce qui fait que la tension ne s’accumule que
lentement dans la bobine. Si par contre je coupe à nouveau le courant,
la variation rapide du champ magnétique génère une tension induite qui
s’oppose à la baisse de tension et s’avère plusieurs fois plus élevée que la
tension initiale. La bobine est donc condamnée à juguler l’afflux de cou-
rant en se servant de l’énergie emmagasinée dans le champ magnétique.

C’est là tout le problème. La commutation avec le léger retard ne constitue
pas un risque pour le circuit et ses composants. Lors de l’arrêt en revanche,
l’effet secondaire extrêmement néfaste de la pointe de tension excessive
(> 100 V) doit être impérativement évité pour que le circuit ne grille pas.
Faute de quoi, les chances de survie du transistor sont réellement minces.
Aussi une diode est-elle connectée en parallèle au moteur pour écrêter la
pointe de tension et dériver le courant vers la source. La figure suivante
illustre les deux scénarios possibles.

Figure 17-3 
Diode de roue libre en

action

Quand le transistor à gauche est débloqué, le moteur démarre, de sorte que
les potentiels indiqués se mettent en place au niveau de la diode : le plus
à la cathode et le moins à l’anode. Autrement dit, la diode est bloquée et
le circuit se comporte comme si elle n’était pas là. Si par contre la base du
transistor est reliée à la masse, celui-ci se bloque et les potentiels indiqués
apparaissent du fait de la variation du champ magnétique de la bobine :
le plus à l’anode et le moins à la cathode. La diode travaille dans le sens
de la conduction et dérive le courant vers l’alimentation. Le transistor est
préservé. Maintenant que vous savez tout cela, nous allons pouvoir nous
intéresser à notre circuit.

Montage 17. Commande d’un ventilateur 	 325

La diode est donc un composant qui est capable d’influencer le sens de cir-
culation du courant. C’est un composant conçu à base de semi-conducteurs
(silicium ou germanium). Elle a la propriété de ne laisser passer le courant
que dans un seul sens (sens passant). Dans le sens inverse, le courant
qui circule à travers une diode est pratiquement nul. Ce comportement
électrique fait penser à une soupape de chambre à air : l’air de la pompe
entre, mais aucun air ne ressort.

t Figure 17-4
Électrons traversant la
diode dans le sens passant

On voit que les électrons n’ont aucun mal à traverser la diode. Le clapet
interne s’ouvre et les électrons circulent sans problème. Les suivants n’au-
ront pas cette chance…

t Figure 17-5
Électrons tentant de travers
la diode dans le sens
non passant

Le clapet ne s’ouvre pas dans le sens souhaité, et on se bouscule au check-
point (ou point de contrôle), car rien ne bouge.

La forme et la couleur des diodes sont des plus variées. Voici deux exemples.

	 326	 Partie II. Les montages

Le sens dans lequel la diode est passante a une énorme importance, et la
présence d’un marquage sur le corps du composant est indispensable. Il
ne s’agit pas cette fois-ci d’un code couleur, mais d’un trait plus ou moins
épais avec une inscription dessus. Les deux polarités de la diode portent
également des noms différents :

	● l’anode ;

	● la cathode.

Une diode au silicium est polarisée dans le sens passant quand la différence
de tension entre l’anode et la cathode est supérieure à environ +0,7 V.

Figure 17-6 u
Symboles de la diode,

version en contour à gauche
et version pleine à droite

Mais où se situe l’anode par rapport à la cathode ? Voilà le moyen
mnémotechnique que j’ai trouvé pour m’en souvenir : le mot « cathode »
commence en allemand par la lettre K (Kathode), qui possède un trait
vertical sur la gauche. On retrouve ce trait vertical sur le symbole de la
diode, à droite, où figure donc la cathode. Physiquement, cette dernière
se repère par l’anneau inscrit directement sur le corps de la diode.

Facile à se rappeler, non ? Voyons maintenant un peu comment fonctionne
la diode dans un circuit. J’utilise à l’entrée de cette dernière non pas un
signal rectangulaire, mais un signal sinusoïdal, présentant aussi bien des
valeurs de tension positives que négatives. Le circuit doit vous être familier
maintenant.

Figure 17-7 u
Circuit pour commander

une diode au moyen
d’un générateur de signaux

sinusoïdaux

Montage 17. Commande d’un ventilateur 	 327

L’entrée de la diode, c’est-à-dire l’anode, est raccordée à la sortie du généra-
teur de signaux sinusoïdaux. Ce point est représenté par une courbe rouge
dans l’oscillogramme. La sortie, c’est-à-dire la cathode, est représentée par
la courbe bleue. Le signal d’entrée rouge forme une belle courbe sinusoï-
dale. La diode au silicium ne laissant cependant passer que des signaux
positifs > +0,7 V bloque les signaux négatifs. La courbe de sortie (en bleu)
ne représente que l’alternance positive de la sinusoïde. Lorsque la tension
à l’entrée est négative, la tension de sortie est nulle (diode bloquée).

Avant d’en finir avec la diode, jetons un coup d’œil sur la caractéristique
tension-courant. Cette courbe montre à partir de quelle tension d’entrée
le courant se met à traverser la diode, et la diode à être conductrice. On
ne détecte la présence d’un courant de conduction qu’à partir de +0,5 V
environ, et qui augmente très rapidement à partir de +0,7 V.

t Figure 17-8
Courbe caractéristique
tension-courant d’une diode
au silicium

Les deux circuits très simples ci-après montrent le mode de fonctionnement
décrit à l’instant pour une vanne électronique. Ils se composent de deux
diodes et de deux lampes alimentées par une pile.

t Figure 17-9
Sens passant et non
passant de diodes dans
deux circuits
à lampes

	 328	 Partie II. Les montages

Circuit de gauche
Le pôle positif de la pile est relié à l’anode de la diode D2, qui est polarisée
dans le sens passant et laisse passer le courant. La lampe L2 s’allume. La
diode D1 est bloquée, car sa cathode est reliée au pôle positif de la pile.
La lampe L1 reste éteinte.

Circuit de droite
La polarité de la pile est permutée et le pôle positif se trouve en bas ; les
rapports de polarité sont inversés. Le pôle positif de la pile est appliqué à
l’anode de la diode D1 et la lampe L1 s’allume. La diode D2 est bloquée, car
le pôle positif se trouve connecté à sa cathode. La lampe L2 reste éteinte.

Vous vous demandez peut-être maintenant à quoi servent de tels compo-
sants. Les domaines d’application sont multiples. En voici quelques-uns :

	● redressement de courant alternatif ;

	● stabilisation de tension ;

	● diode de roue libre (protection contre la surtension aux bornes d’une
inductance lors de l’arrêt, par exemple d’un moteur), comme dans
ce montage ;

Il existe de nombreux types de diodes, par exemple des Zener ou à effet tun-
nel. Nous ne pouvons toutes les énumérer ici et expliquer leurs différences.
Je vous renvoie par conséquent à la littérature spécialisée ou à Internet.

Schéma d’un circuit de commande
du ventilateur
Nous avons à gauche le LCD I2C avec les résistances pull-up de 10K, au centre
notre Arduino et à droite le capteur de température LM35. Complètement
à droite se trouve la commande du moteur avec le transistor TIP 120 et la
diode de roue libre 1N4004.

Figure 17-10 
Circuit de commande

du ventilateur

Montage 17. Commande d’un ventilateur 	 329

Pour éviter toute confusion, voici le brochage de la thermistance LM35,
ainsi que celui du transistor Darlington TIP 120 :

t Figure 17-11
Brochage de la
thermistance LM35 et du
transistor Darlington TIP
120

Réalisation du circuit
La réalisation du circuit est rapide sur une petite plaque d’essais.

t Figure 17-12
Réalisation complète du
circuit de commande du
ventilateur

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

	 330	 Partie II. Les montages

Revue de code
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#define sensorPin 0 // Connexion de la sortie du LM35
#define DELAY1 10 // Bref temps d’attente lors de la mesure
#define DELAY2 500 // Bref temps d’attente lors de l’affichage
#define motorPin 9 // Broche de commande du ventilateur
#define threshold 25 �// Température de commutation du ventilateur

// (25 degrés Celsius)
#define hysterese 0.5 // Valeur d’hystérésis (0,5 degré Celsius)
const int cycles = 20; // Nombre de mesures
// Adresse I2C sur 0x27
LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

void setup() {
 pinMode(motorPin, OUTPUT);
 lcd.begin(20,4); // Initialisation du LCD
 lcd.backlight(); // Activation du rétroéclairage
}

void loop() {
 float resultTemp = 0.0;
 for(int i = 0; i < cycles; i++) {
 int analogValue = analogRead(sensorPin);
 float temperature = (5.0 * 100.0 * analogValue) / 1024;
 resultTemp += temperature; // Addition des valeurs mesurées
 delay(DELAY1);
 }
 resultTemp /= cycles; // Calcul de la moyenne
 lcd.clear(); // Effacer écran LCD
 lcd.setCursor(0,0); // Positionnement curseur sur 1re ligne
 lcd.print("**Commande ventilo**");
 lcd.setCursor(0,1); // Positionnement curseur sur 2e ligne
 lcd.print("Temperature : ");
 lcd.print(resultTemp);
 lcd.write(0xD0 + 15); // Caractère degré (Arduino 1.00)
 lcd.print("C");
 lcd.setCursor(0,2); // Positionnement curseur sur 3e ligne
 lcd.print("Moteur : ");
 if(resultTemp > (threshold + hysterese))
 digitalWrite(motorPin, HIGH);
 else if(resultTemp < (threshold - hysterese))
 digitalWrite(motorPin, LOW);
 lcd.print(digitalRead(motorPin) == HIGH?"en marche":"stop");
 delay(DELAY2);
}

Montage 17. Commande d’un ventilateur 	 331

La détermination de la température est effectuée de la même manière et
se trouve être la même que dans le montage n° 13. Vous pouvez y lire sans
problème la température et l’état du moteur :

Imaginez la situation suivante : le ventilateur doit, tout comme dans notre
exemple, se mettre en marche à 25 °C et apporter un peu d’air frais à
ceux qui transpirent sur leur Arduino. La température ambiante n’étant
cependant pas constante à 100 %, le capteur est lui aussi soumis à certaines
fluctuations. Un état est donc par exemple atteint, dans lequel la tempéra-
ture mesurée varie constamment entre 24,8 et 25,2 °C. Autrement dit, le
ventilateur n’arrête pas de s’allumer et de s’éteindre. Plutôt énervant à la
longue ! Voyons maintenant la figure suivante de plus près.

t

25

24

T [°C]

En
marche

À l’arrêt En
marche

À l’arrêt En
marche

À l’arrêt En
marche

État du
moteur

= Points de commutation

t Figure 17-13
En cas de température
fluctuant autour de la
valeur de consigne,
l’état du moteur change
constamment.

C’est là que l’hystérésis (le mot vient du grec et signifie retard) entre en jeu.
On peut expliquer ainsi le comportement d’une régulation avec hystérésis :
la variable de sortie, qui commande ici le moteur, ne dépend pas seulement
de la variable d’entrée délivrée par le capteur. L’état de la variable de sortie,
qui régnait auparavant, joue aussi un rôle important. Dans notre exemple,
nous avons une valeur-seuil de 25 °C et une hystérésis de 0,5 °C. Voyons
maintenant de plus près la régulation du ventilateur :

if(resultTemp > (threshold + hysterese))
 digitalWrite(motorPin, HIGH);
else if(resultTemp < (threshold - hysterese))
 digitalWrite(motorPin, LOW);

	 332	 Partie II. Les montages

Quand le ventilateur se met-il en marche ?
Si la condition :

resultTemp > (threshold + hysterese) ...

est remplie, le ventilateur commence à tourner. C’est le cas ici quand la
température mesurée est supérieure à 25 + 0,5 °C.

Quand le ventilateur s’arrête-t-il ?
Si la condition :

resultTemp < (threshold - hysterese)

est remplie, le ventilateur s’arrête de tourner, ici en l’occurrence quand la
température est inférieure à 25 – 0,5 °C. Pour résumer :

	● le ventilateur est en marche si : température > 25,5 °C ;

	● le ventilateur est à l’arrêt si : température < 24,5 °C.

Voyons maintenant la figure suivante de plus près.

Figure 17-14 u
En cas de fluctuation

de la température autour
de la valeur de consigne,

l’état du moteur ne change
pas constamment.

t

25

24

T [°C]

En
marche

À l’arrêt En
marche

À l’arrêt En
marche

État du
moteur

25,5

24,5

= Points de commutation t1 t2

Si vous regardez la courbe entre les points t
1
 et t

2
, vous verrez que la

température passe constamment au-dessus et en dessous des 25 °C. Sans
commande avec hystérésis, nous aurions sans cesse moteur en marche et
moteur à l’arrêt.

Exercice complémentaire
Il existe bien entendu beaucoup d’autres capteurs de température. En
voici une sélection :

	● TMP75 (avec bus I²C) ;

	● AD22100 (capteur de température analogique) ;

Montage 17. Commande d’un ventilateur 	 333

	● DHT11 (capteur de température et humidité avec microcontrôleur
8 bits intégré) ;

	● DS1820 (capteur de température numérique 1-Wire).

Essayez de construire un circuit avec ces capteurs, sans oublier d’adapter
le sketch en conséquence. L’afficheur à 4 lignes pourrait aussi très bien
servir à montrer l’humidité ambiante, par exemple. Ainsi, vous réaliserez
une petite station météo.

Problèmes courants
Si le ventilateur ne se met pas en marche alors que la température-seuil
plus la valeur d’hystérésis est atteinte, éteignez tout et vérifiez ce qui suit.

	● Le câblage est-il correct ?

	● Pas de court-circuit éventuel ?

	● La masse commune à la carte Arduino et à la source de tension externe
est-elle bien établie ?

	● La diode de roue libre est-elle montée dans le bon sens ?

	● Si on ne voit rien sur le LCD, le contraste n’est-il pas trop faible ?

Qu’avez-vous appris ?
	● Vous avez notamment appris pourquoi une diode de roue libre est

indispensable en cas de commande d’une bobine.

	● Vous avez appris à utiliser un affichage YwRobot commandé via le
bus I²C pour présenter la valeur de température. Vous pouvez aussi
utiliser un autre modèle d’écran LCD qui est commandé par le bus
I²C et pris en charge par Arduino. Vous trouverez des informations
plus précises sur Internet. N’oubliez pas de vérifier que l’adresse I²C
du module est correcte.

	● Pour que le ventilateur fonctionne correctement, vous avez dû recourir
à une alimentation externe, elle-même connectée au transistor de puis-
sance TIP 120. Nous en avons profité pour étudier le fonctionnement
du transistor Darlington et vous en présenter le rôle.

	● Vous avez appris comment une diode 1N4004 sert, en tant que diode
de roue libre, à protéger votre carte Arduino.

	 335

Montage

18Faire de la musique
avec Arduino

Comme le titre de ce montage le laisse deviner, il s’agit ici de son, et plus
précisément de création de sons. Vous allez connecter un élément piézoé-
lectrique à votre carte Arduino afin de produire des sons. Nous en profite-
rons également pour vous présenter un jeu qui stimulera vos cellules grises.

Y a pas le son ?
À la longue, vous en avez peut-être assez des signaux lumineux et autres
LED clignotantes. Aussi allons-nous voir à présent comment votre carte
Arduino peut émettre des sons au moyen d’un élément piézoélectrique.

t Figure 18-1
Disque piézo

Vous ne risquez pas les ondes de choc acoustiques avec un piézo, car les
vibrations émises couvrent un espace des plus réduits. Il est cependant
parfait pour ce que nous allons faire. Sa forme est assez bizarre et on a
du mal à croire que ce composant puisse faire du bruit. Il renferme un
cristal qui se met à vibrer quand une tension alternative lui est appliquée.
Cet effet appelé piézoélectrique se produit quand des forces (pression ou
déformation) sont exercées sur certains matériaux ;

	 336	 Partie II. Les montages

une tension électrique est alors mesurable. Le buzzer piézoélectrique
agit de façon inverse : quand une tension alternative est appliquée, une
déformation régulière, perçue comme une vibration, se produit et met
en mouvement les molécules d’air, ce qui est perçu comme un son. Pour
qu’il soit plus fort, le mieux est de coller le buzzer piézoélectrique sur un
support vibrant, de sorte que les vibrations émises soient transmises et
amplifiées. Voici comment peut être représenté un buzzer piézoélectrique :

Figure 18-2 u
Symbole du buzzer

piézoélectrique

Si on branche, par exemple, l’élément sur une sortie numérique et si on
passe à intervalles réguliers la sortie en niveau HIGH ou LOW, on entend un
craquement dans l’élément piézoélectrique. Plus le laps de temps entre
niveaux HIGH et LOW est court, plus le son audible est aigu ; plus le laps de
temps est long, plus le son est grave. Le phénomène est le même quand,
par exemple, vous passez vos doigts plus ou moins vite sur une grille à
lamelles. Plus vous allez vite, plus le bruit est aigu ; le piézo fonctionne
sur ce principe. Un craquement répété, tantôt plus lent, tantôt plus rapide,
influe sur la fréquence du son.

Composant nécessaire
La première partie de ce montage nécessite le composant suivant. Par la
suite, nous aurons besoin d’autres composants que nous vous préciserons
le moment venu.

Tableau 18-1 u
Liste des composants

Composant

Élément piézoélectrique

Schéma
Le schéma est très simple, car l’élément piézoélectrique doit être raccordé
à une broche numérique et à la masse de la carte Arduino, sans l’aide de
composants supplémentaires. Je n’en inclus donc pas ici.

Montage 18. Faire de la musique avec Arduino 	 337

Réalisation du circuit
Le circuit est aussi très simple puisque je me suis contenté de raccorder
l’élément piézoélectrique par des fils aux broches adéquates.

t Figure 18-3
Réalisation du circuit
de commande de l’élément
piézoélectrique

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Revue de code
Le sketch suivant active et désactive la broche numérique à laquelle l’élé-
ment piézoélectrique est connecté. Une pause est ménagée entre ces deux
actions.

#define piezoPin 13 // Élément piézoélectrique sur broche 13
#define DELAY 1000 // Valeur de la pause

void setup() {
 pinMode(piezoPin, OUTPUT);
}

void loop() {
 digitalWrite(piezoPin, HIGH); delayMicroseconds(DELAY);
 digitalWrite(piezoPin, LOW); delayMicroseconds(DELAY);
}

	 338	 Partie II. Les montages

Ne vous inquiétez pas pour la fonction delayMicroseconds. Son action est
la même que celle de la fonction delay, à ceci près que la valeur trans-
mise n’est pas interprétée en millisecondes, mais en microsecondes ; la
microseconde est 1 000 fois plus petite (1 ms = 1 000 µs). Cette nouvelle
fonction est utilisée, car delay ne permet pas de descendre en dessous
de 1 ms. Pour le premier sketch qui doit être capable d’émettre plusieurs
sons à des fréquences différentes, mieux vaut créer un tableau des sons
avec différentes valeurs que nous appellerons l’une après l’autre pendant
le sketch. On utilise pour ce faire la fonction tone (sons) mise à disposition
par Arduino.

#define piezoPin 13	 // Élément piézoélectrique sur broche 13
#define toneDuration 500	// Durée du son
#define tonePause 800	 // Longueur de la pause entre les sons
int tones[] = {523, 659, 587, 698, 659, 784, 698, 880};
int elements = sizeof(tones) / sizeof(tones[0]);

void setup() {
 noTone(piezoPin);	 // Rendre le piézo muet
 for(int i = 0; i < elements; i++) {
 tone(piezoPin, tones[i], toneDuration);	// Exécuter le son
 delay(tonePause);	 // Pause entre les sons
 }
}

void loop(){ /* vide*/ }

 Le tableau unidimensionnel tones est du type de donnée int et contient les
fréquences en hertz des sons à exécuter. Les hertz (Hz) servent à mesurer
le nombre de vibrations par seconde. Plus la valeur est élevée, plus le son
est aigu, et vice versa. Le nombre d’éléments du tableau est affecté à la
variable elements ; il servira plus tard dans la boucle for pour traiter tous
les éléments. Le réglage manuel de la limite supérieure ou de la condition
de la boucle for est ainsi évité, celui-ci étant fait automatiquement au
moyen d’un calcul.

On utilise pour ce faire la fonction sizeof de C++, qui détermine la taille
d’une variable ou d’un objet dans la mémoire. Voici un court exemple :

byte byteValue = 16; 	// Variable du type byte
int intValue = 4; 	// Variable du type int
long longValue = 3.14; 	// Variable du type long
int myArray[] = {25, 46, 9}; 	// Variable du type int

void setup() {
 Serial.begin(9600);
 Serial.print("Nombre d’octets pour 'byte' : ");
 Serial.println(sizeof(byteValue));
 Serial.print("Nombre d’octets pour 'int': ");

Montage 18. Faire de la musique avec Arduino 	 339

 Serial.println(sizeof(intValue));
 Serial.print("Nombre d’octets pour 'long': ");
 Serial.println(sizeof(longValue));
 Serial.print("Nombre d’octets pour 'myArray': ");
 Serial.println(sizeof(myArray));
}

void loop() { /* vide */ }

L’affichage est donc le suivant :

Nombre d’octets pour 'byte' : 1
Nombre d’octets pour 'int' : 2
Nombre d’octets pour 'long' : 4
Nombre d’octets pour 'myArray' : 6

Quand on regarde les valeurs pour les types de données byte, int et long,
on s’aperçoit qu’elles sont identiques à celles indiquées dans le chapitre 3,
dans lequel il était question de types de données et de domaines de valeurs.
Passons à la dernière ligne de l’affichage. On y voit que le tableau occupe
6 octets de mémoire, ce qui est logique puisqu’un seul élément int néces-
site 2 octets de mémoire. Or, nous avons 3 éléments. Le résultat est donc
2 × 3 = 6 octets. La ligne

int elements = sizeof(tones) / sizeof(tones[0]);

divise le nombre d’octets du tableau par le nombre d’octets d’un seul élé-
ment. C’est toujours de cette manière qu’on obtient le nombre d’éléments
d’un tableau. Mais revenons à notre sketch. Tout au début, la fonction
noTone rend le piézo muet au cas où il devrait encore pépier du fait d’un
sketch précédent. Elle n’a qu’un seul paramètre, qui indique la broche sur
laquelle se trouve le piézo.

Instruction

noTone(piezoPin);

Broche t Figure 18-4
La fonction noTone
rend le piézo muet.

La fonction tone possède en revanche deux autres paramètres. L’un indique
la fréquence et l’autre la durée pendant laquelle le son doit être audible.

Instruction

tone(piezoPin,400,700);

Broche Fréquence Durée t Figure 18-5
La fonction tone
rend le piézo bavard.

	 340	 Partie II. Les montages

Peut-être vous demandez-vous comment nous en sommes venus aux dif-
férentes valeurs utilisées dans le tableau des sons. Non, nous ne les avons
pas toutes testées pour savoir lesquelles convenaient ! Elles sont tirées d’un
exemple de sketch qui se trouve dans l’IDE Arduino. Recherchez le fichier
pitches.h dans le dossier C:\Program Files (x86)\Arduino\examples\02.
Digital\toneMelody. Vous y trouverez les fréquences correspondant à de
nombreuses notes. Vous pouvez inclure ce fichier dans votre sketch et uti-
liser ensuite directement les constantes symboliques. Essayez ! Le code est
alors beaucoup plus parlant et plus clair que lorsque des valeurs numériques
sont utilisées. Nous allons maintenant essayer de faire quelque chose d’utile
en nous intéressant à un jeu mêlant sons et couleurs. Comme il nécessite
la construction d’un shield, il sera d’autant plus intéressant.

Jeu de la séquence des couleurs
Vous allez mettre en pratique ce que vous venez d’apprendre dans un jeu
intéressant dit de la séquence des couleurs. Nous avons 4 LED de couleurs
différentes disposées en carré. Près de chacune se trouve un bouton-pous-
soir. Le microcontrôleur imagine un motif pour l’ordre d’allumage des LED ;
à vous de le reproduire correctement. Au début, la séquence ne comporte
qu’une seule LED allumée ; une nouvelle vient s’ajouter après chaque bonne
réponse. L’allumage de chacune des quatre LED est accompagné d’un son
qui lui est propre. Le jeu ravit donc non seulement les yeux, mais aussi les
oreilles. J’ai ajouté au circuit un shield avec une face avant de ma fabrica-
tion. Voyez plutôt la figure 18-6.

Sur la face avant, on voit les 4 grosses LED de 5 mm avec leur bouton-pous-
soir respectif. Quand une LED s’allume, on doit appuyer sur le bouton-pous-

Figure 18-6 
Shield avec la face avant

pour le jeu de la séquence
des couleurs

Montage 18. Faire de la musique avec Arduino 	 341

soir placé à côté. La partie basse de la face avant est occupée par 3 plus
petites LED de 3 mm. Elles servent à afficher l’état, sur lequel je reviendrai
plus tard. La figure suivante montre bien le shield et la face avant avec le
câblage.

t Figure 18-7
Shield ouvert et la face
avant retournée

Les choses sont moins compliquées qu’elles n’y paraissent, et la construc-
tion devient claire quand on regarde le schéma. Voici les points que je
poserai comme conditions pour le jeu :

	● une longueur déterminée de la séquence, d’abord constante, est fixée
par le sketch ;

	● chacune des 4 LED doit avoir sa propre note avec une fréquence
particulière ;

	● quand une des 4 LED s’allume, la note correspondante est émise ;

	● quand le bouton-poussoir situé à côté est pressé, la LED s’allume et
la note correspondante est émise ;

	● si la séquence a été correctement reproduite, la LED d’état verte s’al-
lume et une suite de sons crescendo se fait entendre. Le jeu reprend
ensuite au début avec une nouvelle séquence ;

	● si la séquence reproduite est fausse à un endroit quelconque, la LED
d’état rouge s’allume et une suite de sons decrescendo se fait entendre.
Le jeu redémarre ensuite avec une nouvelle séquence.

Examinons maintenant les composants nécessaires pour la réalisation du
jeu.

	 342	 Partie II. Les montages

ComposantTableau 18-2 u
Liste des composants

1 élément piézoélectrique

4 LED (de différentes couleurs)

3 LED de 3 mm (de différentes couleurs)

4 boutons-poussoirs miniatures

7 résistances de 330 Ω

4 entretoises DK 15 mm, en plastique

4 vis M3 30 mm coupées à 23 mm
environ + 4 écrous

2 barrettes à 6 broches + 2 barrettes à
8 broches
(des barrettes plus longues peuvent être
utilisées
avec la carte Arduino Uno Rev3)

1 shield + 1 face avant (la face avant
en mousse dure s’achète dans les
magasins de bricolage)

Voyons maintenant le schéma.

Montage 18. Faire de la musique avec Arduino 	 343

Schéma
t Figure 18-8
Circuit du jeu de la
séquence des couleurs

Sketch du jeu de la séquence des couleurs
Voici maintenant le code du sketch quelque peu élargi. Les explications
suivent.

#define MAXARRAY 	 5	// Définir la longueur de la séquence
int ledPin[] = {2, 3, 4, 5}; 		 // Tableau des LED avec numéros de broche
#define piezoPin 	 13	// Broche piézo
#define buttonPinRed 	 6	// Broche bouton-poussoir LED rouge
#define buttonPinGreen 	 7	// Broche bouton-poussoir LED verte
#define buttonPinYellow 	 8	// Broche bouton-poussoir LED orange
#define buttonPinWhite 	 9	// Broche bouton-poussoir LED blanche
#define ledStatePinGreen 	 10	// LED d’état verte
#define ledStatePinYellow	 11	// LED d’état orange
#define ledStatePinRed 	 12	// LED d’état rouge
int colorArray[MAXARRAY]; �// Contient la suite de chiffres pour les

// couleurs à afficher
int tones[] = {1047, 1175, 1319, 1397}; �// Fréquences des sons pour les

// 4 couleurs
int counter = 0; // Nombres de LED actuellement allumées
boolean fail = false;

void setup() {
 Serial.begin(9600);
 for(int i = 0; i < 4; i++)
 pinMode(ledPin[i], OUTPUT); �// Programmation des broches de LED

// comme sortie
 pinMode(buttonPinRed, INPUT_PULLUP);
 pinMode(buttonPinGreen, INPUT_PULLUP);
 pinMode(buttonPinYellow, INPUT_PULLUP);
 pinMode(buttonPinWhite, INPUT_PULLUP);

	 344	 Partie II. Les montages

 pinMode(ledStatePinGreen, OUTPUT);
 pinMode(ledStatePinYellow, OUTPUT);
 pinMode(ledStatePinRed, OUTPUT);
}

void loop() {
 Serial.println("Départ du jeu");
 generateColors();
 int buttonCode;
 for(int i = 0; i <= counter; i++) { // Boucle extérieure
 giveSignalSequence(i);
 for(int k = 0; k <= i; k++) { // Boucle intérieure
 while(digitalRead(buttonPinRed) && digitalRead(buttonPinGreen) &&
 digitalRead(buttonPinYellow) &&
digitalRead(buttonPinWhite));
 Serial.println("Bouton poussé !"); �// Pour contrôle dans moniteur

// série
 if(!digitalRead(buttonPinRed))
 buttonCode = 0;
 if(!digitalRead(buttonPinGreen))
 buttonCode = 1;
 if(!digitalRead(buttonPinYellow))
 buttonCode = 2;
 if(!digitalRead(buttonPinWhite))
 buttonCode = 3;
 giveSignal(buttonCode);
 // Vérifier si la bonne couleur a été pressée
 if(colorArray[k] != buttonCode){
 fail = true;
 break; // Quitter la boucle for interne
 }
 }

 if(!fail)
 Serial.println("correct"); // Pour contrôle dans moniteur série
 else {
 digitalWrite(ledStatePinRed, HIGH);
 for(int i = 3000; i > 500; i-=150){
 tone(piezoPin, i, 10); delay(20);
 }
 Serial.println("faux"); // Pour contrôle dans moniteur série
 delay(2000);
 digitalWrite(ledStatePinRed, LOW);
 counter = 0; fail = false;
 break; // Quitter la boucle for
 }
 delay(2000);

 if(counter + 1 == MAXARRAY) {
 digitalWrite(ledStatePinGreen, HIGH);
 for(int i = 500; i < 3000; i+=150){
 tone(piezoPin, i, 10); delay(20);
 }

Montage 18. Faire de la musique avec Arduino 	 345

 Serial.println("Fini !"); // Pour contrôle dans moniteur série
 delay(2000);
 digitalWrite(ledStatePinGreen, LOW);
 counter = 0; fail = false;
 break; // Quitter la boucle for extérieure
 }
 counter++; // Incrémenter le compteur
 }
}

void giveSignalSequence(int value) {
 // Affichage LED
 for(int i = 0; i <= value; i++){
 digitalWrite(2 + colorArray[i], HIGH);
 generateTone(colorArray[i]); delay(1000);
 digitalWrite(2 + colorArray[i], LOW); delay(1000);
 }
}

void generateTone(int value) {
 tone(piezoPin, tones[value], 1000);
}

void giveSignal(int value) {
 // Affichage LED + signal sonore
 digitalWrite(2 + value, HIGH); generateTone(value); delay(200);
 digitalWrite(2 + value, LOW); delay(200);
}

void generateColors() {
 randomSeed(analogRead(0));
 for(int i = 0; i < MAXARRAY; i++)
 colorArray[i] = random(4); �// Générer des chiffres aléatoires de

// 0 à 3
 // 0 = rouge, 1 = vert, 2 = orange, 3 = blanc
 for(int i = 0; i < MAXARRAY; i++)
 Serial.println(colorArray[i]); // Pour contrôle dans moniteur série
}

Revue de code
Une valeur numérique est affectée à chaque couleur à afficher : 0 pour
rouge, 1 pour vert, 2 pour orange et 3 pour blanc. Un tableau peut ainsi être
initialisé avec des valeurs allant de 0 à 3 ; il pourra ensuite servir à afficher
les LED. Supposons que vous ayez un tableau avec les valeurs 0, 2, 2, 1 et
3, les diodes s’allument donc dans l’ordre suivant : rouge, orange, orange,
vert et blanc. Dans notre sketch, son nom est colorArray et il reçoit ses
valeurs via la fonction generateColors. Pour les rendre visibles, la fonction
giveSignal convertit les valeurs en signaux pour commander les LED.

	 346	 Partie II. Les montages

void giveSignalSequence(int value) {
 // Affichage LED
 for(int i = 0; i <= value; i++){
 digitalWrite(2 + colorArray[i], HIGH);
 generateTone(colorArray[i]); delay(1000);
 digitalWrite(2 + colorArray[i], LOW); delay(1000);
 }
}

Si la fonction doit toujours afficher la séquence des couleurs, peut-être vous
demandez-vous pourquoi nous avons encore besoin d’une variable. Et ce
que signifie le 2 qui est utilisé dans la fonction digitalWrite.

En fait, la séquence complète ne doit pas s’afficher au début, mais seulement
au fur et à mesure avec, chaque fois, une couleur en plus. Le tableau des
couleurs colorArray contient bien la séquence complète, mais la variable
transmise dans value indique à la fonction combien d’éléments du tableau
doivent être interrogés et affichés. Les 4 grandes LED étant cependant rac-
cordées aux sorties numériques des broches 2 à 5, le chiffre 2 est quasiment
un décalage qui indique la broche de démarrage quand les valeurs 0 à 3
sont ajoutées au tableau des couleurs. Bien entendu, il ne faut pas utiliser
de magic numbers. Vous pouvez naturellement employer une constante
symbolique, par exemple avec le nom COLORPINOFFSET.

Avant de passer à l’explication de la logique dans la fonction loop, nous
devons revenir sur la fonction setup. Il y a, par exemple, des broches de bou-
ton-poussoir qui sont, bien sûr, programmées comme entrées. Pourtant,
quelque chose est envoyé à ces mêmes entrées par la fonction digitalWrite.
Pourquoi cela ?

J’utilise la possibilité d’activer les résistances pull-up présentes et connec-
tées en interne dans le microcontrôleur. Plus besoin ainsi de connecter des
résistances pull-up ou pull-down externes. J’ai déjà expliqué cela dans le
montage n° 3. Ça vous dit quelque chose ? Si vous avez oublié, relisez-le !

Mais comment se fait-il que la fonction loop s’exécute continuellement ? La
première boucle for, que nous avons qualifiée de boucle extérieure, devrait
elle aussi s’exécuter continuellement. C’est pourtant elle qui est chargée
d’afficher la séquence en fonction de la variable counter.

Oui, bien vu ! La fonction loop, qui est une boucle sans fin, devrait norma-
lement s’exécuter en permanence. Seulement, j’ai incorporé un arrêt qui
la bloque tant qu’un des quatre boutons-poussoirs n’est pas pressé. Voici
la partie de code en question :

while(digitalRead(buttonPinRed) && digitalRead(buttonPinGreen) &&
 digitalRead(buttonPinYellow) && digitalRead(buttonPinWhite));

Montage 18. Faire de la musique avec Arduino 	 347

Les entrées numériques, auxquelles les boutons-poussoirs sont raccordés,
étant reliées au +5 V à travers les résistances pull-up internes, mon inter-
rogation doit porter sur le niveau LOW. Tant que toutes les entrées sont sur
niveau HIGH, la boucle while exécute l’instruction qui vient aussitôt après.

Mais quelle instruction est exécutée au juste ? D’après le code, la ligne Serial.

println(“Bouton poussé !”); devrait être exécutée. Mais ça n’a pas beaucoup
de sens !

Vous avez raison, ça n’a pas beaucoup de sens ! Vous avez cependant
oublié une petite chose. L’instruction, qui vient immédiatement après la
boucle while, est le point-virgule situé tout à la fin. Il s’agit quasiment
d’une instruction vide, qui fait en sorte que la boucle while, quand aucun
des boutons-poussoirs n’est enfoncé, devienne elle-même une boucle sans
fin. C’est une manière élégante d’interrompre ici le déroulement du pro-
gramme. Ce n’est que quand l’un ou l’autre des boutons est pressé que
la condition dans la boucle while n’est plus remplie et que le programme
reprend son cours. Le bouton pressé est alors identifié afin de comparer
la valeur de la couleur concernée à l’élément du tableau qui vient d’être
sélectionné dans la boucle intérieure. Si une concordance a été trouvée, on
passe à la valeur de couleur suivante dans la séquence. En revanche, si une
erreur a été commise, la variable fail reçoit la valeur true, et l’instruction
break fait sortir prématurément de la boucle intérieure. Autrement dit,
l’instruction if :

if(!fail)...

reprend le cours du programme en conséquence. La variable counter est
augmentée de la valeur 1, dans la mesure où aucune erreur n’a été commise
et où la fin de la séquence n’est pas encore atteinte, si bien que la prochaine
séquence affichée sera plus longue. J’ai laissé les affichages sur le moniteur
série dans le code pour une meilleure compréhension des procédés. Ils
vous donnent au début la séquence qui a été sélectionnée pour que vous
puissiez faire, le cas échéant, un peu d’expérimentation. Lisez une fois le
code de bout en bout et essayez de le comprendre.

Problèmes courants
Si aucune des 4 grandes LED ne s’allume ou si le piézo n’émet aucun son
une fois le sketch transmis, vérifiez :

	● que le câblage est correct ;

	● qu’il n’y a pas de court-circuit ;

	● que des soudures ne se touchent pas par inadvertance.

	 348	 Partie II. Les montages

Exercice complémentaire
Élargissez le sketch de telle sorte que la séquence soit allongée au démar-
rage d’un nouveau jeu après chaque reproduction correcte. Vous pouvez
également jouer sur les pauses entre les différentes couleurs. Réduisez-les
afin que le jeu devienne peu à peu plus difficile. Une des 3 petites LED de
3 mm n’a pas été utilisée dans mon sketch. Essayez donc de lui donner
une fonction utile. Vous pouvez, par exemple, la faire s’allumer briève-
ment quand un nouveau jeu commence. Les possibilités sont à coup sûr
nombreuses !

Qu’avez-vous appris ?
	● Vous avez découvert comment commander un élément piézoélec-

trique en générant une fréquence par l’alternance des niveaux HIGH
et LOW sur la sortie numérique correspondante.

	● Il est également possible d’influer sur le piézo avec les fonctions noTone
et tone, de manière à le rendre muet ou le faire vibrer à une fréquence
voulue.

	● Vous avez vu comment fabriquer vous-même une face avant conviviale
avec des moyens très simples afin de réaliser un jeu intéressant.

	 349

Montage

19L’Arduino-Talker

Je trouve toujours excitant de pouvoir instaurer une communication entre
divers appareils ou différents langages de programmation. C’est parfois
un peu compliqué, mais une fois les difficultés surmontées, le plaisir est
encore plus grand. Dans ce projet, je voudrais vous montrer comment
utiliser l’interface série de votre carte Arduino à l’aide du moniteur série.
J’utiliserai d’abord un script Python grâce auquel vous pourrez facilement
contrôler toutes les broches. Vous serez ainsi capable de contrôler des
broches numériques et analogiques via un signal MLI (voir le montage
n° 1). Puis nous étudierons en détail l’application Arduino-Talker qui peut
être programmée en langage C#. Le code source complet correspondant
figure sur l’extension web de l’ouvrage.

Communiquer avec l’Arduino
Sur l’image ci-dessous, vous pouvez voir le shield de LED que j’ai réalisé.
Au lieu d’utiliser des LED individuelles, j’ai employé des afficheurs à barres.
Ainsi, les LED sont dans un boîtier compact et parfaitement alignées.

t Figure 19-1
Le shield d’affichage
pour les sorties numériques

	 350	 Partie II. Les montages

Sur cette photo, vous pouvez aussi noter que les LED sont plus ou moins
brillantes. Ces LED sont placées sur les broches où un contrôle PWM est
possible. Une fonction clignotante est également possible, et si vous regar-
dez assez longtemps l’image, vous verrez peut-être un clignotement ici
ou là. Évidemment, vous pouvez construire ce circuit sur une plaque d’es-
sais : l’utilisation d’un shield, comme je l’ai fait ici, n’est pas obligatoire.
L’affichage graphique à barres est un composant Kingbright de référence
DC-10EWA.

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 19-1 u
Liste des composants

Composant

12 LED rouges

12 résistances de 330 Ω

1 plaque perforée

1 Arduino Stackable Header Kit – R3
avec des barrettes empilables :
•	 2 de 8 broches
•	 1 de 6 broches
•	 1 de 10 broches

Schéma
Le schéma de principe du circuit est si simple que je ne l’ai pas montré
à nouveau. Il s’agit d’un contrôle simple de LED avec résistances série
correspondantes.

Remarques
Avant de commencer, laissez-moi vous expliquer quel est le but de ce projet
et à quoi ressemble le programme de contrôle en langage C#. Comme je
l’ai dit au début, nous utiliserons un programme externe pour contrôler
les broches numériques du microcontrôleur Arduino. Commençons par

Montage 19. L’Arduino-Talker 	 351

étudier l’interface de l’application Arduino-Talker, également appelée GUI
(Graphical-User-Interface).

 Figure 19-2
L’application Arduino-Talker

Vous reconnaissez plusieurs boutons utilisés pour contrôler les broches.
Les options de contrôle sont les suivantes :

	● une seule broche On (HIGH) ;

	● une seule broche Off (LOW) ;

	● clignotement d’une seule broche ;

	● contrôle PWM d’une broche ;

	● toutes les broches Off (LOW) ;

	● toutes les broches On (HIGH).

Ce ne sont que quelques-uns des contrôles que j’ai installés mais bien sûr,
il n’y a pas de limites à la créativité. Vous pouvez programmer une fenêtre
où certains motifs d’affichage sont mémorisés puis affichés en séquence.

En haut de l’interface de l’application figurent les paramètres de la
connexion du port série via lequel nous communiquons avec l’Arduino.
Pour que l’Arduino accepte les commandes de l’Arduino-Talker, un sketch
spécial est requis, fourni avec l’Arduino Talker. Un clic sur le bouton Arduino
Sketch-Code affiche ce sketch dans une fenêtre. En bas de l’interface, dans
la barre d’état, le statut de la liaison COM est indiqué et la chaîne de
caractères envoyée est affichée. Pour que tout fonctionne, j’ai défini un
protocole d’échange.

Mais qu’est-ce qu’un protocole ? Quand il y a un échange de données entre
ordinateurs ou microcontrôleurs, la communication doit être en quelque
sorte réglementée. Si deux personnes parlent, elles doivent déjà utiliser

	 352	 Partie II. Les montages

la même langue afin de se comprendre. La situation est similaire dans le
cas des ordinateurs. Un vocabulaire permettant la communication doit
être établi pour indiquer à l’Arduino, sous une forme parfaitement claire
et compréhensible, les actions à mettre en œuvre. C’est exactement ce qui
se passe dans un protocole. Examinons ces deux exemples.

Allumer la LED sur la broche 13

Cliquer sur le bouton correspondant affichera la chaîne générée par le
protocole, indiquée à droite et envoyée via l’interface série. La LED sur la
broche 13 s’allumera.

Régler le niveau PWM (MLI) de la LED sur la broche 10

La broche PWM 10 est programmée à la valeur 76, la broche numérique 10
génère le signal PWM correspondant et la LED s’allume donc faiblement. Au
début du livre, j’ai déjà expliqué le principe de la modulation PWM ou MLI.

Venons-en maintenant à un exemple concret, car la broche numérique ne
sera pas commandée par la fonction digitalWrite mais par analogWrite.
Voyons en détail ce que cela signifie.

Comprendre le code,
étape par étape
Le sketch suivant étant assez long, je l’ai divisé en blocs pour le commenter.
Je voudrais d’abord revenir sur le protocole que j’ai utilisé. Celui-ci inter-
roge régulièrement le port série pour être en mesure de réagir au flux de
données entrant. Tous les flux de caractères n’ont pas d’effet sur les LED
connectées. Le protocole de transmission doit le savoir. Pour le tester, vous
pouvez entrer directement dans le moniteur série une chaîne appropriée :
si le protocole fonctionne bien, vous devrez constater une réaction cor-
respondante de l’Arduino. Veillez aussi à ce que la vitesse de transmission
soit correcte, sans quoi rien ne se passera même si le protocole est bon.
Voici les détails de ce protocole.

Montage 19. L’Arduino-Talker 	 353

Les blocs individuels ont les significations suivantes :

	● S : l’étiquette de début (qui doit être présente, sinon il n’y a pas de
contrôle LED) ;

	● Pin : le numéro de broche ;

	● M : le mode (D pour digital : numérique, A pour analog : analogique,
B pour blink : clignotant) ;

	● L : le niveau (0/1 : numérique, 0-255 : analogique).

Voici quelques exemples envoyés à la carte Arduino par le moniteur série.

t Figure 19-3
La broche numérique 03
est réglée sur HIGH.

t Figure 19-4
La broche numérique 06
est réglée sur le niveau
LOW.

t Figure 19-5
La broche numérique 09
est contrôlée en tant que
sortie analogique
avec le signal PWM 50.

t Figure 19-6
La broche numérique 04
est réglée pour clignoter.

Étudions maintenant le sketch.

Définition globale
Les numéros de broches numériques à contrôler sont stockés dans le
tableau pinArray. Afin de pouvoir faire clignoter les broches, il nous faut
aussi un tableau pinBlinkArray pour stocker les valeurs booléennes ou
l’état clignotant. Les autres variables n’ont pas besoin d’explications sup-
plémentaires. Le contrôle d’intervalle à l’aide de la fonction millis a déjà
été étudié dans l’un des premiers montages.

#define ARRAY_SIZE 12 	 // Dimension des tableaux des LED
int pinArray[ARRAY_SIZE] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};
boolean pinBlinkArray[ARRAY_SIZE]; 	// Tableau des clignotements
int pin, level; 	 // Numéro de broche et niveau
char mode; 		
		 // Mode numérique ou analogique

	 354	 Partie II. Les montages

int interval = 1000; 	 // Durée du clignotement
unsigned long prev; 	 // Variable de temps
int ledStatus = LOW; 	 // État du clignotement

Initialisation
Dans la fonction setup, la vitesse de transmission de l’interface série est
réglée à 38 400 bauds et les broches 2 à 13 du réseau de broches sont défi-
nies comme des sorties. Le tableau clignotant est rempli avec des valeurs
false, donc aucune LED ne clignotera au début.

void setup() {
 Serial.begin(38400);
 for(int i = 0; i < ARRAY_SIZE; i++)
 pinMode(pinArray[i], OUTPUT);
 for(int i = 0; i < ARRAY_SIZE; i++)
 pinBlinkArray[i] = false;
}

Boucle d’exécution continue
La boucle loop appelle maintenant en continu la fonction readSerial que
nous avons écrite pour récupérer les données série transmises.

void loop() {
 readSerial(); // Appel à la fonction d’acquisition
}

Récupération des données
Le flux de données de l’interface série est récupéré et évalué via la fonc-
tion readSerial. Qu’est-elle censée faire? Elle doit contrôler les broches
numériques en fonction de certains paramètres. Tout d’abord, nous avons
défini le protocole pour que le contrôle commence toujours par le carac-
tère S. Si le flux envoyé n’est pas dans ce cas, rien ne se passe. Après cette
balise de démarrage, le numéro de la broche à contrôler doit apparaître
de façon à commander la broche souhaitée. Comme nous contrôlons des
broches numériques normales et des broches PWM, le caractère suivant
définit le mode (D, A ou B) qui détermine comment la broche doit être
commandée. Enfin, le niveau demandé est ajouté à la fin du flux. Étudions
l’exemple suivant.

Montage 19. L’Arduino-Talker 	 355

Cette combinaison de caractères permet de programmer la broche numé-
rique 3 à un niveau HIGH, donc la LED correspondante sera allumée.
L’entrée sur le moniteur série est la suivante.

t Figure 19-7
Entrée des données
dans le moniteur série

Faites attention au réglage en bas de la fenêtre qui provoque un saut de
ligne après l’entrée envoyée.

Voyons maintenant comment le sketch traite cette chaîne de caractères
qui lui est transmise par le moniteur série. Voici le code complet de la
fonction, que je vais expliquer en détail.

void readSerial() {
 if(Serial.available() > 0) {
 while (Serial.peek() == ‘S’) {	 // Attente du caractère de
 	 // départ (Start)
 Serial.read(); 	 // S(Start)lecture du
 	 // flux dans le tampon série
 pin = Serial.parseInt(); 	 // extraction numéro de broche
 mode = Serial.read(); 		
	// extraction mode digital D
 level = Serial.parseInt(); 	 // extraction du niveau
 if(mode == ‘D’) {
 pinBlinkArray[pin - 2] = false; 	 // Arrêt clignotement
 digitalWrite(pin, level); 	 // Commande de la LED
 }
 if(mode == ‘A’) {
 pinBlinkArray[pin - 2] = false; 	 // Arrêt clignotement
 analogWrite(pin, level); 	 // Commande de la LED
 }
 if(mode == ‘B’)
 pinBlinkArray[pin - 2] = level; 	 // Mémorisation du clignotement
 }

	 356	 Partie II. Les montages

 while (Serial.available() > 0) { 	 // Vider le tampon série
 Serial.read();
 }
 }
 // Clignotement
 if((millis() - prev) > interval) {
 prev = millis();
 ledStatus = !ledStatus; 	 // Inversion du statut
 for(int i = 0; i < ARRAY_SIZE; i++) {
 if(pinBlinkArray[i] == true)
 digitalWrite(pinArray[i], ledStatus);
 }
 }
}

Au début, la ligne

if(Serial.available() > 0) {...}

vérifie s’il y a un flux de données disponible dans le tampon de l’interface
série. Si c’est le cas, le code entre les crochets sera exécuté. La méthode peek
examine le premier caractère du flux de données sans le retirer du tampon.

while(Serial.peek() == ‘S’) {...}

Cette instruction garantit que le premier caractère pour contrôler les LED
est bien l’étiquette de début S. Si c’est le cas, le caractère est lu dans le
tampon et supprimé. Puis le ou les caractères suivants du flux de données
sont analysés par la méthode parseInt et convertis en une valeur entière
mémorisée dans la variable pin.

pin = Serial.parseInt();

Cela permet aux numéros de broche à un ou deux chiffres d’être correc-
tement identifiés. Ensuite, il faut savoir comment la broche en question
doit être traitée : comme une broche numérique avec un niveau LOW ou
HIGH, ou comme une broche analogique à contrôler via un niveau PWM.
Ceci est mémorisé dans la variable mode.

mode = Serial.read();

La méthode read lit le caractère suivant du flux de données et le place
dans la variable mode. La lecture du flux de données se termine ensuite
avec la ligne

level = Serial.parseInt();

Montage 19. L’Arduino-Talker 	 357

où, à nouveau, une valeur entière valide est extraite, indiquant le niveau
demandé qui est mémorisé dans la variable level. L’évaluation des données
extraites intervient ensuite.

 if(mode == ‘D’) {
 pinBlinkArray[pin - 2] = false; 	// Arrêt clignotement de la broche
 digitalWrite(pin, level); 	 // Commande de la LED
 }
 if(mode == ‘A’) {
 pinBlinkArray[pin - 2] = false; 	// Arrêt clignotement de la broche
 analogWrite(pin, level); 	 // Commande de la LED
 }
 if(mode == ‘B’)
 pinBlinkArray[pin - 2] = level; 	�// Mémorisation du clignotement

// de la LED

Pour les modes D et A, le tableau pinBlinkArray est mis à la valeur false
pour la broche correspondante afin de stopper l’état éventuellement cli-
gnotant de cette broche, car la LED reliée à une broche ne doit clignoter
que pour le mode B. Si le mode B a été identifié (clignotement), le tableau
pinBlinkArray est mis à la valeur level (1 soit true) afin que le clignotement
soit alors initialisé. Nous verrons bientôt comment cela fonctionne. Enfin,
tous les caractères suivants du flux de données qui ne nous intéressent pas
sont effacés par la ligne :

while (Serial.available() > 0) { Serial.read(); }

Étudions maintenant le clignotement, qui est géré par le code suivant.

 // Clignotement
 if((millis() - prev) > interval) {
 prev = millis();
 ledStatus = !ledStatus; // Inversion du statut
 for(int i = 0; i < ARRAY_SIZE; i++) {
 if(pinBlinkArray[i] == true)
 digitalWrite(pinArray[i], ledStatus);
 }
 }

Vous avez déjà rencontré ce processus de clignotement dans le montage
n° 4. Il n’utilise pas la fonction delay, sinon aucune autre commande ne
serait acceptée durant le clignotement, puisque l’appel de la fonction delay
provoquerait la pause du programme. Si ce processus n’est pas clair dans
votre esprit, retournez au montage n° 4. À l’intérieur de la boucle for, le
contenu du tableau pinBlinkArray est interrogé de façon permanente, et si
une broche a la valeur true (vraie), elle reçoit une valeur de statut opposée
via la variable ledStatus, grâce à la ligne suivante :

	 358	 Partie II. Les montages

ledStatus = !ledStatus;

Mais n’avions-nous pas dit que nous devions effectuer le contrôle par un
script Python ? C’est certainement plus intéressant que d’entrer les com-
mandes dans le moniteur série, non ?

C’est vrai, mais je voulais d’abord vous montrer les bases de notre proto-
cole. Nous sommes maintenant prêts en effet à passer à un programme
externe pour envoyer les commandes. Pour programmer en Python, j’uti-
lise l’environnement de développement gratuit PyCharm avec la version
3.10 de Python et le module pyserial. Voici les liens utiles pour télécharger
ces logiciels :

	● PyCharm : https://www.jetbrains.com/pycharm/download/

	● pyserial : https://pypi.python.org/pypi/pyserial

Cet ouvrage n’étant pas un livre sur la programmation avec Python, je vais
seulement détailler les commandes utilisées ici. Pour plus d’information,
référez-vous aux manuels sur Python ou consultez Internet.

Figure 19-8 u
Script Python permettant

le contrôle des LED

À la ligne 1, le module pyserial requis est importé, car nous voulons accé-
der à l’interface série. La ligne 3 instancie un objet série nommé port qui
contient le paramètre de l’interface COM et le débit de transmission. Le
taux de transfert doit correspondre à celui que vous avez indiqué dans le
sketch Arduino, sinon il n’y aura pas de communication entre Python et
votre Arduino. À la ligne 4, à l’aide de la méthode isOpen, j’affiche sur la
console l’état du port de l’interface mentionnée afin de vérifier qu’il a bien
été ouvert. La variable cmd utilisée en Python contient une liste des infor-
mations de commande pour les broches individuelles. Je laisse certaines
LED s’allumer complètement mais deux LED sont contrôlées par un niveau
de modulation PWM et deux autres clignotent. La boucle while de la ligne
12 exécute sans fin le code qui suit et utilise la méthode writelines pour

Montage 19. L’Arduino-Talker 	 359

envoyer toutes les définitions de broche contenues dans la liste à l’interface
série. Si vous souhaitez piloter une seule broche, vous pouvez limiter la
liste à un seul élément ou utiliser directement la méthode write.

t Figure 19-9
Script Python pour piloter
une seule LED

Problèmes courants
Si le contrôle de vos sorties numériques ne fonctionne pas, vérifiez les
points suivants.

	● Assurez-vous que le câblage ait été bien réalisé.

	● Vérifiez qu’il n’y a aucun court-circuit dans le câblage.

	● Veillez à ce que l’émetteur et le récepteur aient la même vitesse de
transmission.

	● Faites attention à l’emploi différencié des majuscules et des minuscules.

Utilisation d’un filtre passe-bas
Vous avez beaucoup appris sur le signal PWM et ses effets sur un compo-
sant connecté. La luminosité d’une LED peut être réglée et la vitesse d’un
moteur contrôlée. Mais savez-vous que vous pouvez aussi générer une
tension continue à partir de ce On/Off qui varie en fonction du cycle du
signal ? Comment est-ce possible ? Vous avez juste besoin d’une résistance
et d’un condensateur branchés comme suit.

Si vous regardez ce circuit composé d’une résistance et d’un condensa-
teur, cela doit vous faire penser à un diviseur de tension que nous avons

 Figure 19-10
Le circuit filtre RC

	 360	 Partie II. Les montages

déjà étudié. En effet, ce circuit RC n’est ni plus ni moins qu’un diviseur de
tension dépendant de la fréquence, qui dans cette configuration consti-
tue ce que l’on appelle un filtre passe-bas. Il se nomme ainsi car il laisse
passer les basses fréquences plutôt que les hautes. Ce circuit est encore
appelé intégrateur, assurant le lissage du signal d’entrée. Le condensateur
est placé en parallèle à la sortie et permet un stockage d’énergie. Si la
tension à l’entrée est de 5 V par exemple, le condensateur se charge à
travers la résistance et le signal de sortie augmente lentement. Lorsque
le niveau d’entrée revient à 0 V, le condensateur se décharge à travers la
résistance, si bien que le signal de sortie ne retombe pas brusquement à
0 V. Si ce changement se produit assez rapidement, le condensateur va
donc lisser le signal d’entrée. Bien entendu, ce comportement dépend des
caractéristiques des composants R et C.

Étudions deux signaux PWM différents et le lissage correspondant.

Vous pouvez constater qu’avec un niveau de signal PWM plus élevé, la
tension de sortie est plus haute.

Mais, peut-on réellement calculer la tension de sortie lorsque les para-
mètres sont connus ? Eh bien, oui, c’est possible ! Examinons ce graphique
représentant les impulsions :

Figure 19-11 
Filtrage RC passe-bas

Montage 19. L’Arduino-Talker 	 361

En utilisant la formule suivante, vous pouvez calculer la tension de sortie Us :

Si vous avez un oscilloscope, utilisez cette formule pour faire quelques
calculs et vous verrez que le résultat est correct. Naturellement, dans le
cas d’un seul circuit RC, sa capacité de stockage sera très faible : aussi,
dans une application pratique, un petit amplificateur devra être utilisé
sous la forme d’un amplificateur opérationnel. Le circuit suivant montre
cet amplificateur opérationnel (par exemple, le LM358).

Le circuit intégré LM358 se présente sous forme d’un petit boîtier com-
portant 8 broches dont le brochage est le suivant.

Pour terminer, voici une formule permettant de calculer la fréquence de
coupure d’un filtre passe-bas :

Vous pourrez trouver des informations complémentaires sur ce sujet en
consultant ce lien :

https://fr.wikipedia.org/wiki/Filtre_passe-bas

Mais pourquoi le circuit RC ne laisse passer que les basses fréquences ? Je
vous explique. Nous savons que la résistance d’un condensateur est très

 Figure 19-12
Le filtre RC avec
amplificateur opérationnel
LM358

 Figure 19-13
Affectation des broches
de l’amplificateur
opérationnel LM358

	 362	 Partie II. Les montages

élevée pour un courant continu. Le condensateur laisse passer le cou-
rant uniquement pendant la phase de charge puis le bloque lorsqu’il est
chargé. Si le condensateur est inversé ou déchargé, un courant circule à
nouveau jusqu’à la décharge complète. Cependant, plus ces deux pro-
cessus de charge et de décharge ont lieu rapidement, plus la réactance
du condensateur est faible et ne constitue pas un obstacle au courant. À
proprement parler, il n’y a pas de courant car l’énergie n’est absorbée que
pendant le processus de charge et libérée à nouveau pendant le processus
de décharge. Puisque dans le circuit RC, le condensateur est placé en paral-
lèle à la sortie et qu’il possède une résistance plus ou moins faible selon
que la fréquence du signal est plus ou moins élevée, les fréquences élevées
sont plus ou moins bloquées. Pour mieux comprendre ce comportement,
examinez le graphique suivant où la fréquence est en abscisse et la réponse
en amplitude en ordonnée.

On voit également où se situe la fréquence de coupure f
C
.

Qu’avez-vous appris?
	● Vous avez vu comment utiliser un protocole de transfert pour envoyer

différentes données sur le port série afin de contrôler votre carte
Arduino.

	● Cela peut être fait via une saisie dans un programme terminal tel que
le moniteur série, un script Python ou une application ergonomique
dotée d’une interface graphique. Le programme C# que nous avons
utilisé n’est qu’un exemple d’implémentation possible car vous pouvez
utiliser n’importe quel autre langage de programmation qui fournit
l’accès au port série.

	● Vous avez étudié un circuit composé d’une résistance et d’un conden-
sateur, qui fonctionne comme un filtre passe-bas et convertit un signal
PWM en un signal analogique. Ce circuit est plus robuste s’il est com-
plété, en aval, par un amplificateur opérationnel.

Figure 19-14 
Courbe caractéristique
d’un circuit passe-bas

	 363

Montage

20Communication sans fil
par Bluetooth

Cela fait déjà quelques années que sonne le glas du câble de transmis-
sion. Depuis qu’une fonction Bluetooth a été intégrée à la grande majorité
des smartphones récents, ce protocole de transmission de données sur
de courtes distances s’est imposé et il est devenu incontournable. Cela
concerne évidemment aussi le domaine du bidouillage électronique où le
Bluetooth a déjà sa place depuis longtemps. Il est donc grand temps de
l’intégrer à un montage.

Qu’est-ce que
la communication radio ?
Jusqu’ici, l’échange de données, c’est-à-dire la communication entre l’or-
dinateur et la carte Arduino, a toujours été effectué de manière filaire par
l’intermédiaire du port série. C’est amplement suffisant pour la majorité
de nos expériences, car rien ne s’y oppose. Mais imaginez que vous vou-
liez que votre robot s’éloigne un peu et que la longueur du câble USB
soit insuffisante. Comment feriez-vous ? De même, s’il devait effectuer
de nombreuses rotations dans différentes directions, le câble finirait par
être très emmêlé. Une solution consisterait à utiliser un câble USB plus
long, mais la longueur maximale est généralement de cinq mètres. Tout
ce qui dépasse présente un risque et les erreurs sont alors très difficiles
à localiser. Il me paraît être grand temps d’envisager la communication
radio. Cette forme de communication sans fil facilite considérablement les
échanges de données avec le destinataire final sans qu’il soit nécessaire de
poser des câbles dans lesquels on finit toujours par s’empêtrer. Certes, il y
a toujours des restrictions concernant la portée qui varie en fonction de la
puissance de l’émetteur. Le WLAN, qui est probablement déjà proposé par
votre routeur, est l’une des liaisons radio les plus connues. Ce réseau a une
portée de quelques mètres qui varie en fonction de la nature de l’environne-
ment. La portée de 300 mètres évoquée par certains me paraît uniquement

	 364	 Partie II. Les montages

possible en l’absence d’obstacles et dans des conditions très favorables,
qui sont difficiles à remplir à l’intérieur de bâtiments. Dans tous les cas, la
communication passera mieux entre deux pièces que d’un étage à l’autre,
surtout lorsque le plancher contient une grille de blindage sous forme
d’armatures en acier. La portée se situe alors entre 10 à 20 mètres.

Nous allons étudier un procédé de transmission radio qui est utilisé sur de
courtes distances ne dépassant pas 100 mètres : le Bluetooth. Comme le
Bluetooth et WLAN se partagent la même bande de fréquence de 2,4 GHz,
cela peut engendrer des perturbations dues à des recouvrements. Ne soyez
donc pas étonné si tout ne fonctionne pas du premier coup. En cas de pro-
blème, éloignez-vous de quelques mètres ou réessayez après avoir désac-
tivé le WLAN. Quelques essais sont parfois nécessaires, mais vous finirez
toujours par réussir à établir une connexion. Montrez-vous persévérant !

La portée du Bluetooth dépend aussi de la puissance de l’émetteur qui
peut appartenir aux trois classes suivantes :

Tableau 20-1 u
Classes Bluetooth

avec puissance et portée

Classe Puissance Portée

1 100 mW env. 100 mètres

2 2,5 mW env. 10 mètres

3 1 mW env. 1 mètre

L’émetteur n’est évidemment pas le seul responsable de la portée limitée. Le
récepteur y contribue aussi. Des facteurs tels que la qualité de l’antenne et
la sensibilité du récepteur jouent aussi un rôle important. Si vous souhaitez
obtenir plus d’informations à ce sujet, je vous invite à faire des recherches
sur Internet ou à lire la littérature spécialisée. J’aimerais vous présenter
un shield intéressant que nous utiliserons pour la communication sans fil
avec la carte Arduino. Voyons de quels composants vous allez avoir besoin
pour ce montage.

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 20-2 u
Liste des composants

Composant

1 shield Bluetooth de ITead Studio,
version 2.1

1 adaptateur Bluetooth (si votre
ordinateur portable n’en est pas équipé)

Montage 20. Communication sans fil par Bluetooth 	 365

Mais comment la communication est établie et à l’aide de quels compo-
sants ? Comment interroger les données reçues sur l’Arduino ? Existe-t-il
aussi une bibliothèque spéciale ? Ces questions sont très pertinentes et je
me les suis également posées. C’est assez simple. Il est possible de commu-
niquer avec n’importe quel appareil Bluetooth, que ce soit un adaptateur
Bluetooth, par exemple, qui est branché sur l’ordinateur ou un smartphone.

t Figure 20-1
Adaptateur Bluetooth
pour port USB

Ce qu’il y a de vraiment génial dans la communication avec une carte
Arduino, c’est le fait qu’elle s’effectue entièrement par le biais du port série
de la carte et qu’aucune bibliothèque particulière n’est donc requise. De
plus, après avoir installé l’adaptateur Bluetooth sur votre ordinateur, vous
disposez d’un nouveau port COM. Peut-être voyez-vous déjà où je veux
en venir ? Lorsque vous connectez un programme de terminal, comme
PuTTY au port COM de l’adaptateur Bluetooth et que vous y tapez des
commandes, celles-ci sont envoyées sur les ondes par le biais du Bluetooth.
Par conséquent, si votre carte Arduino est reliée au module Bluetooth, les
commandes envoyées par PuTTY peuvent y être reçues et analysées par
le biais du port série. Sur la figure suivante, j’ai tenté de représenter le
cheminement des données, de gauche à droite, tel qu’il s’effectue durant
la communication.

t Figure 20-2
L’adaptateur Bluetooth
émet et le shield Bluetooth
reçoit.

	 366	 Partie II. Les montages

Utilisation d’un adaptateur
Bluetooth
Si votre ordinateur n’est pas équipé d’un adaptateur Bluetooth – les ordi-
nateurs portables récents en intègrent généralement un, alors vous devez
vous en procurer un. Si vous utilisez Windows 7 ou une version ultérieure,
le stack (ou pile) Bluetooth, c’est-à-dire le programme de communication
avec ce support, est préinstallé. Vous n’avez donc rien de plus à faire.
L’installation s’effectue en arrière-plan lorsque vous raccordez le module sur
un port USB disponible. Toutefois, vous devez ajouter un nouvel appareil
Bluetooth dans votre ordinateur, car le shield Bluetooth doit être identifié
par le système d’exploitation. Nous le ferons ensemble. Mais avant, nous
allons établir une connexion entre le moniteur série et le shield Bluetooth
afin de procéder à quelques essais et ajustements. Pour commencer, bran-
chez le shield sur la carte Arduino.

Figure 20-3 u
Shield Bluetooth enfiché

Raccordez l’entrée Reset, qui est active au niveau LOW, à la masse de la
carte.

ATTENTION AU RACCORDEMENT !
Comme vous créez un pont, faites très attention à bien raccorder la broche
Reset à la broche GND ! À la moindre erreur, vous risquez de produire un
court-circuit.

Vous devez préalablement avoir connecté le shield Bluetooth. Mais avant
cela, examinez attentivement la rangée de broches correspondantes.
Lorsque vous avez créé le pont comme illustré, la LED D1 de la carte se
met à clignoter rapidement. C’est bon signe ! Le shield Bluetooth dispose
de deux petits interrupteurs coulissants.

Montage 20. Communication sans fil par Bluetooth 	 367

t Figure 20-4
Configuration du shield
Bluetooth

Comme vous utilisez l’Arduino Uno, l’interrupteur du haut doit être en
position 5 V. Lors de la configuration de la carte, l’interrupteur du bas doit
être en mode To FT232, ce qui signifie que la transmission des données
s’effectue au moyen de l’ATmega8U2.

t Figure 20-5
Mode configuration du
shield Bluetooth

Dans ce cas, la carte Arduino est utilisée comme interface entre un pro-
gramme de terminal, comme le moniteur série ou PuTTY, et le shield
Bluetooth. Vérifiez que vous avez bien sélectionné le port COM de la carte
Arduino, car la communication avec le shield s’effectue encore de façon
filaire. Une autre intervention est requise de votre part, car le port série ne
doit pas être bloqué par l’Arduino. Raccordez la broche Reset à la masse
afin que le microcontrôleur se trouve en mode de réinitialisation. Ensuite,
la configuration du shield peut commencer. Ouvrez le moniteur série. La
communication avec le shield Bluetooth s’effectue au moyen de com-
mandes AT (AT signifie Attention) qui, autrefois, servaient à configurer
les modems. Ce protocole a perduré jusqu’à aujourd’hui et il est encore
utilisé pour la configuration de divers appareils. Pour vous assurer que
le shield Bluetooth est correctement raccordé, saisissez AT, puis appuyez
sur la touche Entrée. Vérifiez au préalable que la vitesse de transmission
a bien été réglée sur 9 600 bauds et que l’option Pas de fin de ligne a été
sélectionnée.

	 368	 Partie II. Les montages

Réponse du shield Bluetooth :

Figure 20-6 u
Réponse du shield BT

Si tout fonctionne correctement, le shield Bluetooth répond OK.

Nommer le shield BT
Vous devez maintenant nommer le module au moyen de la commande
AT+NAME suivie du nouveau nom.

Figure 20-7 u
Nouveau nom du shield BT

Je l’ai nommé MyBT001. Vérifiez qu’il n’y a pas d’espace entre la commande
AT et l’action que vous voulez exécuter. Le module confirme l’attribution
du nom par OKsetname. Le code Pin qui protège par défaut la communi-
cation contre les accès indésirables est 1234. Personnalisez-le également.

Modifier le code Pin du shield BT
Saisissez la commande AT+PIN puis saisissez le nouveau code Pin afin de
définir un nouveau code de jumelage.

Montage 20. Communication sans fil par Bluetooth 	 369

t Figure 20-8
Nouveau code de jumelage
du shield BT

Modifier la vitesse de transmission du shield
BT
Vous pouvez évidemment aussi modifier la vitesse de transmission qui est
définie par défaut sur 9 600 bauds. Utilisez à cette fin la commande AT+BAUDx
suivie de la nouvelle vitesse de transmission. Le petit x est un code qui
correspond à une certaine vitesse qui est indiquée dans le tableau suivant :

Paramètre Vitesse de transmission t Tableau 20-3
Vitesses de transmission

BAUD1 1 200

BAUD2 2 400

BAUD3 4 800

BAUD4 9 600

BAUD5 19 200

BAUD6 38 400

BAUD7 57 600

BAUD8 115 200

Même si je conserve le débit prédéfini de 9 600 bauds, je saisis la commande
suivante pour en illustrer le fonctionnement :

t Figure 20-9
Nouvelle vitesse
de transmission du shield
BT

	 370	 Partie II. Les montages

Le message OK9600 indique que le débit a bien été défini sur 9 600 bauds.

Ajout d’un nouveau shield BT
Maintenant que le shield BT a été configuré, il va pouvoir être identifié
par le système d’exploitation. Cliquez sur l’icône bleue Bluetooth avec le
bouton gauche de la souris pour afficher le menu suivant.

Figure 20-10 u
Ajouter un nouveau

périphérique Bluetooth

Sélectionnez la commande Ajouter un périphérique. La boîte de dialogue
qui apparaît énumère tous les adaptateurs Bluetooth qui sont installés dans
le système d’exploitation. Le shield BT y figure sous son nouveau nom.
Cliquez sur Suivant. Ensuite, vous devez sélectionner un mode de jumelage.
Si vous utilisez un code, choisissez l’option avec code et saisissez le code
de jumelage dans le champ correspondant. Un message devra apparaître,
vous confirmant que l’installation a réussi.

L’appareil apparaît aussi dans le Gestionnaire de périphériques Windows.
Vérifiez qu’un port COM lui a bien été attribué, car c’est par ce biais que
s’effectuera la communication avec le shield BT. Notez que les ports COM
de votre ordinateur ne seront pas forcément les mêmes.

Mais n’est-il pas possible d’utiliser l’Arduino-Talker présenté dans le mon-
tage précédent pour la communication Bluetooth ? Cela nous éviterait
d’avoir à saisir ces lignes de commandes compliquées. Bien sûr, c’est par-
faitement possible !

Réalisation du circuit
Nous allons maintenant pouvoir tester le shield Bluetooth. Vous aurez
besoin du code du sketch du montage précédent sur l’Arduino-Talker. Au
préalable, vous devez évidemment supprimer la réinitialisation au moyen
du petit câble de patch et faire passer la carte du mode configuration au

Montage 20. Communication sans fil par Bluetooth 	 371

mode opérationnel. Faites glisser le curseur vers la gauche en position
To Board :

t Figure 20-11
Les deux modes du shield
BT

Les données circulent alors comme illustré sur la figure suivante :

t Figure 20-12
Mode opérationnel
du shield Bluetooth

Le transfert des données s’effectue maintenant par liaison radio. C’est ainsi
qu’elles sont acheminées jusqu’au port série de la carte Arduino en passant
par le shield Bluetooth.

À propos du schéma du mode opérationnel, le programme de terminal
doit bien être connecté à un port COM ? Est-ce le même que celui utilisé
par le moniteur série pour la communication avec l’Arduino ?

Bien sûr que non ! Le port COM du moniteur série est directement raccordé
à la carte Arduino. Il s’agit d’une communication filaire. Ici, nous voulons
communiquer au moyen d’une liaison radio et c’est pour cette raison que
nous avons besoin d’un adaptateur Bluetooth. Cet adaptateur détecte les
périphériques Bluetooth – comme le shield Bluetooth – qui se trouvent à
proximité et les ajoute à votre système afin que vous puissiez y accéder par
une liaison sans fil. Si l’ajout du shield Bluetooth a réussi, un nouveau port
COM apparaît sur votre ordinateur. Vous pouvez alors établir le contact
avec votre programme de terminal par le biais de ce port qui représente

	 372	 Partie II. Les montages

le shield Bluetooth. Nous en sommes là. Vous pouvez continuer à utiliser
votre moniteur série pour solliciter le shield Bluetooth par liaison radio. Il
vous suffit de sélectionner le port COM correspondant à l’aide de la com-
mande Outils | Port.

Nous voulons maintenant procéder au test de l’ensemble. Chargez le sketch
de l’Arduino-Talker sur la carte Arduino. Pensez à vérifier que la vitesse
de transmission du sketch et celle du shield BT concordent. Elles doivent
toutes les deux être réglées sur 9 600 ou 38 400 bauds, par exemple.
Essayez différentes vitesses afin de déterminer lesquelles sont possibles. Si
vous rencontrez des problèmes lors du téléversement, déconnectez provi-
soirement le shield BT de la carte Arduino. Une fois que tout a fonctionné
correctement, enfichez la shield des LED du montage de l’Arduino-Talker
– si vous l’avez fabriqué – sur le shield BT.

Voici ce que cela donne :

Figure 20-13 u
Shield BT et shield des

LED enfichées sur la carte
Arduino

Comme vous pouvez le constater, après le téléversement du sketch
Arduino-Talker, la liaison USB est superflue et vous pouvez la supprimer.
Pour finir, vous pouvez connecter une batterie de 9 V à la prise de l’ali-
mentation en tension externe. La carte Arduino devrait être autonome et
ne plus recevoir que les instructions par Bluetooth. Jetez un dernier coup
d’œil au Gestionnaire de périphériques. Sélectionnez le bon port COM
dans l’IDE Arduino et ouvrez le moniteur série afin de choisir la vitesse de
transmission correcte et la configuration Saut de ligne (CR). Ensuite, vous
pouvez saisir une commande. Les LED correspondantes doivent clignoter
sur le shield des LED.

Au lieu du port COM Arduino, connectez-vous au port COM Bluetooth,
comme je viens de le faire avec le moniteur série. Fermez préalablement
le moniteur série, sinon le port COM sera occupé par ce programme. La
communication avec l’Arduino-Talker s’effectue alors par liaison radio.

Montage 20. Communication sans fil par Bluetooth 	 373

 Figure 20-14
Commande du shield
Bluetooth à l’aide de
l’application Arduino-Talker

Le module Bluetooth HC-06
Il existe d’autres modules Bluetooth intéressants et bon marché. Parmi
eux, j’aimerais vous présenter le module HC-06.

t Figure 20-15
Le module Bluetooth HC-06

Il permet également d’établir des liaisons Bluetooth. Toutefois, bien que ce
module possède une alimentation en tension de +5 V, les lignes de don-
nées RX/TX du port série fonctionnent en 3,3 V. Même si cela ne devrait
pas poser de problèmes, c’est néanmoins risqué. Voici un petit circuit
comportant deux résistances qui font passer le niveau de +5 V à +3,3 V.

	 374	 Partie II. Les montages

Figure 20-16 u
Passage du niveau

de +5 V à +3,3 V

La ligne émettrice TX de l’Arduino fonctionne en +5 V, ce qui est trop élevé
pour le module HC-06. La ligne émettrice TX de ce dernier fournit seule-
ment 3 V, ce qui suffit à l’Arduino et ne nécessite donc pas d’ajustements.
Le diviseur de tension illustré permet de ramener la tension de +5 V à
3,3 V. Revoyons le principe du diviseur de tension.

Figure 20-17 u
Un diviseur de tension

La tension d’entrée U de +5 V se trouve sur le côté gauche et la tension de
sortie U

2
 se trouve du côté droit. Cette dernière n’a pas encore véritable-

ment de valeur, puisque les deux résistances R
1
 et R

2
 n’ont pas encore non

plus de valeurs définies. La tension de sortie U
2
 est appliquée à la résistance

R
2
, ce qui signifie qu’une tension est ajustée entre les deux résistances. Une

partie de la tension d’alimentation U, qui est de +5 V, chute à travers de R
1
,

et l’autre à travers R
2
. Pour que la tension requise de 3,3 V chute à travers

Montage 20. Communication sans fil par Bluetooth 	 375

de R
2
, elle doit chuter de 1,7 V à travers R

1
. Les rapports de tension sont

équivalents à ceux de la résistance et nous pouvons donc établir la formule
suivante : la tension totale (U) rapportée à la résistance totale (R

1
 + R

2
)

est égale à la tension partielle (U
2
) rapportée à la résistance partielle (R

2
).

Traduit en langage mathématique, cela donne :

Il ne reste plus qu’à déplacer R
2
 et on obtient le résultat suivant :

Si vous choisissez les valeurs de résistance suivantes, par exemple, vous
obtenez un résultat plausible :

La valeur de 3,24 V est très proche des +3,3 V requis et elle permet donc
de travailler. Même si vous ne disposez pas des deux valeurs de résistance
citées, ce n’est pas dramatique, car trois valeurs identiques sont nécessaires.
Le diviseur de tension peut aussi être fabriqué avec des résistances de 1K.

Exercice complémentaire
Essayez de diffuser différents sons par une liaison Bluetooth avec un élé-
ment piézoélectrique. Peut-être devrez-vous légèrement adapter le pro-
tocole. Écrivez le vôtre, car vos idées différeront sans doute des miennes.
L’essentiel est que le circuit et le sketch forment un tout et qu’ils soient
sur la même longueur d’onde.

Problèmes courants
Vérifiez ce qui suit en cas de problème de commande des sorties numériques.

	● Le câblage est-il correct ?

	● Pas de court-circuit éventuel ?

	● Vérifiez que vous utilisez le port COM adéquat. Cela m’est déjà arrivé
et j’ai mis du temps à localiser l’origine du problème.

	 376	 Partie II. Les montages

	● Si vous utilisez un autre programme de terminal à la place du moni-
teur série, comme PuTTY, pour la saisie, assurez-vous d’abord qu’il
est correctement configuré. Il est parfois nécessaire de faire des essais
afin de trouver les bons paramètres.

Qu’avez-vous appris ?
	● Vous avez appris à établir une connexion sans fil Bluetooth.

	● Nous avons réutilisé les commandes générées par le montage précé-
dent dans le moniteur série comme entrée du shield Bluetooth pour
commander l’affichage.

	 377

Montage

21Communication
réseau

Avant de connecter votre carte Arduino Uno à votre réseau domestique ou
à Internet, vous devez savoir quelques petites choses. Dans ce montage,
nous allons donc étudier les bases de la communication réseau. À l’aide d’un
shield complémentaire connecté à votre Arduino Uno, vous raccorderez
la carte à Internet au moyen d’un câble Ethernet. Une fois la connexion
établie, le microcontrôleur transmettra des données qui seront visualisées
sur une page web. Nous profiterons également de ce chapitre pour dresser
une rapide introduction au langage HTML.

Qu’est-ce qu’un réseau ?
Le plus gros réseau que l’Homme utilise quotidiennement est le World
Wide Web. Il s’agit de l’interconnexion d’une multitude de systèmes infor-
matiques en contact les uns avec les autres dans le monde entier. On parle
de réseau dès l’instant où deux ordinateurs sont associés via un support
de transmission approprié (par exemple : câble Ethernet, fibre optique
ou WLAN). Vous pouvez l’imaginer comme un cerveau contenant plu-
sieurs centaines de milliards de cellules nerveuses. Chacune d’elles possède
jusqu’à dix mille synapses. Ce sont des voies de communication qu’elles
utilisent pour transmettre ou échanger des informations. Chaque cellule
nerveuse du cerveau figure un ordinateur en contact avec d’autres systèmes
au moyen des synapses – donc de sa carte réseau (ou de ses cartes le cas
échéant).

	 378	 Partie II. Les montages

Figure 21-1 u
Petit réseau avec carte

Arduino

Les différents systèmes informatiques, que j’ai appelés IT1 à IT7 sur la figure
21-1 pour plus de commodité, sont reliés entre eux au moyen des cartes ou
plutôt des câbles de réseau. Cette représentation est bien sûr simplifiée,
car les composants du réseau sont par exemple reliés par des switches
dans la réalité. Ces répartiteurs ou coupleurs de réseau transmettent les
données de manière intelligente aux différents utilisateurs. La figure 21-2
montre un connecteur de type RJ45 d’un câble réseau couramment utilisé.

Figure 21-2 u
Connecteur RJ45

d’un câble de réseau

Je pense que vous avez déjà vu une fiche de cette sorte puisque votre ordi-
nateur est relié à coup sûr par un câble de réseau au routeur qui établit
une liaison vers votre fournisseur d’accès, autrement dit vers Internet.

Il n'y a pas de prise femelle pour cette fiche sur la carte Arduino car cette
dernière ne dispose pas d’une connexion réseau. Un composant réseau
supplémentaire est donc nécessaire.

Montage 21. Communication réseau 	 379

t Figure 21-3
Shield Ethernet

La figure 21-3 montre un shield Ethernet, qui dispose en plus d’un socle
microSD. Vous pouvez y stocker temporairement des données, mais là
n’est pas le sujet. Vous trouverez de plus amples informations sur le shield
Ethernet à l’adresse suivante :

https://www.arduino.cc/en/Guide/ArduinoEthernetShield

Nous avons déjà utilisé plusieurs fois le mot Ethernet. Qu’est-ce que ça
veut dire ? Le moment est venu d’aborder certains points spécifiques aux
réseaux pour le savoir.

Ethernet
Le mot Ethernet qualifie une technologie câblée pour transmettre des
données. Depuis les années 1990, elle est la norme pour toute une gamme
de technologies LAN (Local Area Network). Le transfert des données est,
en principe, assuré par un câble à paires torsadées (Twisted-Pair-Cable)
selon la norme CAT-5 ou supérieure.

	 380	 Partie II. Les montages

TCP/IP
Ethernet utilise un protocole appelé TCP (Transfer Control Protocol,
protocole de contrôle de transfert) pour transmettre des données.
Ce protocole permet de transférer des informations au moyen d’un réseau
local ou global et garantit une communication sans erreurs. Des méca-
nismes permettent, en cas d’erreur de données menaçante, de corriger ou
de retransmettre les paquets de données à transférer. La désignation IP
(Internet Protocol) concerne l’adressage des paquets de données à transférer
qui doivent être acheminés de l’émetteur à un destinataire bien défini. Ce
protocole assure donc l’adressage des paquets de données à transmettre.
Chaque utilisateur du réseau possède une adresse précise, comparable au
numéro de maison dans une rue. Pour qu’un colis puisse être par exemple
livré à coup sûr par la Poste, les numéros des maisons ne doivent pas être
en double, ce qui est le cas normalement. L’IP est toujours indiqué ou
utilisé en rapport avec le TCP.

Adresse IP
L’adresse IP d’un utilisateur doit satisfaire à l’exigence d’unicité dans un
réseau. Elle est affectée à un appareil qui fait partie du réseau, garantissant
ainsi qu’il est adressable et accessible. Les adresses IP de la notation Ipv4
sont composées de quatre octets (32 bits).

Cette adresse a été attribuée par mon routeur à mon PC, afin que je sois
disponible sur le réseau.

Masque de réseau
Une adresse IP comprend toujours une partie réseau et une partie hôte.
Le masque de réseau définit quant à lui combien d’appareils doivent être
atteints dans un réseau et lesquels se trouvent dans d’autres réseaux.

Montage 21. Communication réseau 	 381

Pour parvenir à la partie hôte, l’adresse IP est combinée au masque
de réseau par une opération ET. D’après le masque précédent, il est
théoriquement possible d’avoir 28 = 256 ordinateurs dans le réseau.
Je dis bien théoriquement, car 255, par exemple, a une signification parti-
culière. Des détails supplémentaires sortiraient du cadre de ce livre, c’est
pourquoi je vous invite à consulter la littérature spécialisée ou à regarder
sur Internet.

Adresse MAC
L’adresse MAC (Media Access Control) doit être sans ambiguïté à l’échelle
mondiale. Elle a été attribuée à chaque adaptateur de réseau. Elle se com-
pose de six octets, les trois premiers contenant un code fabricant OUI
(Organizational Unit Identifier). Les trois autres octets contiennent l’indi-
catif de l’appareil, assigné par le fabricant en question. Voici un exemple
d’adresse MAC pour une carte réseau :

1C-6F-65-94-D5-1A

Passerelle
Une passerelle (gateway, en anglais) est un passage vers une zone parti-
culière qui, rapporté à notre thématique, peut être appelé passerelle de
réseau. De quel appareil pourrait-il s’agir ? Le routeur, qui se trouve à
moitié sur Internet, passe pour être une passerelle. Mon routeur a par
exemple 192.168.2.1 comme adresse IP et transmet mes demandes à mon
fournisseur d’accès, c’est-à-dire sur Internet. Si vous ouvrez une console
DOS et que vous écrivez la commande ipconfig /all, vous obtenez, entre
autres, les indications suivantes :

Passerelle par défaut : 192.168.178.1
Serveur DHCP. : 192.168.178.1

La figure 21-4 montre le shield Ethernet combiné à vote carte Arduino.

t Figure 21-4
Shield Ethernet et carte
Arduino

Voyons de quels composants vous avez besoin.

	 382	 Partie II. Les montages

Composants nécessaires
Ce montage nécessite les composants suivants.

Tableau 21-1 u
Liste des composants

Composant

1 shield Ethernet

1 câble réseau

1 shield d’entrée analogique
(ou un potentiomètre distinct)

ATTENTION AU CABLAGE !
Utilisez un câble normal pour relier votre shield Ethernet à votre routeur.
Ces câbles sont jaunes, blancs ou même noirs. Ne vous servez pas d’un
câble réseau rouge entre votre routeur et le shield Ethernet, car il s’agit
généralement d’un câble croisé qui ne doit être employé que pour relier votre
shield directement à la carte réseau de votre ordinateur. Les lignes de réception
et d’émission sont alors croisées.

Le sketch suivant permet d’utiliser le shield Ethernet comme un serveur
web. Quand vous passez par un navigateur web (tel Firefox, Opera ou IE)
pour vous connecter à Internet, vous établissez une liaison avec un serveur
web (voir figure 21-5).

Figure 21-5 u
Modèle client-serveur



Montage 21. Communication réseau 	 383

La figure 21-5 montre un serveur (fournisseur) au centre, qui répond aux
requêtes de nombreux clients (utilisateurs). Un serveur est un logiciel qui
réagit à une demande de contact venant de l’extérieur et délivre des infor-
mations. Il peut s’agir d’un serveur mail ou FTP ou encore d’un serveur
web. Un client peut être un client mail, tel que Thunderbird ou Outlook.
S’il s’agit d’un client web, cela peut être Firefox, Opera ou Chrome, tous
déjà mentionnés dans ce livre. Prenons maintenant un exemple concret,
dans lequel le shield Ethernet, en tant que serveur web, doit envoyer les
valeurs des entrées analogiques de la carte Arduino. La figure 21-6 offre
un aperçu de l’affichage dans le navigateur web.

 Figure 21-6
Affichage de la page HTML
dans le navigateur web
(représentation numérique
et graphique)

Est-ce que cela signifie que vous allez apprendre à programmer un
site Internet ? Eh oui, on ne peut pas faire autrement, mais soyez ras-
suré. Nous n’allons qu’effleurer le sujet, car celui-ci pourrait sans peine
remplir toute une bibliothèque. Les sites Internet sont programmés en
HTML (Hypertext Markup Language). Il s’agit d’un langage de balisage
à base de texte permettant par exemple de représenter du texte, des
images, des vidéos ou des liens sur un site Internet que le navigateur
web peut lire et afficher. Vous trouverez ci-après la trame de base d’un
site, que nous remplirons par la suite pour présenter nos informations.
La plupart des éléments HTML sont identifiés par des paires de balises
(tags). Il y a toujours une balise de début (ouvrante) et une balise de fin
(fermante). La figure 21-7 montre la trame de base en question, les paires
correspondantes étant indiquées en couleurs.

	 384	 Partie II. Les montages

Figure 21-7 u
Trame de base

d’un site Internet

Les lignes pointillées en rouge vous permettent de voir les formations
de paires. Les différentes balises ou éléments HTML sont constitués par
les noms des éléments entre chevrons. Voyons maintenant une paire de
balises de plus près :

Figure 21-8 u
La paire de balises title

Cette paire génère le titre du site Internet, le texte se trouvant entre la
balise de début et la balise de fin. La balise de fin présente le même nom
d’élément que la balise de début, cependant il est précédé d’une barre
oblique (appelée également slash).

Sketch Arduino
Le sketch initialise un serveur web et fournit des données à un client –
c’est-à-dire votre navigateur web.

#include <Ethernet.h>

byte MACAddress[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED}; // Adresse MAC
byte IPAddress[] = {192, 168, 178, 200}; // Adresse IP
int const HTTPPORT = 80; // Port HTTP 80 (port standard)
String barColor[] = {"ff0000", "00ff00", "00ffff",
 ➥ "ffff00", "ff00ff", "550055"}; �// Couleurs RGB pour

// barres de couleur
#define HTML_TOP "<html>\n<head><title>Server Web Arduino</title></
➥ head>\n<body>"
#define HTML_BOTTOM "</body>\n</html>"
EthernetServer myServer(HTTPPORT); �// Démarrage du serveur web sur le

// port indiqué

void setup() {
 Ethernet.begin(MACAddress, IPAddress);	// Initialisation Ethernet
 myServer.begin();	 // Démarrage du serveur
}

Montage 21. Communication réseau 	 385

void loop() {
 EthernetClient myClient = myServer.available();
 if(myClient) {
 myClient.println("HTTP/1.1 200 OK");
 myClient.println("Content-Type: text/html");
 myClient.println();

 myClient.println(HTML_TOP);	 // HTML début
 showValues(myClient);	 // Contenu HTML
 myClient.println(HTML_BOTTOM);	 // HTML fin
 }
 delay(1);	 // Courte pause pour navigateur web
 myClient.stop();	// Fermeture connexion client
}

void showValues(EthernetClient &myClient) {
 for(int i = 0; i < 6; i++){
 myClient.print("Analog Pin ");
 myClient.print(i);
 myClient.print(": ");
 myClient.print(analogRead(i));
 myClient.print("<div style=\"height: 15px; background-color: #");
 myClient.print(barColor[i]);
 myClient.print("; width:");
 myClient.print(analogRead(i));
 myClient.println("px; border: 2px solid;\"></div>");
 }
}

Pour accéder au serveur web Arduino, écrivez l’adresse IP du code de
sketch dans la ligne d’adresse de votre navigateur web Arduino. Dans mon
cas, l’adresse est la suivante.

Si cette indication vous semble trop énigmatique, vous pouvez bien sûr
choisir une adresse plus parlante :

Il vous suffit d’adapter dans Windows le fichier hosts avec des droits d’ad-
ministrateur sous

C:\Windows\System32\drivers\etc

et d’ajouter la ligne dans laquelle j’ai indiqué le nom Arduino :

	 386	 Partie II. Les montages

localhost name resolution is handled within DNS itself.
#	
127.0.0.1 localhost
#	
::1 localhost
192.168.178.200	
	arduino

L’appel est alors plus simple et vous n’avez pas besoin de retenir l’adresse
IP. Il arrive parfois qu’un logiciel antivirus interdise l’accès au fichier. Dans
Antivir, décochez la case illustrée, corrigez le fichier, puis cochez à nou-
veau la case.

Figure 21-9 u
Paramètres de sécurité

pour antivirus

Examinons la signification de ce sketch.

Revue de code
La bibliothèque Ethernet.h doit être incorporée pour qu’il soit possible
d’utiliser la fonctionnalité du shield Ethernet.

Peut-être croyez-vous qu’il y a une faute de frappe dans la variable HTTPPORT,
et qu’il s’agit-il de HTMLPORT puisqu’il est question ici de pages HTML ?
C’est vrai qu’on s’y perd un peu au début. HTTP est la forme abrégée de
HyperText Transfer Protocol. Comme vous l’avez peut-être remarqué, on a
affaire à un grand nombre de protocoles différents en informatique. Quand
il s’agit de pages web, ce protocole est chargé de la transmission. Quand
vous tapez une adresse web dans votre navigateur, celle-ci commence la
plupart du temps par http:// et non par html://. Passons maintenant à la
définition du port. Le port standard pour des serveurs web qui utilisent le
protocole HTTP est le numéro 80. Imaginez-vous ce numéro comme une
sorte de bifurcation sur la route du réseau, où d’autres protocoles circulent
encore. Voici une petite liste d’applications dont vous avez peut-être déjà
entendu parler.

Montage 21. Communication réseau 	 387

Port Service Objet t Tableau 21-2
Petite liste de numéros
de port et services21 FTP Transfert de fichier via FTP-Client

25 SMTP Envoi d’e-mails

110 POP3 Accès client à un serveur de messagerie

Je voudrais encore vous parler brièvement de la structure d’une page HTML.
La seule partie variable de notre page est la partie que j’ai appelée Contenu
de ma page. Tout ce qui est au-dessus ou en dessous ne change pas. C’est
pour cette raison que j’ai créé les raccourcis pour la partie supérieure :

dans la définition HTML_TOP et pour la partie inférieure :

dans HTML_BOTTOM. Vous retrouverez la même chose dans le sketch, avec
les lignes suivantes :

#define HTML_TOP "<html>\n<head><title>Server Web Arduino</title></head>\"<html>\n<head><title>Server Web Arduino</title></head>\
n<body>"n<body>"
#define HTML_BOTTOM "</body>\n</html>""</body>\n</html>"

La séquence d’échappement \n provoque un saut de ligne, de telle sorte
que le code HTML soit formaté d’une certaine manière et que tout ne
soit pas mis sur une seule ligne. Venons-en maintenant au déroulement
du sketch proprement dit. Diverses parties du programme sont, comme
toujours, initialisées dans la fonction setup.

void setup() {
 Ethernet.begin(MACAddress, IPAddress);	 // Initialisation Ethernet
 myServer.begin();	 // Démarrage du serveur
}

La première étape consiste à doter le shield Ethernet de l’adresse MAC et
d’une adresse IP unique.

	 388	 Partie II. Les montages

Vous vous demandez certainement d’où sort l’adresse IP 192.168.2.110
en question. Eh bien, c’est tout simple ! Mon routeur se trouve dans la
zone d’adresse 192.168.2 et l’adresse d’hôte 1 lui est attribuée, autrement
dit son adresse IP est 192.168.2.1. Je peux donc affecter des adresses
comprises entre 192.168.2.2 et 192.168.2.254 à d’autres utilisateurs du
réseau. Revenons à l’initialisation. La deuxième étape consiste à démarrer le
serveur web, de sorte qu’il puisse réagir à des demandes entrantes. Celui-ci
épie le réseau et reste sur le qui-vive jusqu’à ce qu’un client l’aborde et
lui demande quelque chose. Il accomplit ensuite son travail et délivre les
données avant de se remettre à nouveau en position d’attente. Passons
maintenant au traitement proprement dit dans la fonction loop. La présence
de la demande d’un client est d’abord vérifiée :

EthernetClient myClient = myServer.available();
if(myClient){...}

Si l’interrogation if est satisfaite, le serveur peut commencer à envoyer
ses informations au client.

Vous remarquerez que cette interrogation n’est que la forme abrégée du
code suivant :

if(myClient == true){...}

L’interrogation sur true est facultative du fait que si l’expression est vraie
dans l’instruction if, c’est le bloc subséquent qui est exécuté. Vous n’avez
pas besoin de vérifier à nouveau avec == que l’expression est vraie. Vous
comprenez maintenant ? Donc, si un client a effectué une demande auprès
du serveur, ce dernier renvoie pour commencer les lignes suivantes :

myClient.println("HTTP/1.1 200 OK""HTTP/1.1 200 OK");
myClient.println("Content-Type: text/html""Content-Type: text/html");
myClient.println();

Dans la première ligne, le serveur confirme la demande du client en
transmettant la version 1.1 du protocole HTTP, suivie du code d’état 200
indiquant que la demande a été traitée avec succès et que le résultat de
la demande est transmis dans la réponse. La deuxième ligne indique ce
que l’on apelle le type MIME, à savoir le genre des données envoyées par
le serveur (text/html dans notre cas). S’agit-il d’informations purement
textuelles ou une image est-elle éventuellement délivrée au client ? Les
données transmises doivent alors être bien sûr interprétées en conséquence
et non pas affichées en texte clair. Passons maintenant au code, qui envoie
les données lues de votre carte Arduino :

Montage 21. Communication réseau 	 389

myClient.println(HTML_TOP);	 // HTML début
showValues(myClient);	 // Contenu HTML
myClient.println(HTML_BOTTOM);	// HTML fin

Les tâches de HTML_TOP et HTML_BOTTOM vous sont connues. L’appel des don-
nées de la carte est exécuté par la fonction showValues que je vous redonne
ici :

void showValues(EthernetClient &myClient) {
 for(int i = 0; i < 6; i++){
 myClient.print("Analog Pin ""Analog Pin ");
 myClient.print(i);
 myClient.print(": "": ");
 myClient.print(analogRead(i));
 myClient.print("<div style=\"height: 25px; background-color: #""<div style=\"height: 25px; background-color: #");
 myClient.print(barColor[i]);
 myClient.print("; width:""; width:");
 myClient.print(analogRead(i));
 myClient.println("px; border: 2px solid;\"></div>""px; border: 2px solid;\"></div>");
 }
}

Vous noterez que dans l’en-tête de fonction , il y a un « et » commercial (&)
devant le paramètre myClient. Ce signe distinctif est en fait une référence.
Quand on passe une variable comme paramètre d’une fonction, celle-ci
travaille avec une copie de cette variable, ce qui n’a aucune influence sur
la variable d’origine. La fonction peut par exemple doubler la valeur du
paramètre. L’originale demeure inchangée. Mais pour pouvoir utiliser l’objet
Client original dans la fonction, l’adresse mémoire de l’original est com-
muniquée au moyen de l’opérateur de référence &. Dans la fonction, je
travaille quasiment avec l’original. La fonction affiche d’une part les valeurs
des entrées analogiques et de l’autre des barres horizontales. J’utilise pour
ce faire la balise div, qui peut servir de contenant pour d’autres éléments
HTML. Je m’en sers ici pour colorer une certaine zone. Il est possible de
donner des informations de hauteur ou de largeur au moyen d’une indi-
cation style. Une ligne HTML peut alors ressembler à cela :

Analog Pin 0: 168<div style="height: 25px; background-color: #ff0000; "height: 25px; background-color: #ff0000;
width:168px; border: 2px solid;"width:168px; border: 2px solid;"></div>

La zone div a ici une hauteur de 25 pixels et une largeur de 168 pixels.
Vous trouverez des informations détaillées dans la littérature spéciale ou
sur Internet.

	 390	 Partie II. Les montages

POUR ALLER PLUS LOIN
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :
• 	selfhtml ;
•	 cascading stylesheets ;
•	 div-tag.

Peut-être avez-vous constaté, lors de votre réalisation, que les valeurs des
entrées analogiques s’affichent un point c’est tout. Si vous tournez l’un
des potentiomètres, rien ne bouge sur la page Internet. C’est normal car
le navigateur web appelle une page auprès du serveur web et en assure
la présentation (ce procédé est également appelé rendu). Si le naviga-
teur n’émet aucune autre demande, le contenu de la page demeure bien
entendu inchangé. Vous pouvez toujours appuyer assez souvent sur la
touche Actualiser (F5). Mais je doute que cela vous donne satisfaction.
Modifiez plutôt dans votre sketch la ligne de code où HTML_TOP a été défini
et vous verrez que le comportement de votre navigateur changera.

#define HTML_TOP "<html>\n<head><title>Server Web Arduino</title></"<html>\n<head><title>Server Web Arduino</title></
head>\n \head>\n \
<meta http-equiv=\"refresh\" content=\"1\">\n<body>"<meta http-equiv=\"refresh\" content=\"1\">\n<body>"

Le passage suivant est décisif :

<meta http-equiv=\"refresh\" content=\"1\">

La balise meta en question demande au navigateur d’exécuter automati-
quement une actualisation (refresh) toutes les secondes. Le backslash \
à la fin de la première ligne définissant HTML_TOP permet que cette ligne
se poursuive sur la suivante. Faute de quoi une erreur de compilateur se
produirait.

Exercice complémentaire
Écrire un nouveau sketch montrant, en plus des entrées analogiques, l’état
des entrées numériques sur votre page web Arduino.

Montage 21. Communication réseau 	 391

Problèmes courants
Vérifiez ce qui suit si la page du serveur web ne s’affiche pas.

	● Avez-vous saisi la bonne adresse IP dans la ligne d’adresse de votre
navigateur ? Elle doit correspondre à celle de votre sketch.

	● Pouvez-vous atteindre le serveur web en tapant une commande ping
dans la ligne de commande ? Sinon, vérifiez votre câble réseau ou
éventuellement les réglages du pare-feu. Une exécution réussie de la
commande ping donne le résultat suivant.

Le shield Ethernet possède certaines LED qui donnent des informations
sur l’état (voir figure page suivante).

	 392	 Partie II. Les montages

Vérifiez l’affichage des LED. Les LED PWR et LINK doivent être allumées.
La LED 100M ne s’allume que dans le cas d’un réseau 100 Mbits/s. Elle
reste éteinte pour 10 Mbits/s. Si des données sont envoyées toutes les
secondes comme dans le dernier exemple, les LED TX et RX clignotent
au même rythme.

Qu’avez-vous appris ?
	● Vous avez appris à réaliser un serveur web avec le shield Ethernet.

	● Vous avez interrogé les entrées analogiques et vu comment s’affichent
les valeurs à peu de chose près en temps réel.

	● La trame de base d’une page HTML devrait maintenant vous être plus
familière.

	● Vous maîtrisez les notions de base relatives aux réseaux.

	 393

Montage

22La carte ESP32

L’Internet des objets (Internet of Things en anglais, ou IoT) et ses appli-
cations sont aujourd’hui la norme et occupent une place de plus en plus
importante dans l’univers des développeurs amateurs. Ce qui était autre-
fois réalisé par des architectures client-serveur prend maintenant une
tout autre allure dans l’environnement IoT. Il a fallu faire évoluer les bus
physiques spécifiques aux applications pour les adapter aux interfaces de
réseau ouvertes telles que les réseaux locaux (LAN et Wi-Fi) ou Bluetooth.
Dans ce montage, vous allez découvrir un autre microcontrôleur, l’ESP32.
L’ESP32 est un microcontrôleur 32 bits bon marché et de faible puissance,
qui intègre la connectivité sans fil (Wi-Fi). L’intérêt de ce petit composant
est qu’on peut le programmer avec l’environnement de développement
Arduino.

Présentation de la carte ESP32
Le module ESP32 est un microcontrôleur développé par la société chinoise
Espressif. Cette puce constitue le perfectionnement logique du module
ESP8266. Plus de mémoire SRAM, une vitesse de processeur plus élevée,
une communication Bluetooth, un plus grand nombre de ports (GPIO), des
capteurs tactiles, une conversion A/N et N/A sont quelques-uns des points
forts de l’ESP32, si bien que l’on rencontre de plus en plus son module
monté sur des cartes. Une carte de développeur avec une puce ESP32 est
représentée ci-dessous :

t Figure 22-1
L’ESP32-Pico-Board V4

	 394	 Partie II. Les montages

Il s’agit ici de l’ESP32-Pico-Board V4. Jetons un œil sur ce module et voyons
de quels composants cette petite platine est constituée. Cette carte est en
vente partout à moins de 10 euros. La figure suivante montre les principaux
composants qui nous intéressent pour le moment :

Quelles sont les fonctions des composants indiqués ci-dessus ?

	● Reset : bouton-poussoir miniature portant le marquage EN qui permet
de redémarrer le système lorsqu’on appuie dessus. Il existe également
une broche avec la même désignation permettant de déclencher un
Reset par contact à la masse (LOW actif).

	● Boot : autre bouton-poussoir miniature portant le marquage BOOT,
pouvant être utilisé en association avec le bouton EN pour charger
un firmware. Il ne nous est toutefois pas utile pour le moment, car le
téléchargement de firmware, qui sera ensuite enregistré sur la carte,
sera effectué par l’environnement de développement Arduino que
nous utiliserons.

	● Power-LED : petite LED qui s’allume lorsque la carte est alimentée en
tension par un port USB ou via une source externe.

	● Antenna : nécessaire pour la communication sans fil.

	● ESP32 : microcontrôleur ESP32-PICO-D4.

	● LDO : étant donné que la carte ESP32 fonctionne sous une tension de
3,3 V, la tension de 5 V issue du port USB doit être abaissée et régu-
lée à 3,3 V par un régulateur de tension LDO (Low Dropout Voltage
Regulator).

	● USB-UART : il s’agit d’une puce CP1202 de Silicon Labs qui crée un pont
entre l’USB et l’UART (dispositif de communication série), assurant la
transmission de données. Le débit de transfert est d’1 Mbps.

	● USB-Port : ici une micro prise femelle USB 2.0 pour connecter la carte
à l’ordinateur.

Figure 22-2 u
L’ESP32-Pico-Board V4

et ses composants

Montage 22. La carte ESP32 	 395

Les liaisons entre les différents composants sont visibles sur le schéma-bloc
fonctionnel suivant :

Examinons maintenant les différentes broches de l’ESP-32-Pico-Board ; de
nombreuses informations sont à prendre en compte. La figure suivante
montre les broches les plus importantes et leurs fonctions, comme l’ali-
mentation en tension, IO (Entrées-Sorties), ADC (Conversion analogique-
Numérique), le bus I²C et SPI (Bus série synchrone) :

Nous voyons que certaines broches ont deux fonctions pouvant être acti-
vées selon la programmation. Il existe des fonctions primaires et des fonc-

t Figure 22-3
Schéma fonctionnel
en blocs de l’ESP32-
Pico-Board V4

Alimentation
Alimentation

t Figure 22-4
L’ESP32-Pico-Board V4
et ses broches

	 396	 Partie II. Les montages

tions alternatives. Le nombre de broches a ainsi été réduit sur la carte pour
diminuer sa taille autant que possible. Afin que les informations ne soient
pas trop déroutantes, surtout pour les débutants, je n’ai représenté sur la
figure que les détails qui sont les plus importants pour nous à ce stade.
Un bon nombre de ces broches présentent d’autres fonctionnalités qui
sont secondaires pour nous. Pour en savoir plus sur le sujet, vous pouvez
consulter le site Internet suivant :

https://esp-idf.readthedocs.io/en/latest/get-started/get-started-pico-kit.html

LES TENSIONS SUR LA CARTE ESP32
Il faut bien noter que la carte, le microcontrôleur ESP32, fonctionne avec une
tension de service de 3,3 V. Tout ce qui est supérieur à cette tension entraîne
la destruction de la carte. La tension de service de 5 V, courante sur la carte
Arduino Uno, ne doit pas être utilisée.

Je voudrais ici présenter quelques caractéristiques importantes de l’ESP32-
Pico-Board, qui intéresseront certainement quelques-uns d’entre vous. La
liste n’est pas exhaustive. Pour des informations détaillées, je vous renvoie
au site du fabricant Espressif.

Spécification détaillée

Processeur 32-Bit Dual Core (deux microprocesseurs LX6 32 bits Low-Power
Xtensa)

Mémoire
interne

	● Mémoire ROM 448 Ko pour l’amorçage et les fonctions Core

	● Mémoire SRAM 520 Ko (8 Ko RTC FAST Memory) (On-Chip) pour
les données et les instructions

	● Mémoire SRAM 8 Ko dans RTC (RTC FAST Memory) pour les
données et l’utilisation par le processeur pendant le processus
d’amorçage RTC à partir du mode Deep-Sleep

	● Mémoire SRAM 8 Ko dans RTC (RTC SLOW Memory) pour l’accès
du coprocesseur pendant le mode Deep-Sleep

	● eFuse 1 Ko, dont 320 octets sont utilisés pour l’adresse MAC et la
configuration de la puce. Les 704 octets restants peuvent servir aux
fonctions propres comme Flash Encryption ou l’ID de la puce.

Mémoire
externe

	● Accès à la mémoire QSPI Flash et à la mémoire SRAM via caches
High-Speed

	● Mémoire Flash Memory-Mapped externe de 16 Mo maximum dans
la plage de code du processeur. Compatible avec un accès 8, 16 ou
32 bits.

	● Mémoire Flash/SRAM Memory-Mapped externe de 8 Mo maximum
dans la plage de données du processeur. Compatible avec un accès
8, 16 ou 32 bits. Data-Read compatible pour mémoire Flash et
SRAM, Data-Write proposé seulement pour mémoire SRAM.

	● Mémoire SPI Flash externe 4 Mo. Mémoire SPI Flash Memory-
Mapped 4 Mo dans la plage de code du processeur. Compatible
avec un accès 8, 16 ou 32 bits et Code Execution.

Tableau 22-1 u
Spécifications de

l’ESP32-Pico-Board

Montage 22. La carte ESP32 	 397

Spécification détaillée

Fréquence Oscillateur quartz 40 MHz

Wi-Fi 2,4 GHz HT40

Bluetooth BLE 4.2 (Bluetooth-Low-Energy)

Périphérie SPI, I²C, I²S, UART, CAN 2.0 et interface Ethernet ADC	
12 bits (convertisseur analogique-numérique)

Capteurs Tactile, Hall et température

MLI 1 canal matériel et 16 canaux logiciels MLI (modulation de largeur
d’impulsion)

ES Broches GPIO (General Purpose Input/Output)

L’intégration de l’ESP32 et un premier test
Pour intégrer les fonctions du module ESP32 dans l’environnement de
développement Arduino, sélectionnez dans l’IDE Arduino l’option de menu
Fichier | Préréglages pour accéder à la boîte de dialogue de configuration
et entrez l’URL suivante :

Sélectionnez ensuite l’option de menu Outils | Type de carte | Gestionnaire
de carte pour ouvrir le gestionnaire de carte éponyme. Cherchez ESP32 et
installez la bibliothèque en cliquant sur le bouton Installer.

Cliquez sur l’option de menu Outils | Type de carte pour trouver une nou-
velle entrée portant le nom ESP32 Boards. Vous pouvez voir toutes les
cartes compatibles et sélectionner celle que vous recherchez (figure 22-6).

La liste est trop longue pour être représentée ici. L’entrée qui nous importe
est ESP32 Pico Kit. Si vous avez opté pour une autre carte, vous devrez
la sélectionner dans la liste. Mais avant de l’acheter, vérifiez qu’elle figure
bien dans cette liste.

 Figure 22-5
Installation de la
compatibilité ESP32

	 398	 Partie II. Les montages

En règle générale, le pilote correspondant est installé automatiquement
par Windows 10 :

Une fois l’installation réussie, vous pouvez vous livrer à un premier test.
C’est ce que nous allons faire avec un test LED-Hello-World, qui ne devrait
pas prendre trop de temps. Mais avant de commencer, je vais vous montrer,
parallèlement à l’installation sur une plaque de prototypage ordinaire, deux
solutions intéressantes pour réaliser la mise en circuit.

L’ESP32-Pico-Discoveryboard
La figure suivante montre deux modèles d’une même carte, que j’ai nom-
mée ESP32-Pico-Discoveryboard : à gauche, un modèle basé sur une carte
au format Europe 160 ×100 mm, qui a donc été soudé par vos soins, et à
droite une carte réalisée par un fabricant professionnel.

Vous connaissez déjà mon penchant pour les cartes faites maison. C’est
pourquoi je vous montre ces deux solutions.

Figure 22-6 u
Sélection de votre

carte ESP32

Montage 22. La carte ESP32 	 399

L’ESP32-Pico-Discoveryboard dispose déjà des divers éléments de base,
électriques et électroniques, parmi lesquels :

	● un support pour l’ESP32-Pico-Board ;

	● des gabarits de broche ESP32 (à enregistrer avec des couleurs de votre
choix) avec des prises femelles pour une orientation et un câblage
plus faciles ;

	● 10 LED dotées de résistances en série adéquates et de prises femelles ;

	● 5 boutons-poussoirs miniatures avec résistances de rappel (Pull-down)
correspondantes et prises femelles ;

	● un potentiomètre ;

	● un affichage sept segments doté de résistances en série adéquates et
de prises femelles ;

	● un écran LC piloté par le bus I²C et des prises femelles ;

	● des rails d’alimentation pour 3,3 V et GND ;

	● une petite plaque de prototypage (Breadboard) pour loger des com-
posants électroniques supplémentaires.

Vous pouvez aussi prendre une plaque de prototypage tout à fait normale
et y connecter les composants en fonction de vos centres d’intérêt. Si
vous souhaitez ne tester qu’une fois l’ESP32-Board pour connaître ses
capacités, je vous conseille de prendre une plaque de prototypage. Et si
cela vous convient mieux, vous pouvez l’utiliser au lieu d’une des deux
Discoveryboards. Le principal avantage est que toutes les broches de
l’ESP32 sont marquées et que, comme la Discoveryboard Arduino, cer-
tains composants de base sont fournis d’office. Vous trouverez représentée
ci-après la mise en circuit sur l’ESP32-Pico-Discoveryboard.

t Figure 22-7
Les ESP32-Pico-
Discoveryboards

	 400	 Partie II. Les montages

Faire clignoter avec le module
ESP32
Pour communiquer avec le monde extérieur, la carte de développeur repré-
sentée dispose, comme on l’a vu, de broches IO, IO étant l’abréviation de
Input/Output (Entrée/Sortie en français). Des informations peuvent être
fournies à la carte et envoyées par ces broches, tout comme sur la carte
Arduino Uno.

Pour ce montage, nous aurons besoin des composants suivants :

Composant

Carte ESP32

1 LED rouge

1 résistance de 330 Ω

1 résistance de 10 kΩ

1 bouton-poussoir
miniature

La figure 22-8 montre à l’aide du schéma des connexions comment réaliser
les deux sens du flux de données.

Tableau 22-2 u
Liste des composants

Montage 22. La carte ESP32 	 401

La broche portant la désignation IO 21 est utilisée comme sortie et pilote
via une résistance en série, une diode électroluminescente ou LED. Dans
le sens opposé, c’est la broche portant la désignation IO 22 qui fait office
d’entrée pour interroger un bouton et la résistance de rappel (Pull-down)
qui est utilisée. La carte ESP32-Pico-Discoveryboard possède déjà des
résistances de rappel (Pull-down) à ses six boutons, bien que celles-ci ne
soient pas nécessaires (comme sur la carte Arduino Uno), car il existe des
résistances de tirage (Pull-up) internes dans l’ESP32.

t Figure 22-8
Exemple simple
d’activités IO

t Figure 22-9
Circuit sur l’ESP32-Pico-
Discoveryboard

Sortie

Entrée

	 402	 Partie II. Les montages

Le code ESP32 pour interroger le bouton et commander la LED est :

define bouton 21 // Broche bouton
#define LED 22 // Broche LED

void setup() {
pinMode(bouton, INPUT);
pinMode(LED, OUTPUT);
}

void loop() {
digitalWrite(LED, digitalRead(bouton));
}

Une fois le code chargé sur la carte ESP32, le message dans l’environne-
ment de développement Arduino est un peu différent de celui auquel on
est habitué sur Arduino Uno. Par manque de place, je n’ai pas représenté
ici toutes les lignes d’édition, mais seulement un petit extrait. La dernière
ligne est importante. Elle indique un reset du module ESP32, qui vous
laisse présager que le chargement a fonctionné.

 esptool.py v2.6
 Serial port COM9
 Connecting.....
 Chip is ESP32-PICO-D4 (revision 1)
 Features: Wi-Fi, BT, Dual Core, Embedded Flash, Coding Scheme None
MAC: d8:a0:1d:40:9e:e8
 Changing baud rate to 921600
 Changed.
 Configuring flash size...
 Auto-detected Flash size: 4MB
 Compressed 8192 bytes to 47...
 Wrote 8192 bytes (47 compressed) at 0x0000e000 in 0.0 seconds
(effective 10922.6 kbit/s)...
 Leaving...
 Hard resetting via RTS pin...

L’ESP32-Board D1 R32
Il existe bien sûr d’autres cartes de développeur ESP32, proposées par
différentes sociétés. Ces cartes présentent une disposition de broches dif-
férente et certaines ont un plus grand nombre de broches. Les montages
indiqués peuvent certainement être réalisés avec d’autres cartes ESP32. Il
faudra cependant veiller au brochage respectif, c’est-à-dire à la disposition
des broches. Vous la trouverez sur Internet. La figure 22-10 page suivante
montre une carte qui ressemble à une carte Arduino. Il s’agit de la carte
D1 R32 de la marque AZ-Delivery. Elle a le même format que la carte
Arduino Uno et les en-têtes déjà bien connus.

Montage 22. La carte ESP32 	 403

Montage : le log de températures
Voilà pour les informations préalables. Je voudrais vous présenter un mon-
tage intéressant, qui affiche non seulement une valeur de mesure locale-
ment, mais qui lui permet aussi d’utiliser le réseau Internet afin de pouvoir
y être représentée dans un graphique. Mon objectif est de développer
avec vous un sketch (je ne suis pas sûr que le terme sketch soit approprié
pour une carte ESP32, mais tant pis !). Le sketch qui suit doit établir une
connexion à votre routeur par Wi-Fi. En Allemagne, on emploie commu-
nément le terme WLAN pour désigner un réseau sans fil alors que dans
d’autres pays, on utilise généralement le terme Wi-Fi. Il y a certes de petites
différences, mais elles ne nous importent pas ici. Avant de commencer,
regardez d’abord les données d’accès Wi-Fi à votre routeur, car vous en
aurez besoin pour connecter un appareil à votre réseau domestique. Au
début du sketch, vous devez signaler à votre ESP32 que vous souhaitez
utiliser la fonctionnalité Wi-Fi. Une instruction include correspondante
supplémentaire est donc nécessaire. Supposons que les données d’accès
dans un réseau domestique soient les suivantes :

	● SSID : EriksWLan ;

	● mot de passe : Schnickschnack.

Le sketch commencerait ainsi :

#include <WiFi.h>
const char* ssid	 = “EriksWLan”;
const char* password	= “Schnickschnack”;

t Figure 22-10
La carte D1 R32
de AZ-Delivery

	 404	 Partie II. Les montages

Vous avez posé la première pierre à l’établissement de la connexion. À
l’intérieur de la fonction setup, l’interface sérielle pour le contrôle de la
liaison Wi-Fi est initialisée à une vitesse de 115 200 bauds et l’objet WiFi
est initialisé avec les données d’accès. Dans la boucle while a lieu une
interrogation continue de l’état de la connexion, qui passe à WL_CONNECTED
lorsque la liaison Wi-Fi a été établie. Tant que cela n’est pas le cas, la boucle
while n’est pas interrompue. Une courte pause de 500 ms est ajoutée et
un point est édité pour le contrôle visuel à chaque itération de la boucle.

void setup() { Serial.begin(115200);
 WiFi.begin(ssid, password);
 Serial.println(“Connection au réseau Wi-Fi...“);
 while(WiFi.status() != WL_CONNECTED) {
 delay(500); // Courte pause
 Serial.print(“.“); // Editer point si pas encore de connexion
 }
 Serial.println(“\nConnecté au réseau Wi-Fi“); Serial.print(“Adresse
IP: “);
 Serial.println(WiFi.localIP());
}

void loop() {/* ... */}

En absence de connexion au routeur si les données d’accès sont incor-
rectes, le résultat dans le moniteur série de l’IDE Arduino s’affiche comme
indiqué ci-après.

La série de points devenant de plus en plus longue, il faut parfois appuyer
brièvement sur le bouton Reset du module ESP32. En revanche, si la
connexion Wi-Fi fonctionne plus ou moins directement, l’affichage dans
le moniteur série est le suivant et l’adresse IP attribuée par le routeur
s’affiche elle aussi :

Figure 22-11 
Pas encore de connexion

entre l’ESP32 et le routeur

Montage 22. La carte ESP32 	 405

Voici donc les conditions préalables à la suite de la procédure et à l’exten-
sion du sketch, car nous souhaitons obtenir une sorte de trafic par Wi-Fi.
Mon routeur Fritzbox a détecté le nouvel appareil sous la forme de la
carte ESP32 :

Le serveur ThingSpeak
Pour que le processus visé de collecte et de transfert de données sur Internet
fonctionne, il nous faut une contrepartie correspondante sur Internet, qui
fasse office de serveur et qui puisse établir une liaison avec mon client local.
Comme le laisse entendre le nom du montage n° 13 « La température », le
but est de collecter des valeurs de température. Le schéma suivant vous
indique clairement le chemin que nous prévoyons entre les instances :

 Figure 22-12
Connexion établie entre
l’ESP32 et le routeur

 Figure 22-13
Parcours de l’information
température à travers
les différentes instances
jusqu’à Internet

	 406	 Partie II. Les montages

Pour ce montage, nous aurons besoin du composant suivant :

Composant

Capteur de température
(thermistance) DS18B20

Pour notre montage, nous utiliserons ThingSpeak, un service cloud gratuit.
Avant de pouvoir l’utiliser, vous devez vous y inscrire gratuitement sur le
site Internet du fournisseur :

https://thingspeak.com/

Inscrivez-vous (je ne montre pas l’inscription ici) en confirmant l’adresse
e-mail que vous avez indiquée. Vous pourrez ensuite commencer. Une fois
inscrit, vous devez créer un Channel (une chaîne, en français), dans lequel
seront traitées, mais aussi affichées, les données que vous allez envoyer à
ce serveur. Allez dans le menu Channels puis cliquez sur le bouton New
Channel :

J’ai pour ma part entré quelques informations pour décrire la chaîne et je
les ai confirmées en cliquant sur le bouton vert Save en bas de la page :

Tableau 22-3 u
Liste des composants

Montage 22. La carte ESP32 	 407

Nous obtenons la vue suivante :

Nous y voyons un diagramme avec les métadonnées que j’ai indiquées, qui
ne contiennent pas encore de données, ce qui est logique puisque rien n’a
encore été envoyé au serveur. Pour pouvoir le faire, vous devez générer
une clé qu’il est possible de créer dans l’onglet API Keys :

Cette clé est indispensable pour envoyer les valeurs de mesure sur le serveur
ThingSpeak. Pour l’envoi d’une seule valeur mesurée à l’aide du navigateur,
il faut utiliser le mode d’écriture suivant :

Vous devez saisir ici votre propre clé API. La description du champ se trouve
sous l’onglet Channel Settings. Après la description du champ, vous devez
saisir dans l’URL un signe = suivi de la valeur correspondante. Lorsque
le transfert a réussi, le serveur répond par un chiffre qui correspond au
nombre de valeurs de mesure envoyées. Dans mon navigateur, j’ai entré
successivement les lignes suivantes :

https://api.thingspeak.com/update?api_key=J7HKMNNSVU2QH6TK&field1=17

t Figure 22-14
Clé API personnelle
pour l’écriture des valeurs
de mesure sur la chaîne
ThingSpeak

	 408	 Partie II. Les montages

https://api.thingspeak.com/update?api_key=J7HKMNNSVU2QH6TK&field1=21
https://api.thingspeak.com/update?api_key=J7HKMNNSVU2QH6TK&field1=34
https://api.thingspeak.com/update?api_key=J7HKMNNSVU2QH6TK&field1=4

Veillez à toujours maintenir une petite pause d’au moins dix secondes entre
les différentes saisies et de ne pas insérer d’espace vide dans la chaîne de
caractères. Cela m’est arrivé plusieurs fois et je me suis demandé pourquoi
rien ne se passait. Le résultat dans ma chaîne se présente sous la forme
suivante :

Si vous déplacez le pointeur de la souris sur l’un des points de mesure
rouges, l’infobulle vous donnera des informations supplémentaires sur la
valeur exacte ainsi que la date et l’heure. Vous avez vu comment s’effectue
le transfert des valeurs via le navigateur, mais c’est le module ESP32 qui
doit s’en charger avec la carte Arduino Uno. C’est en principe le même
procédé, sauf que la transmission des données s’opère avec une méthode
de requête appelée HTTP-POST. Cette requête, qui est envoyée au ser-
veur ThingSpeak, contient de multiples informations standards, comme
un en-tête, la clé API avec la description du champ, ainsi que les valeurs
mesurées, par exemple :

J7HKMNNSVU2QH6TK&field1=24.63

Elle indique à la fin le nombre de caractères dans la chaîne de caractères à
envoyer. Nous verrons cela en détail lorsque nous examinerons le sketch
Arduino. Avant cela, il nous faut installer une bibliothèque, car la thermi
stance DS18B20 utilisée requiert un support particulier. Il s’agit d’un capteur
bus One-Wire qui, comme son nom l’indique, envoie ses données via un

Figure 22-15 u
Ma chaîne de températures

avec les valeurs envoyées

Montage 22. La carte ESP32 	 409

seul fil. Donc, en gros, deux bibliothèques sont nécessaires pour le sketch :
la bibliothèque pour la thermistance DS18B20 et celle pour le bus One-Wire.

QU’EST-CE QU’UN BUS ONE-WIRE ?
1-Wire ou bus One-Wire est un bus à un conducteur avec une interface sérielle,
conçu par la société Dallas Semiconductor Corp. Un fil de données sert à la
fois pour l’alimentation en courant et comme fil d’émission et de réception.

Si vous installez la bibliothèque pour la DS18B20, il vous sera demandé
lors de l’installation si vous souhaitez installer en même temps une autre
bibliothèque. Vous devez répondre par oui. Dans le champ de recherche
de la bibliothèque à ajouter, entrez alors dallas et cliquez sur le bouton
Installer.

OK, maintenant, on peut vraiment commencer !

Schéma
Examinons d’abord la thermistance DS18B20. Capteur de grande précision,
elle est capable de fonctionner avec une tension comprise entre 3 V et 5,5 V
et couvre une plage de température allant de –55 °C à +125 °C. Ce capteur
ressemble à un transistor à trois broches présentant la disposition suivante :

 Figure 22-16
Installation de la
bibliothèque Dallas

t Figure 22-17
Disposition des broches
du DS18B20

	 410	 Partie II. Les montages

Puisqu’il s’agit d’un capteur communiquant via le bus One-Wire, vous avez
la possibilité de raccorder plusieurs capteurs de ce genre si nécessaire. Nous
commencerons toutefois avec un seul capteur qui, comme sur le bus I²C,
requiert une résistance de tirage (Pull-up) sur le bus, ce qui nous donne :

La résistance de 4,7 kΩ est la résistance de tirage (Pull-up) pour le bus. Il
est possible ici de modifier le cas échéant la broche GPIO 21. Les lettres
GPIO sont l’abréviation de General Purpose Input/Output, ce qui signifie
qu’il s’agit d’une broche pouvant être programmée librement en tant qu’en-
trée ou sortie pour un usage général. Ne vous laissez pas impressionner,
ce n’est rien d’autre qu’une broche de votre carte Arduino Uno, pouvant
être configurée par l’instruction pinMode comme une entrée simple ou
avec résistance de tirage (pull-up) ou une sortie. Ci-dessous le schéma des
connexions avec l’ESP32-Pico-Board et la thermistance DS18B20 :

Figure 22-18 u
Circuit du DS18B20

Figure 22-19 u
Schéma des connexions

avec l’ESP32-Pico-Board
et la thermistance DS18B20

Montage 22. La carte ESP32 	 411

Réalisation du circuit
Faire un circuit test sur l’ESP32-Pico-Discoveryboard est un jeu d’enfant.
On y voit la thermistance DS18B20. La résistance de tirage (Pull-up) est
cachée par un câble, mais elle est bien là !

Sketch Arduino
Regardons maintenant de plus près le sketch Arduino. Je l’ai divisé en
plusieurs parties pour que mes explications collent au plus près de ce qui
se passe. La première partie va jusqu’à l’intégration supplémentaire de
bibliothèques pour interroger la thermistance DS18B20. On a ajouté par
ailleurs une bibliothèque qui supporte un client HTTP, car notre ESP32
est le client qui établit une liaison avec le serveur ThingSpeak. Remplacez
ici les données d’accès et la clé API par vos données sinon la connexion
ne pourra pas se faire :

 #include <WiFi.h>	 // Intégrer la bibliothèque Wi-Fi
 #include <HTTPClient.h>	 // Intégrer la bibliothèque client HTTP
 #include <OneWire.h>	 // Intégrer la bibliothèque One-Wire
 #include <DallasTemperature.h>	// Intégrer la bibliothèque Dallas
 #define ONE_WIRE_BUS 21	 // Broche DS18B20 – GPIO 21

 const char* ssid	 = "EriksWLan"; const char*
 password	 = "Schnickschnack";
 const char* serverName	 = "http://api.thingspeak.com/update"; String
apiKey = "J7HKMQSSVU2QH6TK";
 unsigned long lastTime = 0;
 unsigned long timerDelay = 10000; // 10 secondes

 OneWire oneWire(ONE_WIRE_BUS);	 // Initialisation One-Wire
 DallasTemperature sensors(&oneWire);	// Transmettre référence One-Wire
 	 // à Dallas

t Figure 22-20
Circuit du DS18B20
sur l’ESP32-Pico-
Discoveryboard

	 412	 Partie II. Les montages

void setup() { Serial.begin(115200);
 WiFi.begin(ssid, password);
 Serial.println(“Connection au reseau Wi-Fi...”);
 while(WiFi.status() != WL_CONNECTED) {
 delay(500);	 // Courte pause
 Serial.print(“.“);	 // Éditer point si aucune connexion
 }
 Serial.println(“\nConnecté au réseau Wi-Fi “); Serial.print(“IP
address: “); Serial.println(WiFi.localIP());
}

Tout le processus d’interrogation de la thermistance et de l’envoi de cette
valeur de mesure a lieu au sein de la fonction loop. L’envoi des données dans
le temps ne s’opère pas ici par la fonction delay, mais par la construction
au moyen de la fonction millis, que vous connaissez déjà.

void loop() {
 // HTTP POST request toutes les 10 secondes
 if((millis() - lastTime) > timerDelay) {
 // Statut Wi-Fi OK ?
 if(WiFi.status()== WL_CONNECTED) {
 HTTPClient http;	 // Client http	
 http.begin(serverName);	 // Serveur http

Voici quelques informations sur la méthode HTTP-Post que nous allons
utiliser. Celle-ci envoie des données au serveur. Le type de corps, autre-
ment dit le message à envoyer, dont le format est indiqué par l’en-tête
Content-Type. Il existe différents types pour ce procédé. Le type applica-
tion/x-www-form-urlencoded que nous utilisons a la signification suivante :
les clés et les valeurs sont codées dans des paires clés-valeurs, séparées par
&, avec un signe = entre la clé et la valeur. Vous vous souvenez certaine-
ment de cette partie de l’URL que j’ai envoyée au serveur ThingSpeak et
qui se présente comme suit : key=J7HKMNNSVU2- QH6TK&field1=4. On
y voit très bien les paires clés-valeurs. C’est justement cette configuration
d’en-tête HTTP que nous obtenons avec la méthode addHeader.

La méthode requestTemperatures de la bibliothèque de capteurs sert à
interroger la valeur de la température, tandis que la méthode getTem-
pCByIndex(0) interroge le premier capteur avec index = 0 (même si nous
n’en n’avons qu’un) et stocke la mesure dans les variables temperature. La
demande HTTP à envoyer au serveur se compose alors de plusieurs infor-
mations comme la clé API, le champ de données et la valeur de mesure.
Cette dernière est envoyée avec la méthode POST, une valeur de retour est
ensuite attendue. Celle-ci fournit des renseignements sur le déroulement
et le résultat de la demande. Un code retour de 200 indique que tout s’est
bien passé et que les données ont été transmises au serveur. Toute autre
valeur de retour indique une erreur, qu’il convient d’analyser.

Montage 22. La carte ESP32 	 413

 // Content-type header
 http.addHeader(“Content-Type“,
 “application/x-www-form-urlencoded“);
 // Envoyer les données par HTTP-POST
 sensors.requestTemperatures(); // Demander mesure température
 float temperature = sensors.getTempCByIndex(0);
 String httpRequestData = “api_key=” + apiKey + “&field1=” +
 String(temperature);
 // HTTP-POST-Request
 int httpResponseCode = http.POST(httpRequestData);
 if(httpResponseCode == 200) {
 Serial.print(“Température: “);
 Serial.println(temperature);
 Serial.println(“SUCCESS - HTTP Response code: 200 - Données
	 envoyées !“);
 }
 else {
 Serial.println(“ERROR - Données non envoyées!“);
 Serial.print(“HTTP Response code: “);
 Serial.println(httpResponseCode);
 }
 // Débloquer les ressources
 http.end();
 }
 else {
 Serial.println(“Wi-Fi Disconnected”);
 }
 lastTime = millis();
 }
}

Veillez à régler correctement la vitesse de transmission au moniteur série
à 115 200 bauds et observez ce qu’il affiche pendant la transmission des
données. La figure ci-après montre un exemple de transfert de données.

t Figure 22-21
Le moniteur série fournit
des renseignements
sur le transfert de données
en direction du serveur.

	 414	 Partie II. Les montages

Vous pouvez suivre en même temps les données qui arrivent sur la page
Internet ThingSpeak dans la chaîne correspondante. Le graphique suivant
montre quelques valeurs que j’ai transmises en touchant la thermistance :

Veillez à ce que votre chaîne ne déborde pas de données lors des divers
tests. Vous pouvez supprimer ces données pour repartir à zéro. Pour cela,
allez dans l’onglet Channel Settings et déroulez le menu jusqu’en bas.
Attention, vous devez cliquer sur le bon bouton rouge. Le bouton Clear
Channel en haut permet de supprimer toutes les données antérieures, sans
supprimer la chaîne.

Le bouton Delete Channel en bas supprime complètement la chaîne et avec
elle, toutes les données qu’elle contient.

Problèmes courants
Si vous n’arrivez pas à établir la connexion entre votre carte ESP32 et le
routeur, vérifiez encore une fois les données d’accès. Vous devez également
saisir correctement la clé API pour que les valeurs de mesure puissent
être transmises ensuite au serveur ThingSpeak. Vérifiez encore une fois ce
que vous avez saisi. Si la thermistance DS18B20 ne livre pas de valeurs de
mesure logiques, vérifiez une nouvelle fois le câblage ainsi que la broche
GPIO utilisée sur l’ESP32-Pico-Board.

Figure 22-22 u
Valeurs dans la chaîne

ThingSpeak

Figure 22-23 u
Vider ou supprimer

la chaîne ThingSpeak

Montage 22. La carte ESP32 	 415

Qu’avez-vous appris ?
	● Nous avons fait connaissance du composant électronique ou micro-

contrôleur ESP32 et appris comment le programmer avec l’IDE Arduino.

	● Vous avez découvert deux cartes, sur lesquelles la puce ESP32 a été
installée : l’ESP32-Pico-Board et la D1 R32.

	● Vous avez raccordé une thermistance au microcontrôleur par le biais
du bus One-Wire.

	● Vous connaissez maintenant le service cloud ThinkSpeak et vous avez
pu éditer une représentation graphique des données fournies en per-
manence par votre log de températures.

Workshop sur le log
de températures
Il est possible de raccorder et d’interroger via le bus One-Wire plusieurs
capteurs de température de type DS18B20. Il vous suffit de procéder comme
suit :

Mais comment alors interroger un par un les différents capteurs ? Tous les
modules ou esclaves connectés au bus I²C se voient affectés leur propre
adresse de bus. Cela nous permet de définir un adressage unique, ce qui
ne semble pas être possible ici. Exact, mais une affectation précise est belle
et bien effectuée. Chaque capteur dispose d’une adresse matérielle 64 bits
unique, enregistrée dans une mémoire ROM interne. Voici un exemple
de programmation possible par laquelle l’index est incrémenté à chaque
échantillonnage de la température :

t Figure 22-24
Plusieurs capteurs
de température DS18B20
sur le bus One-Wire

	 416	 Partie II. Les montages

void loop() {
 ...
 float temperatur1;	 // Enregistre température 1
 float temperatur2;	 // Enregistre température 2
 ...

 // Demander mesure de la température
 sensors.requestTemperatures();
 temperatur1 = sensors.getTempCByIndex(0);	// Capteur 1
 temperatur2 = sensors.getTempCByIndex(1);	// Capteur 2
 ...
}

Modifiez votre sketch de façon que, dans ce cas, deux valeurs de mesure
soient transmises au serveur ThingSpeak. Jusqu’à présent, vous n’avez
envoyé qu’un seul champ via la requête HTTP. Celui-ci doit être modi-
fié et étendu. Évidemment, vous devez faire aussi quelques ajustements
sur la page du serveur et créer deux champs ou graphiques. Je n’en dirai
pas plus. Cherchez de votre côté avant de me poser des questions. Vous
apprendrez davantage ainsi que si l’on vous présente des solutions toutes
faites. Il serait également intéressant de programmer un montage pour
le capteur de température et d’humidité DHT11 ou DHT22 (voir montage
n° 26) avec le module ESP32.

Figure 22-25 u
Le capteur de température

et d’humidité DHT11
ou DHT22

	 417

Montage

23Numérique appelle
analogique

Dans ce montage, nous allons découvrir comment générer des signaux
analogiques sur la carte Arduino Uno. Nous produirons diverses formes
d’onde et nous fabriquerons un petit générateur de fonctions.

Comment convertir des signaux
numériques en signaux analogiques ?
L’exploitation de signaux analogiques est relativement simple par les
entrées analogiques avec votre carte Arduino. Le sens inverse – c’est-à-dire
produire et distribuer une tension analogique à l’aide du microcontrôleur –
n’est faisable qu’en utilisant les sorties numériques capables de MLI. Quand
vous aurez vu la forme de la courbe des signaux MLI, vous saurez combien
elle diffère de celle d’un signal analogique.

La plupart des microcontrôleurs courants ne convertissent pas un signal
numérique en signal analogique. Il leur faudrait pour ce faire intégrer un
convertisseur N/A. Notre projet consiste à fabriquer un tel convertisseur,
appelé aussi CNA (Digital-Analog-Converter en anglais ou DAC), avec des
moyens simples. Tout tourne ici autour du réseau R2R. Cette appellation
est due au fait que le convertisseur est composé de plusieurs résistances,
disposées en cascade et qui doivent se trouver entre elles dans un rapport
déterminé. La disposition des éléments fait penser à une échelle, c’est
pourquoi ce type de circuit est également nommé réseau en échelle de
résistances dans la littérature spécialisée. Retenons seulement que le réseau
de résistances sert à répartir une tension de référence qui, dans notre cas,
est de +5 V. La figure 23-1 montre un réseau de résistances R2R avec une
entrée de 6 bits.

	 418	 Partie II. Les montages

Figure 23-1 u
Réseau de résistances R2R

avec une entrée de 6 bits

Vous vous demandez peut-être d’où vient ce nom, R2R. Si vous regardez le
schéma de plus près, vous verrez que les résistances n’ont pas une valeur
fixée, et que seuls les rapports de résistance sont indiqués. Les résistances
R2R (horizontales), qui sont reliées aux connexions E

0
 à E

5
 des sorties

numériques, valent le double des résistances (verticales), qui relient les
résistances précédentes et mènent au point de sortie U

sortie
. La résistance du

bas, qui est reliée à la masse, a la même résistance 2R que les résistances
horizontales. La formule suivante peut être utilisée pour déterminer la
tension de sortie :

Pour cet exemple avec six entrées, la résolution suivante peut être obtenue :

Montage 23. Numérique appelle analogique 	 419

U
ref

 est ici la tension avec laquelle les différentes entrées sont commandées.
Pour une tension U

ref
 de 5 V, le résultat serait donc le suivant :

Cette valeur représente le plus petit pas de progression obtenu chaque fois
que la valeur binaire de l’entrée à 6 bits est incrémentée de 1. Le tableau
23-1 fournit les quatre premières valeurs ainsi que la dernière.

Valeur binaire Tension de sortie t Tableau 23-1
Combinaisons binaires
et tensions de sortie
arrondies

000000 0 V

000001 78,13 mV

000010 156,26 mV

000011 234,39 mV

... ...

111111 5 V

Nous avons donc, pour le shield de conversion N/A prévu, une définition
de 6 bits (26 = 64). Vous avez peut-être remarqué que je n’ai donné jusqu’ici
aucune valeur de résistance. Ce n’est pas utile tant que le rapport des
résistances est exactement de 2:1. En outre, la tolérance des différentes
résistances doit être aussi faible que possible pour obtenir des résultats
relativement précis. Nous n’en tiendrons cependant pas compte dans ce
montage.

Composants nécessaires
Ce montage nécessite les composants suivants.

Composant t Tableau 23-2
Liste des composants

17 résistances de 47K

1 jeu de connecteurs femelles
empilables
•	 2 connecteurs à 8 broches
•	 1 connecteur à 6 broches
•	 1 connecteur à 10 broches

1 carte shield

	 420	 Partie II. Les montages

Le réseau R2R avec rapports de résistance 2:1 peut s’avérer difficile à réaliser,
car vous devez trouver des valeurs de résistance qui sont dans ce rapport
entre elles. La solution n’est certes pas simple. J’ai choisi une résistance de
47K pour que les courants en circulation ne soient pas trop élevés. Vous
vous demandez peut-être si une résistance de 23,5K existe. Non seulement
je ne crois pas, mais cette valeur est en plus très facile à obtenir. Quand on
branche deux résistances de même valeur en parallèle, le résultat obtenu
est l’exacte moitié de la résistance en question. Donc si R

1
 = R

2
, on obtient :

C’est élémentaire, n’est-ce pas ? Examinons maintenant le schéma.

Schéma
Vous constaterez que pour des questions de place, les résistances ont été
disposées à l’horizontale.

Figure 23-2 
 Schéma du générateur
de signaux analogiques

Les résistances R ont naturellement une valeur de 47K. Les paires de résis-
tances R/2 ont comme valeur résultante 23,5K.

Montage 23. Numérique appelle analogique 	 421

Réalisation du circuit
Le circuit peut évidemment aussi être réalisé sans shield, sur une plaque
d’essais.

t Figure 23-3
Réseau R2R
sur une plaque d’essais

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino
int pinArray[] = {8, 9, 10, 11, 12, 13};
byte R2RPattern;
void setup() {
 for(int i = 0; i < 6; i++)
 pinMode(pinArray[i], OUTPUT);
 R2RPattern = B000001; // Configuration binaire pour commander les sor-
ties numériques
}

void loop() {
 for(int i = 0; i < 6; i++){
 digitalWrite(pinArray[i], bitRead(R2RPattern, i) == 1?HIGH:LOW);
 }
}

Ce sketch, vraiment très court, commande les sorties numériques sur les-
quelles se trouve le réseau R2R. Elles sont commandées via la variable
R2RPattern, qui délivre une tension correspondante à la sortie du réseau.

	 422	 Partie II. Les montages

Revue de code
Le réseau R2R est commandé avec la combinaison de bits B000001 tirée du
sketch ; le multimètre affiche une tension de 0,078 V, soit 78 mV. Dans le
tableau 23-1, la valeur est de 78,13 mV pour la combinaison de bits. La valeur
de sortie de 78 mV ne correspond donc pas tout à fait à la valeur calculée
du tableau, mais c’est tout de même correct quand on sait que le résultat
se trouve par exemple légèrement faussé par les tolérances matérielles des
résistances utilisées ou par des erreurs d’affichage du multimètre. Il m’est
arrivé de construire un réseau R2R où les valeurs coïncidaient presque
toutes jusqu’à deux chiffres après la virgule, mais ce n’était que pur hasard.
L’interrogation des bits du nombre du pattern est effectuée au moyen de la
fonction bitRead. Pour placer les bits au moyen de la fonction digitalWrite
dans la boucle for, nous utilisons un opérateur ternaire représenté par un
point d’interrogation. Nous l’avons déjà évoqué dans le montage n° 10 du
dé électronique. Si la condition formulée bitRead(R2RPattern, i) == 1
renvoit la valeur true, la valeur qui se trouve immédiatement après le point
d’interrogation (HIGH) est renvoyée à son tour. Si tel n’est pas le cas, c’est la
valeur qui figure après les deux points (LOW) qui est renvoyée.

Réalisation du shield
Figure 23-4 u

Réalisation du réseau R2R
sur un shield dédié

Cette figure montre bien le réseau de résistances, la broche en haut du
shield étant la sortie sur laquelle vous pouvez brancher votre multimètre
pour mesurer la tension de sortie.

Montage 23. Numérique appelle analogique 	 423

Commande du registre de port
Je ne vous apprendrai rien en vous disant que la carte Arduino ne com-
munique que par les entrées et les sorties. Ceci vaut également pour com-
mander des LED, des moteurs, des servomoteurs et pour lire, entre autres,
les valeurs d’un capteur de température ou d’une résistance réglable ou
photosensible. Votre microcontrôleur ATmega328P travaille en interne avec
ce qu’on appelle des registres, raccordés aux entrées et sorties (broches).
Dans le domaine informatique, ce sont des zones de mémoire à l’intérieur
d’un processeur, qui sont reliées directement à l’unité centrale de calcul.
Ainsi l’accès à ces zones est très rapide puisque le détour par des circuits
mémoire externes est évité. Les différentes broches de votre carte Arduino
sont reliées en interne à des registres de port, encartouchés en couleurs
(vert, rouge ou jaune) et nommés port B, C ou D sur la figure 23-5.

t Figure 23-5
Registres de port
de la carte Arduino

Regardons par exemple le port B de plus près sur la figure 23-6.

Broche :

t Figure 23-6
Registre de port B

On reconnaît immédiatement les entrées et sorties numériques (broches 9
à 13). Les deux broches de gauche sont pour nous sans intérêt, car elles
sont reliées à Aref (entrée pour la tension de référence du convertisseur
analogique-numérique) et à la masse et ne peuvent être manipulées. Six bits
en tout sont donc disponibles dans le registre de port B. Ils vont nous

	 424	 Partie II. Les montages

servir à faire des choses diverses. Comme par hasard, notre réseau de
résistances est lui aussi commandé avec 6 bits. Je ne vous en dis pas plus
pour l’instant. Chacun des trois ports est sollicité dans un sketch au moyen
des identifiants suivants :

	● PORTB

	● PORTC

	● PORTD

Nous savons déjà comment les différents ports sont sollicités, mais nous
nous en tiendrons, comme je l’ai dit plus haut, au port B dans notre exemple.

Nous avons vu que quand on programme des broches numériques, on doit
définir dans la fonction setup si elles vont servir d’entrée ou de sortie. Mais
dans le cas d’un registre de port, comment lui dire de servir d’entrée ou
de sortie ? Eh bien, je vais vous l’expliquer mais je dois vous dire quelque
chose auparavant : vous pouvez bien sûr attribuer à chaque bit du registre
de port un sens de circulation des données particulier. Le registre complet
ne fonctionne pas de telle sorte que toutes les broches servent d’entrées
ou de sorties. Chaque broche peut être configurée séparément. D’autres
registres sont en effet spécialement prévus pour influer sur le sens de
circulation des données de chaque broche. Ils ont pour nom DDRx, x
indiquant le port à solliciter. Le registre DDRB est par conséquent celui de
notre PORTB – (DDR, pour Data Direction Register, signifie à peu de chose
près registre de direction de données). Voyons comment tout cela fonc-
tionne dans le détail. Avant d’utiliser un port, je dois donc définir le sens
de circulation des données par le DDR correspondant. Sur la figure 23-7,
les flèches indiquent les sens de circulation des données que nous voulons
obtenir avec notre programmation.

Figure 23-7 u
Registre de port B

avec divers sens de
circulation des données

selon les broches

 Broche :

La configuration est donc la suivante :

	● entrées : broches 8, 9 et 10 ;

	● sorties : broches 11, 12 et 13.

Pour affecter un sens de circulation des données à une broche, la valeur
du tableau suivant doit être entrée dans le DDR.

Montage 23. Numérique appelle analogique 	 425

Valeur Mode de fonctionnement t Tableau 23-3
Valeurs pour le registre
DDR0 Broche servant d’entrée, comparable à pinMode(pin, INPUT);

1 Broche servant de sortie, comparable à pinMode(pin, OUTPUT);

Cela nous donne pour le DDR la programmation de la figure 23-8.

Broche :

t Figure 23-8
Initialisation du DDR
pour les différents sens
de circulation des données

Nous pouvons maintenant mettre par exemple les sorties numériques des
broches 11, 12 et 13 au niveau HIGH par l’instruction PORTB. Voici un extrait
correspondant tiré d’un sketch :

void setup() {
 DDRB = 0b11111000; �// Broches 8, 9, 10 = INPUT.

// Broches 11, 12, 13 = OUTPUT
 PORTB = 0b00111000; // Mise des broches 11, 12, 13 au niveau HIGH
}

void looploop(){ /* vide */ }

Les deux bits les plus significatifs pour les broches non utilisées ont sim-
plement été pourvus d’un 1 dans le DDR. Cela n’a aucune importance dans
notre cas. Si vous regardez la mise des sorties au niveau HIGH, que consta-
tez-vous de différent par rapport à la manipulation des broches habituelle ?
Je vous donne les deux variantes pour comparaison :

digitalWrite(11, HIGH);
digitalWrite(12, HIGH);
digitalWrite(13, HIGH);
PORTB = 0b00111000;

Aucune idée ? Bon. La manière traditionnelle de gauche met les différentes
broches l’une après l’autre au niveau HIGH. Celle de droite met par contre
toutes les broches en même temps au niveau HIGH avec une seule instruc-
tion, la configuration binaire étant alors appliquée simultanément à toutes
les broches. Mieux vaut donc choisir la nouvelle variante de manipulation

	 426	 Partie II. Les montages

des ports pour aller plus vite. Le sketch suivant génère une tension en
dents de scie à la sortie du réseau de résistances :

void setup() {
 DDRB = 0b11111111; // Toutes les broches programmées en tant que sorties
}

void loop() {
 for(int i = 0; i <= 63; i++) // 63 = B00111111
 PORTB = i; // Commande du registre de port B
}

Figure 23-9 u
Oscillogramme

avec une courbe
en dents de scie

D’après vous, comment adapter le sketch pour obtenir la courbe suivante ?

Figure 23-10 u
Oscillogramme

avec une courbe en
triangles

Bien joué si vous avez trouvé la solution !

void loop() {
 for(int i = 0; i <= 63; i++)
 PORTB = i; // Commande du registre de port B //(front montant)
 for(int i = 63; i >= 0; i--)
 PORTB = i; // Commande du registre de port B (front descendant)
}

Quelles sont les autres courbes ? Qu’en est-il d’une courbe sinusoïdale ? La
fonction sinus ayant besoin d’un certain temps pour calculer les valeurs, on
a eu l’idée de créer des tables de correspondance ou Lookup-Tables (LUT).
Les résultats d’un calcul y sont déjà enregistrés. On peut ainsi reproduire
la courbe d’une fonction sinus en s’aidant des points qui se trouvent sur
la courbe, par exemple.

Montage 23. Numérique appelle analogique 	 427

t Figure 23-11
Oscillogramme
avec une courbe
sinusoïdale

Le sketch pour générer la courbe sinusoïdale est plutôt laborieux à écrire
car la LUT est très longue.

byte LUT[] =
{31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40,
 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49,
 50, 50, 50, 51, 51, 52, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56,
 56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61,
 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62,
 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61,
 61, 61, 61, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57,
 56, 56, 56, 55, 55, 55, 54, 54, 54, 53, 53, 52, 52, 52, 51, 51, 50, 50,
 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41,
 41, 40, 40, 39, 39, 38, 38, 37, 36, 36, 35, 35, 34, 34, 33, 33, 32, 32,
 31, 30, 30, 29, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 22,
 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13,
 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5,
 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
 0,
 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6,
 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14,
 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
 24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31};

void setup() {
 DDRB = 0b11111111; // Toutes les broches programmées en tant que sorties
}

void loop() {
 for(int i = 0; i <= 360; i++)
 PORTB = LUT[i]; // Commande du registre de port B
}

	 428	 Partie II. Les montages

VÉRIFIEZ BIEN VOTRE SKETCH !
En effet, vous courez le risque non négligeable de programmer votre
microcontrôleur de telle sorte qu’il ne réagisse plus par la suite. Si vous
regardez le port D, vous verrez que les signaux de contrôle RX et TX se trouvent
respectivement sur les broches 0 et 1. RX sert à recevoir et TX à envoyer les
données. Le sens de circulation des données est donc le suivant : RX = INPUT
et TX = OUTPUT. Si vous modifiez par inadvertance la programmation de
ces valeurs via DDRD, vous ne pourrez à coup sûr plus transmettre aucun
sketch sur votre carte Arduino. Vous devez par conséquent être sûr de ce que
vous faites. Mieux vaut vérifier trois fois votre sketch avant de l’envoyer au
microcontrôleur. Vous trouverez des informations plus précises sur le lien :

https://www.arduino.cc/en/Reference/PortManipulation

Problèmes courants
Si la tension de sortie du réseau R2R ne correspond pas aux valeurs sou-
haitées pour la combinaison binaire, vérifiez les points suivants :

	● Toutes les résistances utilisées pour le réseau R2R ont-elles la même
valeur ?

	● Aucune connexion au réseau n’a été oubliée ? (Je sais de quoi je parle,
car j’avais oublié un point de jonction, et j’ai passé près de dix minutes
à chercher l’erreur !)

Exercice complémentaire
Essayez, en ajustant le tableau LUT, de créer des courbes de formes diffé-
rentes. Vérifiez dans tous les cas que seuls 6 bits sont à votre disposition
pour représenter une courbe. Le domaine de valeurs va de 0 à 63. Si vous
êtes au-dessus, ni le circuit ni votre microcontrôleur n’en souffriront, mais
la courbe ne ressemblera à coup sûr pas à ce que vous auriez souhaité.
Une autre méthode également très intéressante consiste à utiliser le circuit
d’extension de port MCP23017 avec ses 16 broches d’E/S. Cela permet de
profiter d’une résolution bien plus élevée des différentes valeurs de tension



Montage 23. Numérique appelle analogique 	 429

par bit. De plus, pour une meilleure stabilité de sortie du réseau de résis-
tances R2R, vous pouvez aussi utiliser l’amplificateur opérationnel LM358.

Qu’avez-vous appris ?
	● Ce montage vous a présenté un réseau de résistances R2R.

	● Avec ce réseau, vous avez pu réaliser un convertisseur numérique/
analogique simple.

	● Vous avez découvert les registres de port de votre carte Arduino et
manipulé les sorties numériques au moyen du port B.

	 431

Montage

24Programmer Arduino
avec un langage
de programmation
par blocs

Il existe d’autres alternatives non moins intéressantes que la programma-
tion de la carte Arduino avec l’environnement de développement Arduino.
Peut-être avez-vous entendu parler de l’environnement de programmation
Scratch. Ce langage de programmation permet de créer très facilement
un programme ou un script sans avoir à entrer une seule ligne de code.
Nous allons voir plus précisément comment cela est possible. Quel sera
mon objectif dans ce montage ? Eh bien, tout d’abord vous initiez au
langage Scratch ou S4A, qui est l’abréviation de Scratch for Arduino, et
vous permettre ensuite de passer à d’autres langages de programmation
par blocs. Outre S4A, nous aborderons ArduBlock et Open Roberta Lab,
qui fonctionnent de manière similaire. J’aurai également l’occasion de
vous présenter la puissante infrastructure IoT Node-RED, qui est aussi une
programmation avec une assistance visuelle.

S4A – Scratch for Arduino
S4A est une extension de Scratch, spécialement développée pour pro-
grammer la carte Arduino. Dans S4A, toutes les opérations disponibles
sont organisées en catégories ou palettes réparties selon des couleurs :

t Figure 24-1
Les catégories d’instruction
dans S4A

	 432	 Partie II. Les montages

Comme dans tous les autres langages par blocs qui offrent une assistance
visuelle, les instructions disponibles sont proposées avec ce genre de
structure et il n’est pas nécessaire de les apprendre par cœur, car il est
toujours possible de voir leur fonction. Cette manière de procéder permet
de programmer ou de structurer le projet de manière intuitive, ce qui
devient un jeu d’enfant avec le temps. Grâce à l’organisation par couleurs,
le cerveau se fait une image des algorithmes, ce qui facilite énormément
la compréhension de la programmation non seulement pour les débu-
tants, mais aussi pour les personnes plus expérimentées. S4A étant une
extension de Scratch, dont la priorité n’était pas à l’origine de rendre plus
simple la programmation de la carte de prototypage Arduino mais de seu-
lement obtenir des résultats visuels sur un écran, les différentes catégories
et leur désignation peuvent parfois dérouter. La catégorie mouvement peut
être comprise au sens figuré comme une catégorie d’action pour la carte
Arduino, qui déplace quelque chose sur la carte Arduino. Elle contient par
exemple toutes les actions Arduino visant à interroger des capteurs ou à
agir sur des broches analogiques ou numériques.

Dans S4A, les instructions qui doivent être exécutées sont représentées
par des blocs fonctionnels, appelés simplement blocs, que nous pouvons
assembler comme dans un puzzle. Ces blocs sont prélevés d’une réserve
prédéfinie (de catégories ou palettes) et assemblés dans des séquences
logiques. Vous obtenez alors un organigramme facile à comprendre grâce
à ces composants visuels. Le positionnement ou l’assemblage des différents
blocs se fait par glisser-déposer, c’est-à-dire en faisant glisser le bloc avec
le bouton gauche de la souris et en le relâchant à la position souhaitée. Les
blocs ne s’imbriquent que si la logique de programmation est correcte. Vous
voyez ensuite la confirmation de l’imbrication des blocs, vous indiquant
que vous êtes sur la bonne voie.

Sur la figure 24-3 du haut, je fais glisser le bloc Répéter indéfiniment pris
dans la palette Contrôle vers la partie droite nommée Scripts.

Sur la figure 24-3 du bas, vous voyez quelques-uns de ces blocs, qui pré-
sentent un creux et un nez permettant de les relier au bloc voisin. S4A
permet de réaliser une boucle sans fin qui met alternativement la bro-

Figure 24-2 u
Les catégories d’instruction

dans S4A – extrait

Montage 24. Programmer Arduino avec un langage de programmation par blocs 	 433

che numérique 13 au niveau HIGH ou LOW. Une pause d’une seconde est
observée entre ces actions. Le script que je vous montre ici est bien sûr
très simple et fait office d’introduction. Il s’agit d’un script Hello World.

Le script démarre lorsque vous cliquez sur le drapeau vert qui se trouve
tout en haut, comme pour donner le départ. Tous les blocs portent une
inscription qui identifie clairement leur fonction pour faciliter la program-
mation aux débutants. Tous les langages de programmation par blocs avec
une aide visuelle s’orientent sur ce schéma et même s’il y a des différences
dans l’apparence ou la fonctionnalité des différents langages, on s’y retrouve
très vite. Je dirais presque que si on en connaît un, on les connaît tous !
J’aimerais donc commencer ce montage avec S4A. Vous trouverez le site
Internet de S4A à l’adresse :

http://s4a.cat/

Le principe de S4A
Avant de faire vos premiers pas, permettez-moi de vous expliquer la com-
munication entre S4A et votre carte Arduino. Comment fonctionne l’en-
semble et selon quel principe ? Pour répondre à ces questions, je vais

 Figure 24-3
Placement et assemblage
de blocs

	 434	 Partie II. Les montages

tout d’abord vous rappeler le principe de la programmation Arduino avec
l’environnement de développement Arduino.

Étape 1 : développer un sketch et le transférer sur la carte
Arduino
La première phase consiste à programmer pour une tâche un sketch qui
sera ensuite transféré sur la carte Arduino.

Une fois le téléchargement réussi, l’environnement de développement n’a
normalement plus rien à faire et la carte Arduino peut être débranchée
de l’ordinateur en présence d’alimentation électrique, à moins que vous
vouliez surveiller l’interface sérielle avec le moniteur série et recevoir ou
envoyer des données. Pour la recherche d’erreur, cela s’avère très utile.

Étape 2 : la carte Arduino peut fonctionner de manière
autonome avec son sketch téléchargé
Si maintenant vous débranchez votre carte Arduino du port USB, elle ne
sera évidemment plus sous tension et stoppera le travail.

La prise d’alimentation électrique vous permet de garder la carte Arduino
sous tension, ce qui fait que celle-ci fonctionne de manière absolument
autarcique et indépendamment de l’ordinateur avec lequel elle a été pro-
grammée. Il en va autrement pour la programmation avec S4A.

Carte ArduinoEnvironnement de développement

Transmission du sketch

Figure 24-4 u
Le transfert du sketch

sur la carte Arduino

Carte ArduinoEnvironnement de développement

Pas de connexion

Figure 24-5 u
L’environnement de

développement n’a plus
rien à faire après le télé­

chargement du sketch.

Montage 24. Programmer Arduino avec un langage de programmation par blocs 	 435

L’environnement de développement S4A fonctionne diffé-
remment de l’environnement de développement Arduino.
Il doit maintenir un contact permanent avec la carte Arduino.

Avec la méthode classique de l’environnement de développement Arduino,
la carte est programmée avec un sketch spécifique pour une tâche spéci-
fique. Le contrôle incombe donc à la carte Arduino elle-même. Avec S4A,
nous avons chargé pour la communication un firmware qui doit rester
disponible en permanence, indépendamment de la tâche en cours. Il y a
donc une liaison permanente entre l’environnement de développement
S4A (Scratch) et le firmware installé. Le contrôle n’incombe plus à la carte
mais à S4A.

Vous pouvez télécharger ici le firmware nécessaire à la version 1.6 de S4A :

http://s4a.cat/downloads/S4AFirmware16.ino

Le firmware pour la carte Arduino est :

S4AFirmware16.ino

	Vous devez lancer ce programme avec votre environnement de développe-
ment Arduino. Lorsque vous avez transféré ce firmware comme sketch sur
votre carte Arduino et que vous lancez ensuite l’application S4A, celle-ci
doit d’abord déterminer si une carte Arduino préparée avec le firmware
requis est accessible. Vous pouvez suivre cette procédure dans le coin
supérieur droit de S4A. Vous y verrez la boîte de dialogue représentée sur
la figure suivante :

Connexion permanente

Environnement de développement S4A Carte Arduino  Figure 24-6
L’environnement de
développement S4A doit
garder en permanence
le contact avec la carte
Arduino.

t Figure 24-7
L’environnement de
développement S4A
cherche une carte Arduino
avec le firmware approprié.

https://S4AFirmware16.ino

	 436	 Partie II. Les montages

Une fois la carte détectée, cette boîte de dialogue disparaît et les entrées ana-
logiques fournissent des valeurs aléatoires qui s’affichent. Cela montre que
la communication entre S4A et votre carte Arduino fonctionne. J’ai repré-
senté sur la figure ci-après les principaux blocs à côté de la carte Arduino
et ses broches. Le site Internet S4A fournit des détails supplémentaires.

Si vous souhaitez interroger par exemple une entrée analogique, vous devez
alors employer un des blocs valeur du capteur. Pour l’entrée analogique A0,
celui-ci se présente comme indiqué ci-après. À l’aide du petit triangle noir
à côté de la désignation Analog0, vous pouvez ouvrir une liste contenant
tous les canaux disponibles.

Pour obtenir une vue d’ensemble complète de toutes les entrées, c’est-à-
dire des entrées analogiques A0 à A5 et des entrées numériques D2 à D3,
il vous suffit de jeter un œil dans S4A. Cela fonctionne sans que vous ayez
besoin de démarrer un script. Par exemple :

Figure 24-8 u
Les connexions de la carte

Arduino et les blocs S4A
correspondants

Montage 24. Programmer Arduino avec un langage de programmation par blocs 	 437

Un script Scratch très simple pour afficher une entrée analogique peut se
présenter comme suit :

Cliquez sur le drapeau vert pour afficher dans une bulle la valeur analo-
gique du canal A0.

Script à télécharger
Que diriez-vous d’un script qui vous fournirait l’affichage suivant et qui
vous présenterait par exemple quatre entrées analogiques sous la forme
de courbes temporelles ? Ce script est disponible à l’adresse :

https://www.editions-eyrolles.com/dl/0100583

 Figure 24-9
Vue d’ensemble des entrées
de la carte Arduino

 Figure 24-10
Affichage d’une valeur
analogique

	 438	 Partie II. Les montages

ArduBlock – Arduino par blocs
J’aimerais vous présenter dans ce montage un autre langage de programma-
tion par blocs avec une aide visuelle : ArduBlock. La différence avec S4A est
qu’il n’y a pas besoin d’avoir une connexion permanente entre l’ordinateur
et Arduino, car un sketch Arduino correspondant est généré (en fonction
du script ArduBlock créé), qui est ensuite téléchargé individuellement sur la
carte Arduino. La version 2 d’ArduBlock est disponible depuis peu et offre,
une fois installée correctement, une intégration dans l’environnement de
développement Arduino. Le fichier d’exécution d’ArduBlock est un fichier
d’archives Java avec l’extension .jar. Les fichiers JAR sont principalement
utilisés pour distribuer des bibliothèques de classes et des programmes
Java. Ils sont comparables à des fichiers ZIP. Ce fichier peut être téléchargé
à l’adresse Internet :

https://github.com/letsgoING/ArduBlock2

Cliquez sur le bouton vert Code puis sur Download ZIP :

Analog

Canal 0 Canal 1 Canal 2 Canal 3

Figure 24-11 u
Le suivi analogique
avec quatre canaux

Figure 24-12 u
Le téléchargement

du fichier ArduBlock

Montage 24. Programmer Arduino avec un langage de programmation par blocs 	 439

Procédez comme suit pour exécuter l’intégration dans l’environnement
de développement Arduino :

Étape 1 : décompresser le fichier ZIP téléchargé
Le fichier ZIP doit être décompressé par un programme usuel comme
7ZIP de façon à obtenir la structure de dossiers suivante dans le répertoire
correspondant (j’ai entouré en rouge les informations qui nous importent) :

Étape 2 : copier la structure de dossiers dans le répertoire
d’outils Arduino
Pour que l’environnement de développement Arduino prenne connais-
sance d’ArduBlock, vous devez copier la structure de dossiers marquée
(fichier JAR inclus) ArduBlock\tool\ardublock_letsgoing_21.jar dans le
répertoire tools de l’installation Arduino. Vous obtenez :

Redémarrez impérativement l’IDE Arduino pour intégrer la prise en charge
ArduBlock.

Étape 3 : démarrer l’environnement de développement Arduino
et sélectionner ArduBlock
Ouvrez l’application ArduBlock dans l’environnement de développement
Arduino via l’option du menu Outils :

	 440	 Partie II. Les montages

Lors de l’utilisation d’ArduBlock, veillez à sélectionner le bon port COM.
Tout est maintenant installé et vous pouvez commencer à programmer
avec ArduBlock. L’environnement de développement prend l’apparence
suivante :

Vous voyez ici aussi que la partie gauche affiche différentes catégories orga-
nisées dans des conteneurs de couleur. La partie droite affiche la zone de
script où sont déposés et organisés les différents blocs. En guise de simple
exemple d’introduction, nous devons déterminer la valeur de luminosité
d’une photorésistance (LDR) en vue de piloter la luminosité d’une LED et
d’éditer simultanément la valeur MLI dans le moniteur série. Le schéma
des connexions correspondant se présente ainsi :

Figure 24-13 u
L’application ArduBlock

Figure 24-14 u
Le schéma

des connexions pour
interroger la luminosité

via la photorésistance

Montage 24. Programmer Arduino avec un langage de programmation par blocs 	 441

Passons maintenant à la conversion avec ArduBlock, qui se présente comme
suit :

Après la construction du script, celui-ci doit d’abord être enregistré dans
le système de fichiers au moyen des boutons Save :

Vous pourrez ensuite entreprendre le téléchargement sur la carte Arduino
avec le bouton Upload :

Immédiatement après que vous avez cliqué sur ce bouton, vous pourrez voir
le sketch généré par ArduBlock dans l’éditeur de l’environnement de déve-
loppement Arduino, suivi par la compilation et le téléchargement. Admirez
comment s’opère la conversion de la structure par blocs en langage C++ !

Open Roberta Lab
Une initiative de l’Institut Fraunhofer a donné un autre outil intéressant :
Open Roberta Lab. Ce projet basé sur un navigateur a été développé dans
le but de permettre à des enfants et à des adolescents de contrôler et
de commander des systèmes robotisés sans avoir de connaissances de la
programmation. Il est possible de commander en plus de la carte Arduino
la minicarte à but pédagogique micro:bit ainsi que LEGO Mindstorms et le
robot mBot du fabricant chinois Makeblock.

Le navigateur emploie un dérivé de Scratch, appelé NEPO. Comme dans S4A
ou ArduBlock, la programmation s’effectue à l’aide de composants visuels.
Vous pouvez également programmer vos propres composants NEPO et les
insérer dans vos scripts. L’intérêt majeur dans l’environnement de déve-

 Figure 24-15
Le script ArduBlock pour
interroger la luminosité via
la photorésistance

	 442	 Partie II. Les montages

loppement Open Roberta Lab est la prise en charge d’autres langages de
programmation. Ainsi, vous pouvez voir sous forme de sketch Arduino
le script que vous avez compilé à partir de composants. La figure 24-16
montre comment un simple script pour faire clignoter a été démarré dans
Open Roberta Lab. Vous pouvez représenter dans la fenêtre de droite le
code de programmation comme il apparaît sous forme de sketch Arduino :

L’environnement de développement avec le navigateur Open Roberta Lab
est accessible via le lien ci-après. Pour plus de commodité, un menu de
sélection s’affiche dès le début, à partir duquel vous choisissez l’appareil
que vous souhaitez programmer.

https://lab.open-roberta.org/

Node-RED, langage de
programmation par blocs pour l’IoT
J’en arrive maintenant à un environnement de développement qui a tout
pour plaire au sens propre du terme : Node-RED. Node-RED est un envi-
ronnement de développement graphique développé par IBM, qui permet
de réaliser des applications dans le domaine de l’Internet des objets (IoT) à
l’aide d’un principe modulaire simple, similaire à l’environnement Scratch.
Node-RED est devenu une infrastructure intéressante pour réaliser des
applications complexes qui vont bien au-delà du domaine amateur. De
nombreuses sociétés développant des produits IoT misent sur cet envi-
ronnement de développement. Il existe des interfaces pour les langages
script et les langages de programmation.

La manipulation correspond à l’approche que l’on trouve dans Scratch, où
des blocs fonctionnels individuels sont assemblés dans un environnement
de script. Le site Internet pour Node-RED est :

https://nodered.org/

Figure 24-16 u
Le script peut également

être représenté dans Open
Roberta sous forme de

sketch Arduino.

Montage 24. Programmer Arduino avec un langage de programmation par blocs 	 443

L’installation peut s’effectuer sur différentes plateformes et un Raspberry Pi
est certainement une très bonne solution. J’aimerais pourtant commencer
ici avec une installation basée sur Windows. Vous trouverez toutes les
informations sur l’installation à l’adresse suivante :

https://nodered.org/docs/getting-started/windows#running-on-windows

Je vous renvoie ici au montage n° 26, dans lequel j’explique de manière
approfondie Node-RED.

Problèmes courants
Les sources d’erreurs avec les langages de programmation par blocs peuvent
être très variées. Si vous rencontrez des problèmes pour réaliser les appli-
cations que je vous propose dans ce montage, suivez les étapes ci-dessous.

	● Essayez de trouver des indices pour savoir si l’erreur se situe plutôt
au niveau du logiciel ou du matériel. Essayez de délimiter l’erreur.

	● Le téléchargement du firmware a-t-il été bien accepté sur la carte
Arduino ?

	● Avez-vous entré le bon port COM ?

	● Votre pare-feu bloque-t-il une connexion ?

Qu’avez-vous appris ?
Voilà encore un montage qui n’a pas été très amusant sur le plan manuel,
mais qui, je l’espère, vous a permis d’en apprendre davantage. Si vous
aviez du mal avec la programmation, les langages par blocs vous appor-
teront peut-être de nouvelles et captivantes possibilités pour contrôler
votre carte Arduino.

	● Dans ce montage, vous avez découvert les langages de programmation
par blocs S4A, ArduBlock et Open Roberta Lab, qui sont des dérivés
de Scratch.

	● Vous vous êtes un peu familiarisé avec la puissante infrastructure IoT
Node-RED.

	● Le principe de fonctionnement d’un langage de programmation par
blocs a été expliqué.

	● Vous savez maintenant comment établir la connexion entre un langage
de programmation par blocs et votre carte Arduino.

	 445

Montage

25Quand Arduino
rencontre Raspberry Pi

Raspberry Pi est un ordinateur monocarte bon marché sur lequel il est
possible d’installer des systèmes d’exploitation comme Linux et Microsofts
Windows 10 IoT Core. L’évolution poursuivant inlassablement sa course,
je peux aujourd’hui avancer, en l’état actuel de mes connaissances, que
plus d’une trentaine de systèmes d’exploitation peuvent fonctionner avec
Raspberry Pi. À partir de la combinaison d’un Raspberry Pi comme ser-
veur et d’une carte Arduino comme dispositif de commande, de mesure
et de collecte de données, il est possible de développer des applications
surprenantes. C’est ce que nous allons voir ici.

Réveillons l’Arduino qui sommeille
dans tout Raspberry Pi
Certes, le sujet de ce livre n’est pas Raspberry Pi, mais il me paraît oppor-
tun d’étudier la carte d’un peu plus près afin d’en souligner les points
forts. Raspberry Pi est un ordinateur monocarte de la taille d’une carte
bancaire qui a été développé par la fondation britannique Raspberry Pi. Il
coûte environ 35 €, ce qui est très abordable. Mais ce n’est pas pour cette
raison que les gens manifestent de l’intérêt pour ce nano-ordinateur. Cet
ordinateur – puisqu’il s’agit bien d’un ordinateur à part entière – réunit
tout ce dont une personne a besoin pour s’aventurer dans l'univers de
l’informatique et de la programmation. Il possède un processeur Broadcom
BCM2837 de type ARM Cortex-A53 64 bits Quad Core cadencé à 1,2 GHz,
une mémoire vive de 1 024 Mo, un port Ethernet pour le raccordement à
un réseau, ainsi que quatre ports USB, Bluetooth 4.1 + LE et un port GPIO.
Comme support de mémoire, le nano-ordinateur utilise une carte SD, une
clé USB, voire un disque SSD.

	 446	 Partie II. Les montages

Figure 25-1 u
Le Raspberry Pi

Si l’on veut raccorder un clavier et une souris, il est préférable d’utiliser
un modèle sans fil avec dongle USB afin que les deux périphériques n’oc-
cupent qu’un seul port USB. Comme la majorité des écrans TFT ou des
écrans plats disposent aujourd’hui d’une connexion HDMI, vous pouvez
donc facilement les raccorder au port HDMI de type A (full size) de la
carte Raspberry Pi. Si votre écran est un modèle plus ancien, sachez qu’il
existe aussi des adaptateurs HDMI-DVI pour convertir le signal envoyé
sur un port DVI. Voyons maintenant les préparatifs nécessaires en vue du
raccordement d’une carte Arduino Uno à un Raspberry Pi afin que les deux
systèmes puissent échanger des informations.

Installation de l’IDE Arduino sur le Raspberry Pi
Vous pouvez évidemment continuer à programmer votre carte Arduino
Uno dans votre environnement de développement habituel depuis
votre ordinateur sous Windows, Mac ou Linux. Mais, comme tôt ou tard,
nous allons raccorder les deux cartes, je vais vous montrer ici comment
le faire directement depuis le Raspberry Pi. En effet, qu’est-ce qui vous
empêche d’utiliser l’IDE Arduino sur le Raspberry Pi ?! Ouvrez une fenêtre
de terminal sur le Raspberry Pi et saisissez les deux lignes suivantes :

sudo apt-get update
sudo apt-get install arduino

Pour l’installation, nous utiliserons le gestionnaire de paquets APT
(Advanced Packaging Tool). La première ligne actualise les listes de paquets
et la deuxième installe l’IDE Arduino. Une fois l’installation réussie, une
nouvelle commande apparaît dans le menu Développement : il s’agit de
l’IDE d’Arduino.

Montage 25. Quand Arduino rencontre Raspberry Pi 	 447

t Figure 25-2
L’IDE Arduino
dans le menu
Développement

Lorsque vous démarrez l’IDE à l’aide de cette commande, la fenêtre bien
connue s’ouvre après quelques instants. Vous devez encore choisir le port
série correct. Sous Linux, il s’agit de /dev/ttyACM0 pour la carte Uno. Les
modèles plus anciens utilisent /dev/ttyUSB0.

t Figure 25-3
Fenêtre 1.0.5
de l’environnement
de développement

Vous pouvez vérifier que tout à bien fonctionné en lançant le sketch Blink
que j’ai également chargé. Revenons-en à la communication entre l’Ar-
duino et le Raspberry Pi. Nous allons utiliser ici Firmata, un protocole de

	 448	 Partie II. Les montages

communication entre ordinateurs ou programmes. Voyons maintenant
comment établir une connexion entre l’Arduino et le Raspberry Pi afin
que les deux cartes puissent échanger des données.

Firmata
Côté Arduino, nous disposons déjà de tout le nécessaire. Firmata fait partie
de l’environnement de développement Arduino et il suffit de le charger en
tant que firmware sous la forme d’un sketch. Côté Raspberry Pi, ce n’est
pas tout à fait la même chose. Le langage habituel du Raspberry Pi, Python,
fait déjà partie de la distribution Linux Raspbian Jessie, que je recommande
aux débutants. Il nous faut donc uniquement installer Firmata. Le paquet
Python correspondant se nomme pyFirmata.

Figure 25-4 u
Firmata sur l’Arduino

et le Raspberry Pi

Comme Firmata fait déjà partie de l’environnement de développement
Arduino, il suffit de s’assurer de son bon fonctionnement en ajoutant le
fichier d’en-tête Firmata.h. Côté Raspberry Pi, nous avons quelques bricoles
à installer. Saisissez la commande suivante dans le terminal :

sudo pip install pyfirmata

Nous avons besoin d’un autre paquet pour Python qui s’intitule pySerial
et qui est chargé de la communication avec le port série. Il est déjà inclus
dans la dernière version du système d’exploitation Raspbian Jessie. Tout est
maintenant prêt pour procéder au premier essai. Nous allons dire bonjour
à Arduino et nous ferons clignoter la LED 13 du Raspberry Pi. Comment
allons-nous faire ?

Préparation de l’Arduino
Vous devez évidemment munir l’Arduino du firmware de Firmata en
chargeant le sketch correspondant et en le téléversant sur la carte. Activez
la commande Fichiers | Exemples | Firmata | StandardFirmata pour ouvrir
le sketch dans l’environnement de développement, puis téléversez-le sur
la carte Arduino. Vous n’avez rien de plus à faire pour l’instant.

Montage 25. Quand Arduino rencontre Raspberry Pi 	 449

Préparation du Raspberry Pi
Comme nous travaillerons avec le langage de programmation Python sur
le Raspberry Pi, il est conseillé d’installer un environnement de dévelop-
pement Python. Actuellement, j’utilise SPE (Stani’s Python Editor) que
vous pouvez installer à l’aide des lignes suivantes :

sodo apt-get update
sudo apt-get install spe

Toutefois, cet environnement de développement ralentit le Raspberry Pi,
comme vous pourrez le constater en jetant un œil à l’indicateur de per-
formances du processeur dans la barre des tâches. Au lieu de SPE, vous
pouvez aussi utiliser le simple éditeur de texte Nano qui s’installe à l’aide
de la ligne de commande suivante :

sudo apt-get install nano

Pour ouvrir l’éditeur, il suffit ensuite de saisir la commande suivante dans
le terminal :

nano

Nous allons néanmoins continuer avec SPE. Après son installation, vous le
trouverez dans le dossier Développement du menu Démarrer de Linux :

t Figure 25-5
Ouverture
de Stani’s Python Editor

	 450	 Partie II. Les montages

Vous pouvez saisir le code suivant dans l’éditeur pour faire clignoter la LED
13. Ne vous inquiétez pas, nous n’en resterons pas là ! Nous ferons aussi des
choses un peu plus compliquées. Cet exercice nous permet simplement
de nous mettre en jambes :

Examinons la signification des différentes lignes du code.

Ligne 1
Afin que le script Python soit correctement détecté par l’interpréteur, la
première ligne commence sur les systèmes Linux par les caractères #! suivis
du chemin d’accès absolu de l’incontournable interpréteur.

#!/usr/bin/python

Cette ligne se nomme le shebang. L’emplacement de l’interpréteur Python
varie selon les systèmes Linux. Par conséquent, la ligne telle qu’elle est pré-
sentée ici n’est pas universellement valable. Il existe une meilleure variante
qui utilise le programme env.

#!/usr/bin/env python

Le code env charge les variables d’environnement standard de la confi-
guration du système d’exploitation qui prend aussi en charge la variable
d’environnement PATH. Sur mon ordinateur, l’interpréteur Python se trouve
sous /usr/bin/python.

Ligne 2
Pour pouvoir utiliser des caractères accentués (même dans les commen-
taires précédés par #), il est nécessaire de préciser l’encodage des caractères
UTF-8 par cette ligne.

-*- encoding: utf8 -*-

Montage 25. Quand Arduino rencontre Raspberry Pi 	 451

Ligne 3
Comme nous avons besoin de la fonction sleep pour insérer une pause,
celle-ci est importée à la ligne 3 par l’instruction from/import.

Ligne 4
Pour pouvoir utiliser la multitude de fonctions de pyFirmata après son
installation, le paquet est inséré dans le code à la ligne 4 par l’instruction
from/import.

Ligne 7
Comme nous voulons communiquer et contrôler la carte Arduino via le port
série, nous devons nous y connecter. Il s’agit du même device (appareil)
/dev/ttyACM0 que celui que nous avons déjà utilisé pour programmer
la carte Arduino. Pour que Python puisse avoir accès au port série, nous
avions précédemment installé le paquet python-serial pendant la phase
préparatoire.

arduinoboard =Arduino('/dev/ttyACM0')

Par cette ligne, pyFirmata crée une instance de pyfirmata que nous avons
nommée arduinoboard. Comme argument, nous transmettons précisément
le nom d’appareil que je viens d’indiquer.

Ligne 10
Les différentes broches de la carte peuvent être contrôlées ou configu-
rées par la méthode get_pin. La configuration s’effectue par le biais d’une
séquence de caractères au format suivant :

(a|d:<PinNr>:i|o|p|s)

Les trois informations nécessaires sont énumérées en étant séparées par
deux-points. En voici la signification :

	● L’instruction est-elle destinée à une broche analogique (a) ou numé-
rique (d) ?

	● De quelle broche s’agit-il (PinNr) ?

	● Quel mode faut-il utiliser (i : entrée, o : sortie, p : MLI, s : servo) ?

C’est donc ce que nous faisons à la ligne 10.

pin13 = arduinoboard.get_pin('d:13:o')

Une variable intitulée pin13 est initialisée à l’aide de la méthode get_pin
afin de nous permettre de manipuler cette broche (numérique, 13, sortie)
conformément aux instructions transmises aux lignes 11 à 15.

	 452	 Partie II. Les montages

Lignes 11 à 15
Une boucle while permet d’exécuter en continu les instructions énoncées
dans le corps de la boucle :

while True:
 pin13.write(1)	# LED allumée
 sleep(1)	 # Pause de 1 seconde
 pin13.write(0)	# LED éteinte
 sleep(1)	 # Pause de 1 seconde

Pour associer différents niveaux à la LED qui est connectée à la broche 13,
nous utilisons la méthode write avec l’argument 1 pour le niveau HIGH ou
0 pour le niveau LOW. Entre les deux, nous plaçons la fonction sleep qui
interrompt l’exécution du programme pendant une durée d’une seconde.
La boucle while est exécutée tant que l’instruction suivante est vraie (True).
Nous n’avons pas employé de variable comme instruction, mais la constante
True, ce qui signifie que la boucle est exécutée à l’infini ou jusqu’à ce
que l’utilisateur interrompe manuellement l’exécution du script à l’aide
du raccourci Ctrl+C. Si, après avoir téléversé le sketch firmata depuis les
exemples de l’IDE, vous avez démarré le script depuis le Raspberry Pi,
observez la LED RX de la carte Arduino. Elle s’allume et s’éteint avec un
intervalle d’une seconde. On peut donc en conclure que des informations
sont transmises depuis le Raspberry Pi à l’Arduino via le port série avec le
même intervalle pour contrôler la LED.

Commande par MLI
Nous allons maintenant voir comment commander une LED raccordée à
l’une des broches MLI à l’aide d’un signal MLI. Nous en avons déjà vu le
principe dans le montage n° 1. Je voudrais ouvrir une interface graphique
sur le Raspberry Pi afin d’envoyer le signal MLI à la carte Arduino à l’aide
d’un potentiomètre linéaire comme celui illustré ci-dessous.

Le potentiomètre linéaire permet de choisir des valeurs comprises entre
0 et 100 qui correspondent aux pourcentages de MLI. Attention toutefois,
car la fonction write de pyFirmata, qui s’occupe de générer le signal MLI
accepte des valeurs comprises entre 0,0 et 1,0. J’ai donc intentionnellement
employé des valeurs à virgule flottante, car la fonction attend des valeurs de
type float. Examinons le script Python de plus près. Python ne peut afficher
de but en blanc des éléments graphiques, comme des boutons, étiquettes,

Montage 25. Quand Arduino rencontre Raspberry Pi 	 453

des potentiomètres linéaires ou autres. Pour ce faire, nous utilisons une
bibliothèque nommée Tkinter. Qu’est-ce donc ? Il s’agit de la première
boîte à outils d’interface graphique pour Python. Elle permet de créer
sous Python des programmes ayant une interface graphique. La boîte à
outils Tk a initialement été développée pour le langage Tcl (Tool Command
Language), mais entre temps, elle a pris place dans la bibliothèque stan-
dard de Python. Le module Tkinter (Tk-Interface) permet à l’utilisateur de
programmer très facilement des applications Tk sans devoir installer au
préalable des logiciels ou des bibliothèques supplémentaires. Examinons
le script Python que j’ai divisé en blocs pour une meilleure lisibilité.

Initialisation
Pendant la phase d’initialisation, nous importerons aussi bien pyfirmata
que Tkinter. Nous utilisons encore arduinoboard, comme dans l’exemple
précédent. La broche 3, sur laquelle la diode est raccordée, doit être ini-
tialisée en tant que sortie MLI, ce que nous faisons à l’aide du mode p.

Fonctions requises
Les fonctions cleanup et setPWM sont utilisées lors de l’exécution du script :
on s’en serait douté. La fonction cleanup est exécutée au moment où vous
fermez l’interface graphique en cliquant sur la croix dans le coin supérieur
droit. Elle fait en sorte que la LED soit éteinte au moyen de la fonction
write. La fonction setPWM commande la LED et elle est exécutée tant que
vous modifiez la position du curseur du potentiomètre.

La fonction write de la commande par MLI attend des valeurs comprises
entre 0 et 1, ce qui signifie que l’argument doit être de type float. Comme
le potentiomètre transmettra par la suite, en réponse au déplacement du
curseur, une valeur de paramètre pwm comprise entre 0 et 100, cette valeur
doit donc être divisée par 100.

	 454	 Partie II. Les montages

Préparation de l’interface graphique GUI
et du potentiomètre linéaire
L’interface graphique est initialisée à la ligne 20, qui prépare plus précisé-
ment l’instance master de la boîte de dialogue wm_protocol, ferme la fenêtre
en effaçant son contenu, opération qui s’achève par l’exécution de la fonc-
tion cleanup qui éteint la diode. À la ligne 22, wm_title permet de nommer
l’application, nom qui sera affiché dans la barre de titre. Le potentiomètre
est initialisé avec les valeurs correspondantes et son exécution démarre à la
ligne 24. from_ et to définissent la plage de valeurs transmises par le poten-
tiomètre. Quand le curseur est actionné, il faut afficher immédiatement
le résultat, ce qui est assuré par l’instruction command suivie de la fonction
exécutée. L’orientation est définie par orient ; ici, elle est horizontale.
Ensuite, nous précisons encore la longueur (length) et nous affichons le
nom du potentiomètre au moyen d’une étiquette (label).

Démarrage du programme
Le gestionnaire d’interface se sert de pack pour centrer le potentiomètre à
l’intérieur de la boîte de dialogue. L’activation de mainloop affiche la boîte de
dialogue et maintient le programme dans une boucle sans fin, en attendant
que se produisent des événements intéressants comme le déplacement du
curseur qui déclenche l’action programmée.

Il n’y a pas grand-chose à ajouter sur ce script assez simple. Tkinter est
bien plus performant que ce que j’ai pu montrer dans ces quelques pages
et je ne peux que vous conseiller la lecture d’ouvrages spécialisés ou la
consultation de ressources sur Internet. Comme vous vous êtes maintenant
familiarisé avec le fonctionnement d’une broche MLI, vous allez pouvoir
commander un servomoteur au moyen d’un potentiomètre.

Montage 25. Quand Arduino rencontre Raspberry Pi 	 455

ATTENTION !
Avec la version 3 de Python, vérifiez que vous écrivez bien tkinter (avec un t
minuscule) lors de son importation. La bibliothèque a été renommée.

Commande d’un servomoteur
Nous avons vu précédemment comment commander un servomoteur.
Ici, vous apprendrez à régler précisément l’angle du servomoteur à l’aide
d’un potentiomètre.

Pour en savoir davantage sur le brochage d’un servomoteur, je vous invite
à relire le montage n° 16, « Le moteur pas-à-pas ». J’aimerais commander
le moteur au moyen de la broche MLI 3, mais il est aussi possible d’utiliser
une broche qui ne soit pas dotée de cette fonctionnalité de modulation,
comme la broche 7. Examinons le code Python qui est très proche de celui
de l’exemple précédent. Comme vous pourrez le constater, une fois que
l’on a compris le principe de base, il suffit parfois de modifier un détail
pour accéder à d’autres fonctionnalités.

La seule différence dans ce segment de code réside dans le changement
de mode qui passe à s pour la commande d’un servomoteur. Les deux
fonctions suivantes restent quasiment inchangées :

	 456	 Partie II. Les montages

La valeur du potentiomètre est ici aussi transmise au paramètre de la fonc-
tion moveServo pour commander le moteur à l’aide de la méthode write.
L’interface du programme est créée de la même façon que précédemment
et je me suis contenté d’en changer le nom :

Nous en arrivons à l’initialisation du potentiomètre qui doit transmettre
des valeurs comprises entre 0 et 179 à la fonction moveServo. Ensuite, le
script démarre avec mainloop.

Interrogation d’un bouton-poussoir
Jusqu’ici, nous avons toujours transmis des informations à la carte Arduino.
Nous allons maintenant faire l’inverse en interrogeant un bouton-poussoir
qui est raccordé à la broche 8. Comme procède-t-on avec pyFirmata ? Le
code est assez évident :

Montage 25. Quand Arduino rencontre Raspberry Pi 	 457

Ligne 6
Pour pouvoir interroger l’état d’un bouton-poussoir connecté sur une
broche, nous devons évidemment la programmer en tant qu’entrée, ce
que nous faisons de ce pas avec d:8:i (i correspond à input ou à entrée).

Lignes 8 et 9
Pour lire une broche d’entrée sous pyFirmata, vous ne pouvez pas tout
simplement activer une fonction read, comme nous le ferons à la ligne 13.
Il faut implémenter un Iterator Thread qui veille à ce que les broches de la
carte Arduino communiquent la valeur courante lors de leur interrogation.
Cela évite aussi que ne se produise un buffer overflow qui bloquerait toute
la communication sur le port série.

Ligne 10
Par enable_reporting, vous indiquez à pyFirmata que vous voulez surveiller
la broche.

Lignes 12 et 13
La boucle while interroge l’état de la broche 8 en continu en utilisant la
méthode read.

Lignes 14 à 17
Les instructions if interrogent l’état True qui correspond au bouton enfoncé
et l’état False qui correspond au bouton non enfoncé et affichent le résultat
par l’instruction print.

Ligne 18
La méthode pass_time prévoit une pause d’une demi-seconde après chaque
affichage.

Vous constaterez qu’au démarrage du script, rien n’indique que le bouton
n’est pas enfoncé. Pourquoi le message correspondant ne s’affiche-t-il pas ?
En fait, quand le bouton n’a pas encore été enfoncé, l’état correspond à
None. Libre à vous de compléter le code afin que cet état soit aussi interrogé
et qu’un message s’affiche.

	 458	 Partie II. Les montages

Interrogation d’un port analogique
Pour finir, nous allons voir comment interroger une entrée analogique et les
aspects à prendre en considération. Là encore, le script est assez évident :

Ligne 7
La broche analogique 0 est désignée par un a (pour analogique) et elle est
programmée en tant qu’entrée par le biais du mode i.

Lignes 13 à 16
La valeur analogique est lue sur la broche 0 à l’intérieur de la boucle while
au moyen de la méthode read. Le résultat est compris entre 0,0 et 1,0.
Ensuite, le programme marque une courte pause d’1 seconde.

Lorsque vous faites lentement tourner le potentiomètre de la gauche vers
la droite, il se peut que vous obteniez les valeurs suivantes :

Au tout début de l’affichage, on peut lire None, ce qui signifie qu’aucune
valeur valide n’a pu être lue. Cela se produit de temps en temps au début
de l’interrogation. Voici comment l’éviter :

Montage 25. Quand Arduino rencontre Raspberry Pi 	 459

À la ligne 15, j’ai placé une instruction if qui intercepte la valeur None, le
cas échéant. Pour améliorer la présentation, vous pouvez aussi précéder
l’affichage d’un texte ou de la mention du type de données, comme à la
ligne 16. Vous obtenez alors le code suivant :

Liaison série entre le Raspberry Pi
et l’Arduino
Jusqu’ici, les informations échangées entre le Raspberry Pi et l’Arduino
ont transité par la liaison USB qui a servi à l’acheminement des données
série. Mais il est aussi possible d’établir directement une liaison TTL série à
condition de respecter la précaution suivante : le Raspberry Pi fonctionne
avec une tension d’alimentation maximale sur ses entrées et sorties GPIO
de 3,3 V, tandis que l’Arduino utilise une tension de 5 V. Si vous raccordez
les deux cartes l’une à l’autre sans prendre de précautions, c’est la loi du
plus fort qui prévaut et l’un des protagonistes restera sur le carreau. Le
Raspberry Pi recevra une tension trop élevée. Et comme ses broches GPIO
sont directement reliées au processeur, sans protection, celui-ci grillera et
la carte sera bonne à jeter. Ce n’est donc pas une bonne idée ! Comment
l’éviter ? Nous pourrions utiliser un diviseur de tension afin de nous assurer
que le Raspberry Pi reçoit bien une tension de 3,3 V. J’ai préféré employer
un composant meilleur marché qui s’appelle un convertisseur logique ou
levelshifter, comme le modèle proposé par Adafruit.

 Figure 25-6
Convertisseur logique
Adafruit

	 460	 Partie II. Les montages

Vous pouvez constater qu’il n’y a pas de connexion USB entre les deux
cartes et que la communication passe exclusivement par l’interface UART.
L’alimentation électrique de l’Arduino s’effectue au moyen d’une pile de
9 V. Quelles conditions doivent être remplies pour que cette forme de
communication fonctionne ? Tout d’abord, je dois vous en dire davantage
sur le port série du Raspberry Pi. Par défaut, le Raspberry Pi utilise le port
série en tant qu’interface de console par l’intermédiaire duquel vous pouvez
accéder au système depuis l’extérieur, même si vous n’y avez pas raccordé
de moniteur, de souris ou de clavier – quasi headless. Mais ce moyen d’ac-
cès dont nous n’avons pas absolument besoin pour le moment bloque les
broches RX/TX et nous empêche de poursuivre notre expérience. Nous
devons donc couper ce lien. La solution réside dans la configuration du port
série. Ouvrez la configuration du Raspberry Pi et affichez l’onglet Interfaces.

Activez le port série à l’aide de l’option correspondante de la boîte de
dialogue, puis redémarrez le système. Ensuite, il ne vous reste plus qu’à
apporter quelques modifications au fameux script Blink.

 Figure 25-9
Configuration du port série
du Raspberry Pi

Ce composant permet non seulement de convertir la tension pour les liai-
sons RX/TX, mais aussi pour les bus I2C et SPI. Sur le côté gauche se trouvent
les broches de raccordement en basse tension (LV ou LOW Voltage) et sur
le côté droit, il y a les broches haute tension (HV ou HIGH Voltage). Voyons
maintenant comment raccorder correctement le Raspberry Pi et l’Arduino
pour que les deux cartes réussissent à communiquer via les ports série.

Figure 25-7 u
Le convertisseur logique

sert d'intermédiaire
entre le Raspberry Pi

et l’Arduino.

Il va sans dire que les lignes émettrices et réceptrices des deux cartes
doivent être croisées, car si vous voulez que la liaison TX verte, par laquelle
le Raspberry Pi transmet des données, réussisse à se faire entendre par
l’Arduino, cette dernière doit être connectée à sa liaison réceptrice RX
bleue, et inversement. Le montage suivant permet de faire clignoter une
LED connectée à la broche 8 par le biais des deux liaisons RX/TX.

Figure 25-8 
Le Raspberry Pi commande

l’Arduino via les liaisons
RX/TX.

Montage 25. Quand Arduino rencontre Raspberry Pi 	 461

Vous pouvez constater qu’il n’y a pas de connexion USB entre les deux
cartes et que la communication passe exclusivement par l’interface UART.
L’alimentation électrique de l’Arduino s’effectue au moyen d’une pile de
9 V. Quelles conditions doivent être remplies pour que cette forme de
communication fonctionne ? Tout d’abord, je dois vous en dire davantage
sur le port série du Raspberry Pi. Par défaut, le Raspberry Pi utilise le port
série en tant qu’interface de console par l’intermédiaire duquel vous pouvez
accéder au système depuis l’extérieur, même si vous n’y avez pas raccordé
de moniteur, de souris ou de clavier – quasi headless. Mais ce moyen d’ac-
cès dont nous n’avons pas absolument besoin pour le moment bloque les
broches RX/TX et nous empêche de poursuivre notre expérience. Nous
devons donc couper ce lien. La solution réside dans la configuration du port
série. Ouvrez la configuration du Raspberry Pi et affichez l’onglet Interfaces.

Activez le port série à l’aide de l’option correspondante de la boîte de
dialogue, puis redémarrez le système. Ensuite, il ne vous reste plus qu’à
apporter quelques modifications au fameux script Blink.

 Figure 25-9
Configuration du port série
du Raspberry Pi

	 462	 Partie II. Les montages

À première vue, le code ne semble pas avoir changé. Pourtant, il y a une
différence majeure. Regardez attentivement la ligne 7 à laquelle le port
série est initialisé.

Avant :

arduinoboard = Arduino('/dev/ttyACM0')

Après :

arduinoboard = Arduino('/dev/ttyS0')

Le device que nous avions utilisé précédemment se rapportait à l’interface
USB. Après la correction, le device accède à l’interface UART.

Qu’avez-vous appris ?
	● Vous avez vu comment programmer votre Arduino Uno avec le

Raspberry Pi au moyen de l’IDE Arduino qui y est installé.

	● Vous vous êtes servi de Firmata pour établir et commander la com-
munication entre le Raspberry Pi et l’Arduino Uno.

	● Par ailleurs, vous avez constaté à quel point il est facile de créer des
éléments d’interface utilisateur graphiques avec Tkinter afin de contrô-
ler les saisies sans passer par des lignes de commande. Cela vous a
permis d’envoyer des signaux MLI à l’Arduino Uno, de commander un
servomoteur et d’interroger le port analogique.

	● Enfin, vous avez raccordé votre carte Arduino et Raspberry Pi au moyen
des broches du port série.

	 463

Montage

26Programmer pour
l’Internet des objets
avec Node-RED

L’Internet des objets (Internet of Things en anglais, ou IoT) est l’inter-
connexion entre des objets (Things) du monde réel et des objets du monde
virtuel (Internet). Il s’agit en somme de tout interconnecter pour nous
simplifier la vie grâce à une communication qui permet d’échanger des
données de toute sorte. Voilà pour la théorie. Imaginez que des capteurs
disposés dans votre réfrigérateur détectent la quantité de produits qui s’y
trouvent et à quel moment vous pourriez peut-être bientôt manquer de
quelque chose. Autre exemple : votre système de surveillance prend alors
les devants, commande sur Internet chez votre marchand en ligne préféré
la quantité suffisante de produit avant qu’il ne vienne à manquer, et le
produit est ensuite livré chez vous. Votre véhicule dispose d’un ordinateur
de bord, qui prend rendez-vous automatiquement à l’avance dans votre
concession lorsqu’une révision arrive à échéance ou qu’un quelconque
problème survient. Il est aussi en mesure de commander le cas échéant les
pièces de rechange nécessaires. Ce genre d’infrastructure interconnectée
va évidemment de pair avec le risque d’une surveillance globale. En effet,
les données ne sont pas soumises à l’heure d’aujourd’hui aux réglemen-
tations strictes sur la protection des données personnelles que l’on est
en droit d’espérer en tant que personne privée. Nous n’approfondirons
pas ici ce sujet explosif même s’il devient de plus en plus épineux avec
l’Internet des objets.

Dans ce montage, vous allez découvrir le framework Node-RED, qui vous
permettra de représenter des données que vous aurez générées à l’aide d’un
capteur de température et d’humidité intégré à votre carte Arduino. Vous
pourrez afficher les données de manière attrayante dans Node-RED via un

	 464	 Partie II. Les montages

tableau de bord avant d’y accéder par une URL. Vous apprendrez égale-
ment comment générer et envoyer automatiquement des e-mails à partir
du framework. Enfin, vous verrez ce qu’est le format de fichiers JSON et
à quoi il va nous servir.

Comment fonctionne Node-RED ?
J’aimerais vous présenter plus en détail dans ce montage l’outil de dévelop-
pement Node-RED conçu par IBM, dont nous avons déjà fait connaissance
dans le montage n° 24 sur les langages de programmation par blocs. Au
moyen d’une interface graphique, il est possible de créer en un rien de
temps des connexions entre différents périphériques matériels ou instances
via ce qu’on appellera des Flows (flux en français) en vue de réaliser un
flux ou un échange d’informations.

Comme le langage de programmation Scratch, Node-RED fournit des blocs
prédéfinis contenant des fonctions spécifiques, qui peuvent être combinés
très facilement entre eux à partir d’un stock. Ces blocs, aussi appelés Nodes
(nœuds en français), remplissent certaines tâches et constituent ensemble
les flux précédemment mentionnés. La figure ci-après nous montre un
flux simple, qui permet de faire clignoter une LED connectée à votre carte
Arduino.

Voyons maintenant en détail comme tout cela fonctionne. Les Nodes sont
organisés en différentes palettes et peuvent, comme avec Scratch, être
placés sur l’espace de travail par un simple glisser-déposer. Node-RED
s’appuie sur JavaScript et, côté serveur, sur la plateforme Node.js, qui sert
à développer des logiciels pour des applications réseau. Comme Node-RED
fonctionne au sein d’un navigateur web, l’application n’est pas tributaire
d’une plateforme. Je n’ai constaté aucun problème lié à l’utilisation de
Firefox, Opera, Chrome ou Internet Explorer. La figure ci-après montre
les palettes de base. J’en ai ajouté déjà une nouvelle pour la commande
de la carte Arduino. Nous verrons plus loin comment ajouter des palettes.

Figure 26-1 u
Un flux Node-RED simple

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 465

La page de démarrage de Node-RED se trouve à l’adresse Internet suivante :

https://nodered.org/

Vous y trouverez également toutes les informations utiles.

Installation de Node-RED
Node-RED peut être installé localement sur un ordinateur ainsi que sur
divers autres ordinateurs qui fonctionnent alors comme des serveurs
Node-RED. Comme il s’agit d’une application de navigateur, il est très
simple d’entrer l’URL correspondante suivie du port 1880 (par exemple :
192.168.178.58:1880) pour établir la connexion. Si vous devez utiliser
l’extension Arduino, vous devez impérativement raccorder la carte Arduino
au serveur et non à l’ordinateur qui fonctionne comme client. Tout utilisa-
teur qui possède un Raspberry Pi peut donc y installer Node-RED très faci-
lement. Les possibilités d’installation étant toujours susceptibles d’évoluer
rapidement, mes explications sur le sujet risquent d’être dépassées. C’est
pourquoi j’indique ici les sources, où sont très bien décrites les différentes
étapes de l’installation. Je suis tout à fait conscient que tous les liens que
je mentionne risquent un jour ou l’autre d’être obsolètes et de renvoyer à
une page vide. Mais recourir à un moteur de recherche ne devrait pas poser
trop de problèmes et devrait même permettre de franchir élégamment
ce genre d’obstacle.

t Figure 26-2
Les différentes palettes
de Node-RED

	 466	 Partie II. Les montages

APERÇU RAPIDE AVEC FRED
Pour avoir un aperçu rapide et simple de Node-RED, nul besoin de l’installer
sur votre ordinateur pour débuter et faire vos premiers pas. Il vous suffit
d’utiliser FRED (Frontend pour Node-RED). Rendez-vous simplement sur la
page Internet de FRED :

https://fred.sensetecnic.com/
Vous vous connectez, choisissez la version gratuite et quelques instants après,
vous pouvez commencer à utiliser Node-RED. Il existe toutefois une restriction
quant au nombre de nœuds pouvant être créés, restriction qui ne devrait pas
constituer un gros problème. À vous de jouer. Amusez-vous bien !

Installation de Node-RED sur Windows
L’installation sur un ordinateur Windows est décrite à l’adresse Internet
suivante :

https://nodered.org/docs/getting-started/windows

Installation de Node-RED sur un Raspberry Pi
L’installation sur un Raspberry Pi est décrite à l’adresse Internet suivante :

https://nodered.org/docs/getting-started/raspberrypi

Démarrage de Node-RED
Pour démarrer Node-RED sous Windows, allez dans le menu de démarrage
et sélectionnez le programme Node.js command prompt, lequel ouvre la
ligne de commande :

Figure 26-3 u
Démarrage de Node-RED

sous Windows – ouvrir
la ligne de commande

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 467

Une fois la ligne de commande ouverte, entrez la commande node-red et
confirmez à l’aide de la touche Entrée :

Un certain nombre de messages se déroulent ensuite. Le message le plus
important pour vous se situe vers la fin :

La dernière ligne indique que le serveur fonctionne localement sur votre
ordinateur. Vous devez ensuite entrer l’adresse

 http://127.0.0.1:1880

sous la forme d’une URL dans un navigateur. L’adresse IP 127.0.0.1 renvoie
au localhost, autrement dit à l’ordinateur local. Le nombre 1880 à la fin de
l’adresse IP indique le port ; il est séparé de l’adresse IP par deux points.
Alternativement, vous pouvez également saisir l’adresse IP attribuée par le
routeur, qui a été affectée à votre ordinateur dans votre réseau domestique.

Vous pouvez trouver celle-ci à l’aide de la commande ipconfig dans la ligne
de commande :

Dans mon cas, l’adresse IP est 192.168.178.21. Elle peut être adressée non
seulement localement, mais aussi par tous les autres ordinateurs pré-
sents dans le réseau correspondant grâce à l’indication supplémentaire
du port 1880. Le démarrage de Node-RED sur un Raspberry Pi s’opère de
manière similaire. Vous devez aussi saisir dans une fenêtre de terminal la

t Figure 26-4
Démarrage de Node-RED
sous Windows – entrer
une commande

t Figure 26-5
Messages de Node-RED
après le démarrage

t Figure 26-6
Trouver votre adresse IP

	 468	 Partie II. Les montages

commande node-red. Veillez à respecter les majuscules et les minuscules.
J’ai résumé l’extrait suivant aux lignes les plus importantes :

Là encore, vous pouvez trouver l’adresse IP réelle dans le réseau, mais
ici la commande est ifconfig et vous devrez la lancer dans une fenêtre de
terminal. Dans tous les cas, n’oubliez pas de laisser ouvertes les fenêtres de
terminal après le démarrage de Node-RED, aussi bien sous Windows que
Linux, et de ne pas les fermer tant que Node-RED doit rester opérationnel !

Installation de Nodes ou de Flows
supplémentaires
La carte Arduino n’étant pas disponible par défaut sur Node-RED, il vous
faudra l’installer en ajoutant un nouveau Node à la palette. Il est possible
de procéder de différentes manières. L’installation directe à partir de Node-
RED est naturellement un très bon choix. Nous l’avons abordé dans le
montage n° 24 sur les langages de programmation par blocs, lorsque nous
avons ajouté le Node Arduino. L’autre variante consiste à se rendre sur un
site Internet spécifique puis à exécuter manuellement une ou plusieurs
commandes dans la ligne de commande. Je vais vous montrer les deux
méthodes.

Installation d’extensions
à partir de Node-RED
Pour que l’installation de Nodes supplémentaires à partir de Node-RED
puisse fonctionner, il faut, bien sûr, avoir démarré Node-RED. Ouvrez Node-
RED dans votre navigateur et cliquez sur les trois lignes horizontales en
haut à droite pour ouvrir la configuration et sélectionnez l’option de menu
Manage palette :

Figure 26-7 u
Démarrage de Node-RED

sur un Raspberry Pi – entrer
une commande

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 469

Une boîte de dialogue s’ouvre. Allez dans l’onglet Install et saisissez le
terme de votre choix dans la barre de recherche. J’ai ainsi obtenu une liste
de résultats après avoir entré le terme arduino. Vous pouvez maintenant
installer l’extension souhaitée sous la forme d’un Node supplémentaire en
cliquant sur le bouton Install.

Installation d’extension à l’aide de la ligne
de commande
Pour installer manuellement le Node que vous souhaitez, rendez-vous sur
la page Internet suivante :

http://flows.nodered.org/

t Figure 26-8
Gestion de la palette
de Node-RED

	 470	 Partie II. Les montages

Vous pouvez restreindre l’affichage des Nodes ou des Flows dans la
recherche. Entrez simplement le terme Arduino dans la barre de recherche.
Quelques résultats sont déjà mis en évidence pendant la saisie :

Vous pouvez voir sous la fenêtre de recherche trois boutons qui vous per-
mettent de limiter la recherche aux Nodes, aux Flows ou aux Collections :

L’extension souhaitée s’affiche dans un encadré de couleur rose :

Cliquez dessus pour faire apparaître sur une nouvelle page web des infor-
mations supplémentaires expliquant comment installer l’extension que
vous avez sélectionnée. Pour communiquer avec la carte Arduino, on uti-
lise firmata (déjà vu dans le montage n° 25), qui est un firmware fourni
d’office dans chaque environnement de développement Arduino. Une fois
l’installation réussie, arrêtez et redémarrez le serveur Node-RED. Avec le
Raspberry Pi, cela s’effectue à l’aide des commandes que vous connaissez
déjà, dans l’ordre suivant :

node-red-stop
node-red-start

Figure 26-10 u
Recherche d’extensions

pour Node-RED sur
la page Internet

Figure 26-11 u
Extensions Arduino
pour Node-RED sur

la page Internet

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 471

Sur un système Windows, terminez le traitement par lots en appuyant
sur Ctrl+C, confirmez avec O et relancez la commande pour démarrer
Node-RED :

 node-red -v

Une fois le navigateur reconnecté, qui naturellement perd brièvement la
connexion au serveur suite à cette action, vous voyez s’afficher une nouvelle
palette portant le nom Arduino avec deux Nodes :

Maintenant, tout est prêt pour établir la communication entre Node-RED
et votre carte Arduino.

Préparation de la carte Arduino Uno
Pour que la communication fonctionne entre votre carte Arduino Uno et
votre serveur Node-RED (l’ordinateur local ou le Raspberry Pi), vous devez
télécharger sur votre carte Arduino Uno le sketch StandardFirmata en tant
que firmware à partir du répertoire d’exemples.

Si vous n’avez pas encore installé l’environnement de développement
Arduino sur votre Raspberry Pi (nous l’avons fait dans le montage n° 25
sur l’interaction entre Arduino et Raspberry), exécutez les lignes suivantes
dans une fenêtre de terminal de votre Raspberry Pi :

sudo apt-get update
sudo apt-get install arduino

Le sketch StandardFirmata se trouve dans Fichiers | Exemples | Firmata.

Node-RED dans le navigateur
Avant de commencer, voici un petit aperçu de la façon dont se présente
Node-RED dans le navigateur et comment il est organisé. Une fois que vous
avez entré dans le navigateur l’adresse IP attribuée, Node-RED s’affiche
comme suit. Vous pouvez voir que j’y ai déjà ajouté un Flow simple :

t Figure 26-12
Nodes Arduino

	 472	 Partie II. Les montages

Les différentes palettes sont représentées dans la partie gauche 1. Pour
le moment, c’est la palette common qui est ouverte et les Nodes qu’elle
contient sont affichés. La partie centrale 2 est un grand espace où peuvent
être créés les Flows, organisés en différents onglets. Cliquez sur la case +
en haut à droite pour ajouter un nouveau Flow dans la barre d’onglets.
Pour activer un Flow, cliquez sur le bouton Deploy 3. Pour configurer
Node-RED, il vous suffit d’ouvrir un menu 4. Des informations détaillées 5
sur le Node sélectionné s’affichent dans l’onglet Info, des informations sur
le Flow après son activation dans l’onglet Debug.

Il est maintenant temps de démarrer un Flow.

Le Flow du clignotant
Nous commencerons (pourrait-il en être autrement ?) avec un exemple
clignotant. Nous allons construire ce Flow pas à pas et je vais vous expli-
quer tous les détails importants. De quels Nodes avons-nous besoin ? Nous
les trouverons dans la partie gauche du Node inject, situé dans la palette
common.

Le Node inject vous permet d’injecter un message dans le Flow, manuelle-
ment en cliquant sur le bouton Node ou à intervalle régulier via le minuteur.

Figure 26-13 
Node-RED dans

le navigateur

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 473

Pour obtenir des informations sur le Node sélectionné, ouvrez le volet
d’informations en appuyant sur Ctrl+barre d’espace. Cette fenêtre reste
ouverte. Si vous cliquez sur un autre Node, vous obtenez immédiatement
les informations correspondantes. Le nom et le type de Node inject sont
indiqués sur la figure ci-après :

D’autres indications utiles sur le Node sélectionné s’affichent aussi sous
ces informations. Jetez-y un coup d’œil. Cette fenêtre ne nous permet
cependant pas de modifier la configuration. Mais alors, comment chan-
ger la configuration du Node inject ? Double-cliquez sur le Node pour le
configurer (cela s’applique aussi à tous les autres Nodes). Une boîte de
dialogue s’ouvre et vous pouvez alors modifier les paramètres importants
de ce Node.

t Figure 26-14
Informations sur
le Node inject

t Figure 26-15
Éditer le Node inject

	 474	 Partie II. Les montages

Payload est ce qu’on pourrait appeler la charge utile qui doit être trans-
portée. Dans le cas présent, nous transmettons l’horodatage (Timestamp)
qui indique à quel moment quelque chose s’est passé. Il s’agit d’une longue
succession de chiffres, par exemple :

 1610897445122

Cette succession de chiffres cache la date et l’heure. Vous pouvez ensuite,
à l’aide d’un convertisseur d’horodatage, convertir cette valeur dans un
format lisible. Il vous suffit de vous rendre sur le site Internet suivant :

https://www.epochconverter.com/

Sur le site, entrez l’horodatage puis cliquez sur le bouton Timestamp to
Human date, vous obtiendrez alors le résultat suivant :

Comment faire pour afficher cet horodatage ? Bon, je vais anticiper un peu.
Si vous voulez « mettre au point » un Flow pour le rendre actif, cliquez sur
le bouton Deploy, qui se trouve en haut à droite de la fenêtre Node-RED.
Deploy signifie « Mettre en place » et active ainsi le Flow que vous avez
créé sur le serveur.

Si vous voulez envoyer quelque chose une seule fois avec le Node inject,
ne sélectionnez pas dans la case Repeat l’option interval mais laisser plutôt
l’option none :

Vous pouvez maintenant entreprendre une action inject unique en cliquant
sur le petit carré situé à gauche de l’onglet :

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 475

Tout est en place. La présence du Node inject ne constitue pas pour autant
un Flow correct et si vous voulez visualiser la sortie, c’est-à-dire la Payload
d’un Node, il faut se servir du Node debug. Celui-ci se trouve dans la palette
common :

Lorsque vous créez le Flow ci-après, quelque chose va se passer dans le
volet d’informations de l’onglet debug. Les deux Nodes vont se relier aux
deux petits points de liaison carrés que vous voyez sur les Nodes. Cliquez
sur le petit carré du Node de gauche qui représente la source du Flow, puis
tracez un trait de liaison en appuyant sur le bouton gauche de la souris vers
le Node de droite qui fonctionne comme la cible du Flow :

Lorsque vous tracez le trait avec la souris, une ligne de liaison apparaît avec
une croix marquant la cible, en rouge ici. Relâchez le bouton de la souris
lorsque la croix parvient au-dessus du petit carré du Node cible. Vous venez
de créer la liaison, c’est-à-dire le Flow. Il est possible de repositionner les
Nodes dans l’espace de travail en maintenant le bouton gauche de la sou-
ris appuyé sans supprimer les lignes de liaison. Pour supprimer un Node,
sélectionnez-le et appuyez sur la touche Suppr de votre clavier :

Vous devez configurer le Node inject pour qu’il puisse envoyer un message
toutes les 0,5 s. Pour cela, je règle l’option Repeat (répéter) sur interval
(intervalle) et j’ajoute la valeur 0.5 comme intervalle en secondes. Je nomme
le Node inject Timer 0,5 s :

	 476	 Partie II. Les montages

Pour accéder à la fenêtre debug, cliquez en haut à droite sur le triangle
pointant vers le bas et sélectionnez Debug messages :

Dans mon cas, les messages suivants, dont vous ne voyez ici qu’un petit
extrait, ont défilé après le déploiement (Deploy) dans la fenêtre debug :

Pour le Flow suivant, vous pouvez encore utiliser le Node debug. Il rend
bien service lorsque vous recherchez des erreurs. Mais à quoi sert un de ces
Nodes inject et quelles sont leurs fonctions ? Ce Node sert de minuteur, il
envoie toutes les 0,5 secondes un message au Node suivant. L’horodatage
ici est en fait secondaire et ne sert qu’à indiquer que quelque chose a été
réellement transmis. Comme je l’ai déjà mentionné, nous devons injecter
quelque chose à un certain endroit du Flow et c’est ce à quoi va nous servir
le Node inject ; celui-ci fonctionne quasiment comme un déclencheur et
injecte un message dans le Flow à l’intervalle indiqué. Vous vous demandez
certainement pourquoi il faut transmettre des informations d’un Node à
un autre ou si cela fonctionne en arrière-plan sans que l’on s’en aperçoive.
Il s’agit là d’un point essentiel à Node-RED, comparable au paradigme du
langage de programmation C++ pour ce qui est de la programmation orien-
tée objets (POO). Node-RED fonctionne de manière comparable. Comme
des messages sont échangés entre les Nodes, il existe un objet qui porte
le nom msg (message). Cet objet possède différentes propriétés (properties
en anglais). La propriété qui nous importe le plus est Payload, la charge
utile qui est transportée. Vous trouverez des informations détaillées sur
les propriétés possibles à l’adresse Internet suivante :

https://github.com/node-red/node-red/wiki/Node-msg-Conventions

Figure 26-16 u
Fenêtre Debug

Figure 26-17 u
Informations Debug

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 477

Pour accéder à la Payload, utilisez l’écriture suivante :

 msg.payload

Nous allons voir tout cela dans l’exemple qui suit. Notre objectif est de
faire clignoter sur la carte Arduino une certaine broche, de préférence la
broche 13 (toujours elle). Pour cela, nous devons transmettre alternative-
ment les valeurs false et true :

Vous pouvez voir sur la figure ci-après comment les Nodes fonctionnent
entre eux et comment ils envoient leurs messages au Node suivant :

Regardons cela de plus près. Je double-clique sur le Node pour afficher
ses propriétés.

Le Node inject
Le Node inject nous permet de générer à l’aide des paramètres indiqués
un minuteur, qui envoie un message sous la forme d’un horodatage toutes
les 0,5 secondes :

	 478	 Partie II. Les montages

Le Node Fonction
Le Node Fonction qui se trouve dans la palette function permet de créer
une fonction que nous allons doter d’un code pour clarifier ce qui doit se
passer lorsque la fonction est activée. Le code doit être ajouté dans l’onglet
On Message :

Le contenu, également appelé body, nécessite une explication. Chaque
Node possède un objet prédéfini qui lui est propre et qui porte le nom
context. Nous pouvons maintenant insérer des propriétés (properties) à
l’aide de l’opérateur point (.). J’ai ajouté pour le niveau broche de la carte
Arduino la propriété level. Vous trouverez des informations détaillées sur
l’objet context à l’adresse Internet suivante :

https://nodered.org/docs/creating-nodes/context

À la ligne 1 de la fonction, je nie la valeur à chaque ouverture de celle-ci
en utilisant l’opérateur NOT, accessible par le point d’exclamation (!). Si la
propriété n’est pas encore initialisée au départ, ce qui devrait être le cas,
|| false entreprend une initialisation.

À la ligne 2, le context.level de la propriété payload est affecté à l’objet msg
et défini à la ligne 3 comme valeur de retour. Le Node suivant reçoit donc
l’objet msg complet comme entrée. Dans notre cas, il s’agit du Node debug.

Le Node debug
Le Node debug va nous permettre d’indiquer la sortie (l’édition) de la
fonction :

Dans mon exemple, vous voyez que l’édition (Output) est la propriété
Payload, qui est éditée dans l’onglet debug. Regardons de plus près cette
édition en allant faire un petit tour sur l’onglet debug correspondant :

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 479

Vous voyez que la propriété payload alterne entre les valeurs false et true.
Parfait ! Vous pouvez maintenant attacher le Node Arduino au Node func-
tion sans que le Node debug ne gêne ni qu’il disparaisse. Votre Flow prend
l’apparence suivante et se divise après le Node function. L’édition (Output)
est dirigée vers les deux Nodes ajoutés (Payload et Arduino) :

La configuration du Node Arduino (Arduino-Out) qui se cache dans la
palette Arduino que nous avons ajoutée se présente comme suit :

Les ports COM sont disponibles sur un ordinateur Windows. En revanche,
sous Linux avec un Raspberry Pi, le port est /dev/ttyACM0. Dans Type,
sélectionnez la commande des broches numériques et indiquez ensuite le
bon numéro de broche. Le champ Name peut rester vide, vous pouvez
aussi donner un autre nom si Pin 13 ne vous plaît pas. Une fois que vous
avez cliqué sur le bouton Deploy, la LED Onboard (Broche 13) doit clignoter
sur votre carte Arduino Uno. Vous trouverez des informations détaillées
sur les fonctions Node-RED à l’adresse Internet suivante :

https://nodered.org/docs/writing-functions

	 480	 Partie II. Les montages

La communication entre votre carte Arduino et le serveur Node-RED s’opé-
rait jusqu’ici par le biais du sketch firmata. Peut-on faire autrement ?

Montage avec le capteur de
température et d’humidité DHT11
Il existe un capteur très intéressant, qui peut mesurer aussi bien la tem-
pérature que l’humidité. Il s’agit du capteur DHT11 (vu brièvement dans
la fin du montage n° 22) et celui-ci est tout à fait approprié pour faire la
démonstration de la communication entre la carte Arduino et Node-RED.
Mais vous pouvez aussi utiliser n’importe quel autre capteur que vous aurez
raccordé à votre carte Arduino.

Il ne présente que trois ports et le mieux est de le connecter à la carte Arduino
via une petite carte porteuse, sur laquelle se trouve déjà la résistance sup-
plémentaire dont vous avez besoin. Rappel des caractéristiques du DHT11 :

	● tension d’alimentation 3,3 V à 5 V ;

	● plage de mesure de l’humidité relative de l’air 20 % à 95 % ;

	● tolérance de la plage de mesure pour l’humidité relative de l’air ±5 % ;

	● plage de mesure de la température 0 °C à 60 °C ;

	● tolérance de la plage de mesure pour la température ±2 %.

Composants nécessaires
Pour ce montage, nous avons besoin des composants suivants :

Figure 26-18 u
Capteur de température

et d’humidité DHT11

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 481

Composant t Tableau 26-1
Liste des composants

1 capteur DHT11

1 résistance de 10 kΩ (si elle n’est
pas déjà sur la carte porteuse)

Schéma
Le schéma des connexions est simple et consiste uniquement à alimenter
le capteur en tension et à raccorder la broche véhiculant les signaux.

Si le capteur DTH11 n’est pas sur une carte porteuse, vous devrez alors le
raccorder comme suit :

t Figure 26-19
Schéma des connexions
pour l’interrogation
du DHT11

t Figure 26-20
Raccordement externe
du DHT11

	 482	 Partie II. Les montages

JAVASCRIPT OBJECT NOTATION-FORMAT (JSON)
Je voudrais vous faire découvrir un format de données appelé JSON. Il s’agit
de l’abréviation de JavaScript Object Notation. Ce format est très compact et
facile à lire pour les humains, il a été développé pour échanger des données
entre différentes applications. Il est maintenant largement utilisé dans les
applications web et s’est également établi depuis longtemps dans le monde
des développeurs amateurs. Ce format de données ne devrait donc pas avoir
de secrets pour vous. Vous trouverez des informations détaillées sur ce thème
à l’adresse Internet suivante :

https://fr.wikipedia.org/wiki/JavaScript_Object_Notation
Je vais vous montrer comment se présente ce format à l’aide d’un exemple
concret que nous allons aussi mettre en pratique pour ce montage. La structure
suivante nous montre un format JSON typique :

{
“Type”	 : “11”,
“Status”	 : “OK”,
“Humidity”	 : 13.0,
“Temperature” : 20.0
}

On trouve toujours une paire nom/valeur reliés par deux points. Le nom est
toujours une chaîne de caractères, par exemple Type, et la valeur peut être :

	● un objet ;

	● un tableau ;

	● une chaîne de caractères ;

	● un nombre ;

	● true, false ou null.

Les paires nom/valeur sont séparées les unes des autres par des virgules
et sont encapsulées par des accolades. Si nous programmons le sketch
Arduino de sorte qu’il fournisse les valeurs à envoyer sous cette forme vers
une interface sérielle, nous pourrons alors évaluer le flux de données dans
Node-RED. Notre objectif est de procéder ensuite à une évaluation et de
générer des messages adéquats par e-mails et/ou via Twitter.

Sketch Arduino
Voici à quoi ressemble le sketch Arduino. Vous devez préalablement avoir
installé la bibliothèque DHT11. Pour commencer, je vais vous montrer
encore une fois le sketch Arduino servant à afficher les valeurs mesurées
de la température et de l’humidité dans le moniteur série :

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 483

#include <DHT.h>	 // Inclure la bibliothèque
#define DHTPIN 8	 // Broche numérique
#define DHTTYPE DHT11	 // DHT11
DHT dht(DHTPIN, DHTTYPE);	// Initialisation de l’objet

void setup() {
 Serial.begin(9600);
 Serial.println(“DHT11 Test!”);
 dht.begin();
 randomSeed(analogRead(0));
}

void loop() {
 // Mesurer l’humidité
 float h= dht.readHumidity();
 // Mesurer la température en degrés Celsius
 float t= dht.readTemperature();t=11.0;
 h=random(30.0,40.0);
 t=random(20.0,30.0);
 // Vérifier les mesures
 if(isnan(h) || isnan(t)) {
 Serial.println(«Erreur lors de la lecture du capteur DHT!»);
 return; // Exit
 }
 Serial.print(“{“);
 Serial.print(“\”Type\” : \””);
 Serial.print(DHTTYPE);
 Serial.print(«\», «);
 Serial.print(«\»État\» : \»»);
 Serial.print(“OK”);
 Serial.print(“\”, “);
 Serial.print(“\”Humidité\” : “);
 Serial.print(h, 1);
 Serial.print(«, «);
 Serial.print(«\»Température\» : «);
 Serial.print(t, 1); Serial.println(„}“);
 delay(60000); // Pause de 1 minute

L’édition sur le moniteur série se présente comme suit :
t Figure 26-21
Édition des valeurs de
mesure au format JSON
du capteur DHT11 sur
le moniteur série

	 484	 Partie II. Les montages

Vous voyez ici que cela n’a rien à voir avec le sketch firmata mais qu’il s’agit
d’un sketch visant à interroger le capteur DHT11, qui envoie les valeurs
mesurées vers une interface sérielle. Est-il possible avec Node-RED d’in-
terroger directement l’interface sérielle sans passer par le Node Arduino
installé au préalable ? Bien sûr que oui. Si le Node Serial n’est pas encore
installé sur votre serveur Node-RED, vous pourrez le faire ultérieurement.
Je l’ai fait dans Node-RED à l’aide de la gestion de la palette en recherchant
le terme serial puis en cliquant sur Install.

ATTENTION AU PORT COM
La carte Arduino et Node-RED utilisent le même port COM. Il est donc
important de ne plus bloquer ce port COM sur votre carte Arduino Uno par
l’environnement de développement Arduino une fois que le sketch a été
chargé. Dans le sens inverse, Node-RED bloque le port COM en cas d’accès à
celui-ci et exclut l’environnement de développement Arduino. N’oubliez pas
ce facteur très important ! En cas d’urgence, débranchez la carte Arduino de
l’ordinateur puis rebranchez-la ensuite.

Nous recommençons depuis le début en créant le Flow ci-après. Dans la
palette network, vous trouverez après l’installation trois nouveaux Nodes,
parmi lesquels le Node serial in dont vous allez avoir besoin.

Figure 26-22 u
Installation du

Node Serial

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 485

Déplacez ce Node dans le Flow et ajoutez un Node Debug pour afficher le
flux de données sériel. Vous obtenez :

Vous devez configurer le Node serial avec les bons paramètres, qui se
présentent chez moi comme indiqués ci-après. Le débit en bauds doit
correspondre à celui de la carte Arduino. Après avoir double-cliqué sur le
Node serial in, cliquez sur le symbole du crayon encadré en rouge, car il
n’y a pas encore de port COM sélectionné pour la configuration :

Les paramètres de la connexion devront ensuite être réglés de façon à ce
que la communication avec votre carte Arduino s’opère sans encombre :

Presque tous les fournisseurs de messagerie électronique ont mis en place des mesures de sécurité qui
ne permettent pas facilement d’envoyer des e-mails à partir de programmes, les fameuses applications.
Cette fonctionnalité doit être débloquée dans les paramètres du compte de messagerie électronique
et/ou un mot de passe spécifique doit être créé pour autoriser cette fonctionnalité. L’envoi d’e-mails
ne doit pas non plus s’effectuer dans un intervalle trop rapproché sinon une attaque de spam est
suspectée, pouvant être à l’origine de problèmes.

	 486	 Partie II. Les montages

Après un déploiement (Deploy), les messages suivants défilent dans la
fenêtre debug :

Cette édition est la même que celle qui s’affiche dans le moniteur série.
Les valeurs sont des valeurs nues, sans aucune évaluation. Il nous reste à
procéder à celle-ci. Nous modifions le Flow de façon à soumettre les don-
nées brutes à une évaluation et à générer des messages correspondants.
Ces messages devront ensuite être envoyés par e-mail.

Envoi par e-mail
Si le Node E-Mail n’est pas encore installé sur votre serveur Node-RED, vous
pourrez l’installer plus tard. Je l’ai fait dans Node-RED à l’aide de la gestion
de la palette en recherchant le terme email puis en cliquant sur Install :

Après l’installation, trois nouveaux Nodes apparaissent dans la palette
sous social :

Figure 26-24 u
Installation du Node

E-Mail

Figure 26-23 u
Édition des valeurs

mesurées par le
capteur DHT11 dans

la fenêtre debug

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 487

Vous pouvez maintenant structurer le Flow ci-après en suivant mes expli-
cations pas à pas. Vous pouvez voir que le flux de données se divise après
le Node Évaluation et que les deux Nodes suivants reçoivent les mêmes
informations :

Passons en revue les différents Nodes. Vous connaissez déjà le Node Serial
et vous voyez grâce au voyant vert avec la mention connected qu’une
connexion sérielle est établie entre Node-RED et votre carte Arduino Uno.
L’évaluation complète s’effectue dans le Node Fonction qui porte ici le
nom Évaluation.

Examinons de plus près le code, car il est un peu complexe. On crée au
début une nouvelle variable avec le nom var qui vérifie et apparie la Payload
à l’aide de la classe JSON et de la méthode parse. Un objet vide msg.env est
ensuite créé, servant à recueillir les informations qui seront fournies par
la carte Arduino via l’interface sérielle, en l’occurrence le type de capteur,
l’état, l’humidité et la température.

Aux lignes suivantes, ces valeurs sont affectées à l’objet msg.env, dans lequel
les propriétés du format JSON sont appliquées.

La figure ci-après montre sur le côté droit les données quasi brutes qui
entrent dans Node-RED sous la forme d’une chaîne de caractères JSON :

t Figure 26-25
Affectation des données
brutes à partir du format
JSON à l’objet msg.env

	 488	 Partie II. Les montages

Ces données brutes enregistrées dans l’objet raw peuvent être adressées à
partir du flux de données JSON via les noms enregistrés. Elles sont affec-
tées à l’objet msg.env avec les noms en anglais que j’ai conservés lors de
l’affectation. La variable returnMsg va alors recueillir aussitôt le message qui
devra être envoyé à l’adresse mail. J’ai cependant programmé une petite
évaluation qui s’effectue via les instructions if de sorte qu’un message
soit ajouté lorsque les valeurs seuils que j’ai définies sont dépassées, en
l’occurrence lorsque la température ou l’humidité est trop élevée. Le code
suivant doit être également ajouté pour compléter le Node Évaluation :

La syntaxe utilisée se base sur le langage de programmation JavaScript. Il
existe de nombreux tutoriels sur Internet qui proposent une introduction
facile à ce langage de programmation. Enfin et surtout, nous envoyons le
message créé à l’aide du Node E-Mail de la palette social. La figure ci-après
montre la configuration dans laquelle j’ai utilisé un compte e-mail test.
Inscrivez ici les données de connexion du compte personnel que vous
souhaitez utiliser pour envoyer les valeurs de mesure :

Lorsque vous chargez le Flow sur le serveur, les valeurs du capteur DHT11
seront envoyées par e-mail à l’intervalle que vous avez défini dans le sketch

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 489

Arduino. Pour le moment, une pause de 60 secondes est fixée entre les
envois. Vous pouvez la modifier ou bien envoyer un message dans Node-
RED seulement lorsque certaines valeurs seuils sont dépassées ou ne sont
pas atteintes. Je vois alors dans ma boîte de messagerie électronique le
message suivant qui a été envoyé.

Cet e-mail affiche le contenu suivant :

Vous souhaitez peut-être afficher ces informations sous une autre forme
que de simples valeurs numériques, avec une présentation graphique par
exemple. Dans ce cas, Node-RED est un outil aussi simple que formidable.

Le Dashboard
Le Dashboard, ou tableau de bord en français, offre une grande variété de
graphiques sous la forme par exemple de tachymètres, de diagrammes à
poutres ou de camemberts. Pour les utiliser dans Node-RED, vous devez
ajouter les Nodes Dashboard dans la palette :

ENVOI D’E-MAILS À PARTIR D’APPLICATIONS
Presque tous les fournisseurs de messagerie électronique ont mis en place des
mesures de sécurité qui ne permettent pas facilement d’envoyer des e-mails à
partir de programmes, les fameuses applications. Cette fonctionnalité doit être
débloquée dans les paramètres du compte de messagerie électronique et/ou
un mot de passe spécifique doit être créé pour autoriser cette fonctionnalité.
L’envoi d’e-mails ne doit pas non plus s’effectuer dans un intervalle trop
rapproché sinon une attaque de spam est suspectée, pouvant être à l’origine
de problèmes.

t Figure 26-26
Installation du
Node Dashboard

	 490	 Partie II. Les montages

Après l’installation, de très nombreux Nodes apparaissent dans la palette
sous Dashboard :

Avant de commencer, vous devez adapter le sketch Arduino de façon à
régler une pause d’une seconde environ (au lieu des 60 secondes) entre
l’envoi des valeurs mesurées. Les valeurs mesurées seront ainsi représen-
tées presque en temps réel ! Vous pouvez maintenant structurer le Flow
suivant en reprenant mes explications pas à pas :

Immédiatement après le Node COM de la carte Arduino se trouve le Node
json, prélevé de la palette dans la catégorie parser :

Procédez à la configuration de ce Node comme indiqué ci-après. Notez
que la conversion d’une chaîne de caractères en un objet JavaScript et
vice versa est :

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 491

Le Node function ci-après a pour tâche d’extraire les valeurs mesurées de
l’objet JavaScript. Le code se présente comme suit :

Les informations des deux valeurs mesurées pour la température et l’hu-
midité sont donc enregistrées dans msg.Temperature et msg.Humidity et
seront aussitôt utilisées pour l’affichage dans les graphiques correspon-
dants. Nous utiliserons à cet effet le Node gauge dans le tableau de bord
que nous venons d’installer.

En premier lieu, il vous faudra affecter ce Node à un groupe UI que vous
devez d’abord créer. UI est l’abréviation de User Interface (interface utilisa-
teur en français) et recouvre la présentation que nous allons obtenir dans
le navigateur. Double-cliquez sur le Node, cliquez sur le crayon et entrez
un nom pour le décrire :

	 492	 Partie II. Les montages

La configuration du Node Gauge est un peu complexe et se présente comme
suit. J’ai numéroté sur la figure les paramètres importants :

1.	Affectation du groupe UI qui vient d’être créé

2.	Inscription de l’affichage

3.	Valeur à afficher, ici msg.env.Temperature

4.	Indication de l’unité de mesure devant s’afficher sous la valeur de
mesure

5.	Plage à l’intérieur de laquelle la valeur de mesure peut varier

6.	Nom de la mesure

Mais comment voir l’interface utilisateur après un déploiement ? Ce n’est
pas possible à ce stade. Vous avez besoin pour cela d’une extension de
votre URL, qui est, pour l’ordinateur local :

http://127.0.0.1:1880/ui/.

Il vous suffit par conséquent d’ajouter /ui/ à la fin de l’adresse que vous
connaissez. Le mieux est d’ouvrir une autre fenêtre de navigateur pour ne
pas fermer l’environnement de développement Node-RED. Dans l’exemple
indiqué, il reste à afficher Humidity, l’humidité, par le biais du Node Gauge
en dessous. Je vous laisse faire tout seul. Pour ma part, j’obtiens par exemple
le résultat suivant après avoir soufflé sur le capteur DHT11 :

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 493

Affichage des valeurs de mesure
sur un smartphone
Vous pouvez aussi afficher l’interface utilisateur sur un smartphone ou une
tablette en indiquant l’adresse IP (et non l’ordinateur local !). Dans mon
cas, l’URL à entrer est celle-ci :

http://192.168.178.70:1880/ui/

Mon smartphone montre immédiatement la page suivante :

t Figure 26-27
Valeurs de mesure
dans l’UI de Node-RED

t Figure 26-28
Valeurs de mesure
sur un smartphone

	 494	 Partie II. Les montages

Exporter le code
à partir de Node-RED
Lorsque vous créez un Flow, celui-ci est enregistré au format JSON indi-
qué. Vous pouvez donc exporter votre Flow et le mettre le cas échéant à
la disposition d’autres utilisateurs. Pour cela, encadrez tous les Nodes en
maintenant le bouton gauche de la souris enfoncé :

Allez ensuite dans le menu en cliquant sur les trois traits horizontaux blancs
près du bouton Deploy en haut à droite et sélectionnez Export :

Vous voyez alors la fenêtre ci-après avec le code JSON correspondant. Vous
pouvez choisir de télécharger le code ou de le copier dans le presse-papier :

Figure 26-29 u
Nodes sélectionnés

Figure 26-30 u
Préparer l’exportation

Montage 26. Programmer pour l’Internet des objets avec Node-RED 	 495

Vous pouvez lire dans Node-RED un code téléchargé via l’option de menu
Import, soit en le copiant à partir du presse-papier, soit en sélectionnant
un fichier correspondant :

Cliquez enfin sur le bouton Import. Les Nodes s’affichent et peuvent être
positionnés à l’aide de la souris.

t Figure 26-32
Importation de Nodes
dans Node-RED

t Figure 26-31
Télécharger les Nodes
ou les exporter dans
le presse-papier

	 496	 Partie II. Les montages

Problèmes courants
Si la connexion entre Node-RED et la carte Arduino ne fonctionne pas ou si
elle est interrompue après un déploiement, débranchez la carte Arduino de
l’ordinateur et rebranchez-la. Stoppez l’environnement de développement
Arduino, notamment le moniteur série. Si le problème persiste, supprimez
le port série dans le menu Configuration nodes de Node-RED.

Qu’avez-vous appris ?
	● Vous avez découvert les bases de Node-RED et réalisé une installa-

tion pour que Node-RED fasse office de serveur. C’est possible sur un
Raspberry Pi, un ordinateur sous Windows ou un Mac.

	● Vous avez créé et affiché des messages.

	● Vous avez raccordé le capteur DHT11 à votre carte Arduino Uno puis
envoyé des messages au serveur Node-RED via l’interface sérielle. Ces
valeurs ont ensuite été transmises par e-mail.

	● Vous avez visualisé ces valeurs de mesure à l’aide d’un tableau de
bord via une page web, que vous avez pu ouvrir sur un smartphone
ou une tablette.

	 497

Montage

27MQTT

Je vais utiliser dans ce montage le Raspberry Pi comme serveur pour un
logiciel nommé MQTT. Ce dernier est un protocole de messagerie client-
serveur. Après l’établissement d’une connexion, des clients envoient des
messages au serveur, un Raspberry dans le cas présent. Le serveur MQTT
collecte et prépare les messages reçus sous la forme d’une base de données.
L’architecture client-serveur de cette application apporte de la clarté et
de l’ordre dans vos projets. C’est pourquoi nous allons aborder ce thème
dans ce montage.

Communication M2M avec MQTT
MQTT est l’abréviation de Message Queue Telemetry Transport. Ce protocole
de messagerie (Publishing & Subscribe) a été créé pour la communication
de machine à machine (M2M). Il constitue un précieux outil lorsqu’il s’agit
d’envoyer des informations dans des réseaux avec une bande passante limi-
tée et une latence (temps de réaction) élevée pour commander par exemple
des actionneurs ou extraire des données par l’intermédiaire de capteurs.
Il a été développé en 1999 par la société IBM pour la communication par
satellite et s’est standardisé depuis 2013 comme protocole pour l’Internet
des objets, l’IoT. Les ports 1883 et 8883 sont officiellement réservés à la
transmission au sein d’un réseau. Le site Internet officiel est disponible à
l’adresse suivante :

https://mqtt.org/

Dans les architectures client-serveur, qui sont aujourd’hui un composant
essentiel de presque tous les réseaux, des données sont échangées entre
les deux instances. Pour ce montage, je vais utiliser le Raspberry Pi comme
serveur MQTT, bien qu’il existe aussi des installations pour tous les systèmes
d’exploitation usuels comme Windows ou macOS. Mais me direz-vous,
MQTT, c’est quoi exactement et à quoi ça sert ?

	 498	 Partie II. Les montages

De plus en plus d’appareils sont qualifiés de smart. Cela peut être des
réfrigérateurs, des lave-linges, des grille-pains ou des appareils plus banals
comme des brosses à dents électriques ou des montres-bracelets. S’il est
possible d’introduire des circuits électroniques dans l’appareil, celui-ci
devient alors un Smart Device, capable de recevoir et d’envoyer des don-
nées. D’autres domaines d’application plus indispensables ont fait leur
apparition, comme les appareils implantés qui mesurent le taux de glycémie
ou les stimulateurs cardiaques qui transmettent des données biologiques.

C’est justement en cas de liaisons sur de grandes distances dans des réseaux
instables que le protocole MQTT léger s’est établi comme protocole stan-
dard. MQTT est fondé sur le TCP (Transmission Control Protocol) comme
protocole de transport, garantissant la transmission des messages lorsque
la connexion est établie.

Conventions de nommage
dans MQTT
Avec MQTT, l’ensemble fonctionne de manière similaire, avec toutefois
une différence pour ce qui est de la dénomination. Mais est-ce vraiment
un problème pour nous dans la mesure où le résultat est le même ? Nous
avons un expéditeur, le Publisher (l’éditeur) et un destinataire, le Subscriber
(l’abonné). Entre ces deux instances intervient un serveur, qui fait office
d’intermédiaire, il est appelé Broker. J’ai résumé sur la figure ci-après ces
relations pour les rendre plus claires :

Capteur (Broker)
Serveur

Ordinateur

Smartphone

Figure 27-1 u
L’architecture MQTT

de base

Montage 27. MQTT 499

Le capteur de température représenté ici envoie (ou publie) sa valeur de
mesure au Serveur (Broker), qui la reçoit et l’enregistre. Le Broker envoie à
son tour cette valeur de mesure à d’autres appareils, aussi appelés nœuds,
par exemple à un ordinateur fi xe ou un terminal mobile (un smartphone)
qui travaille avec les informations reçues et qui les évalue. Ces terminaux
se sont abonnés aux données.

Structure de messagerie MQTT
Pour garantir un certain ordre au sein de toute cette communication,
l’échange de messages s’opère par le biais de Topics sous la forme d’une
chaîne de caractères. La structure utilisée rappelle une URL servant à ouvrir
une adresse Internet sur un navigateur web. Un Topic sert à fi ltrer les
différents messages sur le Broker MQTT. Un Topic peut être par exemple :

Vous trouverez ci-après une liste d’exemples pratiques de Topics relatifs à
la présence de capteurs dans une maison :

● maison/cave/chaufferie/température ;

● maison/rez-de-chaussée/salon/lumière ;

● maison/rez-de-chaussée/cuisine/réfrigérateur/température ;

● maison/grenier/interrupteur de lucarne de toit ;

● garage/lumière.

Chacun des Topics utilisés doit se composer d’au moins un caractère,
les espaces vides étant autorisées, de même que les majuscules et les
minuscules.

Métacaractères MQTT
Il est possible d’utiliser des métacaractères pour interroger simultanément
plusieurs capteurs. On distingue métacaractères simple et multiple.

t Figure 27-2
Topic possible

 500 Partie II. Les montages

Métacaractère Single Level (joker) : +
Comme son nom l’indique, ce métacaractère sous la forme du signe plus
(+) renvoie à un seul niveau (Single Level).

Voici quelques exemples expliquant quels sont les effets du métacaractère
Single Level utilisé précédemment :

Métacaractère Multi Level : #
Le métacaractère ci-après sous la forme d’un dièse (#) est un métacaractère
Multi Level qui fi ltre plusieurs niveaux. Il fi gure toujours à la fi n d’un Topic :

Voici quelques exemples expliquant quels sont les effets du métacaractère
Multi Level utilisé précédemment :

Grâce à un fi ltrage intelligent et des structures logiques, vous pouvez inter-
roger (ou vous abonner à) certains nœuds de façon très simple.

Figure 27-3u
Le métacaractère

Single Level

Figure 27-4u
Le métacaractère Single

Level et ses eff ets

Figure 27-5u
Le métacaractère

Multi Level

Montage 27. MQTT 	 501

Installation de MQTT
L’installation de MQTT peut s’effectuer sur les systèmes d’exploitation
connus. Dans ce montage, je décris l’installation sur un Raspberry Pi. Si
vous souhaitez cependant installer le Broker MQTT sur votre système
Windows, rendez-vous sur le site Internet suivant :

https://mosquitto.org/download/

Vous y trouverez sous la rubrique Windows deux installations binaires,
permettant l’utilisation pour 32 bits ou 64 bits. Le tout s’installe très vite
et vous pourrez ensuite entreprendre sous Windows avec la ligne d’instruc-
tions les exemples MQTT montrés ici. Pour mener à bien ce montage, vous
aurez besoin d’un Raspberry Pi. Il sera question plus bas de commander
une LED située sur le Raspberry Pi.

Examinons maintenant des exemples concrets sur le Raspberry Pi. Pour
installer le logiciel, entrez les instructions suivantes dans une fenêtre de
terminal :

sudo apt-get update
sudo apt-get install mosquitto mosquitto-clients

Pour permettre la réalisation de la connexion de l’ESP32 au serveur MQTT
du Raspberry Pi, il est nécessaire de créer le fichier /etc/mosquitto/conf.d/
mosquitto.conf et d’y ajouter les paramètres de configuration suivants puis
de redémarrer mosquitto :

Aussitôt après l’installation, vous pouvez démarrer un premier test sur votre
Raspberry Pi et vous assurer que MQTT fonctionne correctement. MQTT est
immédiatement opérationnel. Nous devons d’abord expliquer dans MQTT
quel Topic suivre à l’aide d’un abonnement. L’instruction mosquitto_sub
permet de définir le Topic souhaité à l’aide de la clé -t :

L’instruction donnée est simplement acquittée en plaçant le curseur sans
invite à la ligne suivante. Vous devez ensuite ouvrir une deuxième fenêtre

	 502	 Partie II. Les montages

de terminal (Ctrl+Alt+F2) pour publier un message à l’aide de l’instruction
mosquitto_pub et de la clé -m :

Une fois la commande confirmée avec la touche Entrée, le message qui
vient d’être saisi s’affiche dans la première fenêtre de terminal (Ctrl+Alt+F1).
Vous venez de tester avec succès le Broker MQTT. Vous voudrez sans doute
savoir ensuite si Node-RED est aussi en mesure d’échanger avec le Broker
MQTT et si celui-ci peut recevoir en message envoyé. Node-RED fournit
d’office un Node mqtt-out que vous trouverez dans la palette network :

Il est alors très simple d’envoyer un message au Broker MQTT à l’aide d’un
Node Inject. C’est ce que nous allons justement faire avec le Flow suivant :

La coche verte nous indique que la liaison du Node MQTT au Broker
MQTT est établie :

Figure 27-7 u
Flow MQTT

Figure 27-8 u
Node MQTT connecté

au Broker MQTT

Montage 27. MQTT 	 503

Cliquez sur le Node inject pour envoyer le message « Bonjour, ici Node-
RED ». La configuration du Node MQTT est aisée et se présente sous la
forme suivante :

Comme le Broker MQTT et Node-RED fonctionnent sur le Raspberry, vous
pouvez utiliser ici localhost au lieu de l’adresse IP du Raspberry Pi. N’oubliez
pas d’ajouter le port 1883. Toutefois, si le Broker doit être adressé de l’ex-
térieur, vous devrez indiquer obligatoirement une adresse IP unique. Nous
reviendrons sur ce point. Le Topic inséré ici doit évidemment correspondre
au Topic que nous avons utilisé pour l’abonnement. C’est effectivement
le cas. Le message est envoyé après le déploiement du Flow et un clic sur
le Node inject. Voyons voir quelle est la réaction dans notre fenêtre de
terminal :

C’est précisément le message que nous souhaitions envoyer. Vous pouvez
ainsi publier différents messages avec différents Topics ; ceux-ci appa-
raissent dans les fenêtres de terminal en fonction de l’abonnement corres-
pondant. Faites donc le test suivant avec trois messages/Topics différents :

t Figure 27-9
Configuration
du Node mqtt

t Figure 27-10
Message de Node-RED
confirmé par le Broker
MQTT

 Figure 27-11
Différents messages
envoyés de Node-RED

	 504	 Partie II. Les montages

Un test rudimentaire
Mon objectif est de vous montrer avec ce petit test comment commander
facilement une LED raccordée à une broche du GPIO sur le Raspberry Pi.
Cela ne se fait pas directement, mais par l’intermédiaire de MQTT. Le
signal de commande de la LED ne va pas directement à la LED mais est
envoyé en direction de MQTT. Une fois sa réception validée, le message
est ensuite dirigé de MQTT à la broche concernée. Le Broker MQTT sert
donc d’instance de transfert entre le Node inject et la commande de la
LED. Examinez le schéma suivant :

La mise en pratique de ce genre de Flow est très simple et se présente avec
le schéma suivant. En plus du Node MQTT Output déjà vu, nous utilisons
maintenant le Node MQTT Input, que vous trouverez également dans la
palette network :

Ce Node sert à transférer les messages reçus.

Pour commander les broches GPIO du Raspberry, nous devons disposer
de Nodes GPIO pour le Raspberry Pi qui doivent être installés à partir de la
palette de Node-RED (menu Manage palette, onglet Install) en recherchant
node-red-node-pi-gpio.

Figure 27-12 u
Le Broker MQTT commande

la LED sur le Raspberry Pi.

Figure 27-13 u
Commande d’une

broche GPIO sur le
Raspberry Pi via MQTT

Montage 27. MQTT 	 505

Le Node GPIO pour le Raspberry Pi est fourni d’office dans le Node épo-
nyme. Pour ce test, utilisons le Node gpio out :

Pour commander le Node gpio out, nous ne pouvons pas recourir aux
valeurs logiques false ou true mais aux valeurs numériques 0 ou 1. Pour ce
test, j’utilise la broche 7 qui se cache sous la désignation GPIO04 dans le
Raspberry Pi. La configuration du Node est facile à entreprendre, il existe
en effet une vue d’ensemble de la disposition des différentes broches dans
l’interface GPIO :

La connexion de la LED sur l’interface GPIO est facile. Vous devez pour
autant veiller avec la plus grande attention à éviter les courts-circuits qui
pourraient détruire le Raspberry Pi : les broches GPIO sont en effet reliées
directement au processeur et ne tolèrent aucune négligence ! En plus du
Raspberry Pi, vous aurez besoin des composants suivants :

t Figure 27-14
Broches GPIO
sur le Raspberry Pi

	 506	 Partie II. Les montages

Composants

1 LED rouge

1 résistance de 330 Ω

Le câblage se présente comme suit :

Selon l’injection, vous voyez la réaction de la LED connectée à la broche 7.
Mais on peut aussi afficher les messages dans une fenêtre de terminal :

Essayez maintenant de réaliser avec la configuration d’un Node inject un
clignotement via MQTT.

Figure 27-15 u
Câblage pour commander
la LED sur le Raspberry Pi

Figure 27-16 u
Messages de Node-RED
pour commander la LED

Tableau 27-1 u
Liste des composants

Montage 27. MQTT 	 507

Le module ESP32
Vous connaissez le module ESP32 du montage n° 22. Ce module est parfait
pour établir des liaisons radio via Bluetooth ou Wi-Fi. Nous allons ici opter
pour le Wi-Fi. Vous pouvez prendre n’importe quel ESP32 (pas forcément
celui-ci). L’important est la broche Out. J’utilise pour ma part l’ESP32-Pico-
Board avec la disposition de broches suivante :

J’utilise aussi l’ESP32 Discoveryboard que j’ai construit et que je vous ai
déjà présenté. L’intégration du support ESP32 dans l’environnement de
développement Arduino a déjà été menée dans le montage ESP32 (montage
n° 22). Si vous avez besoin de rafraîchir vos connaissances, n’hésitez pas
à retourner jeter un coup d’œil.

ESP32 communique avec MQTT
Pour que votre ESP32-Pico-Board puisse communiquer avec MQTT, vous
aurez besoin d’un client correspondant. Il se nomme PubSubClient. La
bibliothèque associée peut être téléchargée à l’adresse Internet suivante :

https://github.com/knolleary/pubsubclient/archive/master.zip

Ajoutez ce fichier comprimé, sans extraire les fichiers, à l’environnement
de développement Arduino à l’aide de l’option de menu Sketch | Copier
bibliothèque | Ajouter ZIP-Bibliothèque. Une fois cette bibliothèque ins-

t Figure 27-17
L’ESP32-Pico-Board

	 508	 Partie II. Les montages

tallée, vous devriez voir les exemples ci-après en sélectionnant le menu
Fichier | Exemples | PubSubClient :

Je souhaite développer avec vous mon propre sketch, bien que les exemples
de la bibliothèque soient aussi instructifs. Le test de fonctionnement de la
connexion Wi-Fi vers votre routeur est le sketch que nous avons déjà vu
dans le montage ESP32 (montage n° 22). Nous allons compléter le sketch
avec la fonctionnalité MQTT en ajoutant l’adresse IP du Raspberry Pi et
en intégrant la bibliothèque MQTT que nous venons de télécharger. Vous
obtenez :

La méthode setCallback fait référence à une fonction qui s’active à l’arrivée
de messages. Vous pouvez définir avec la méthode subscribe quel Topic
vous suivez. Dans notre cas, il s’agit du Topic inTopic.

Figure 27-18 u
Exemples de bibliothèque

PubSubClient

Montage 27. MQTT 	 509

Voici la définition de la fonction callback qui est activée à l’arrivée de
messages relatifs au Topic indiqué :

La fonction reconnect s’active toujours en cas de problèmes de connexion.
Elle permet de renouveler les initialisations de base :

	 510	 Partie II. Les montages

Le sketch utilise le Topic appelé outTopic, à qui un message est envoyé
toutes les deux secondes. Ouvrez le moniteur série après le télécharge-
ment du firmware pour voir si l’ESP32-Pico-Board s’est bien identifié sur
votre routeur. Assurez-vous que la vitesse de transmission est réglée sur
115 200 bauds.

Cela se présente bien et j’ai pu dans la foulée établir une connexion au
routeur. L’adresse IP affichée n’est pas celle du serveur MQTT mais l’adresse
IP attribuée à l’ESP32-Pico-Board par le routeur via le protocole DHCP. Côté
Raspberry Pi, nous nous abonnons évidemment au Topic appelé outTopic
avec l’instruction suivante :

Et vous voyez que les messages de l’ESP32-Pico-Board arrivent ici aussi. J’ai
représenté sur l’image suivante les différentes instances de la transmission :

Vous pouvez aussi raccorder votre Raspberry Pi au routeur par un câble
LAN. Le Wi-Fi vous donnera un peu plus de flexibilité, même si les dis-
tances sont plus limitées. Il en va de même dans la direction opposée, car

Figure 27-19 u
Message de l’ESP32-

Pico-Board dans le
moniteur série

Figure 27-20 u
Le message de

l’ESP32-Pico-Board arrive
sur le Raspberry Pi.

Figure 27-21 u
Workflow de messages

du Node MCU-Board
vers le Raspberry Pi

Montage 27. MQTT 	 511

un PubSubClient est installé sur l’ESP32-Pico-Board et, comme son nom
l’indique, celui-ci peut donc non seulement publier mais aussi souscrire un
abonnement. Le firmware que nous avons téléchargé permet de déterminer
l’outTopic ainsi qu’un inTopic. Vous êtes alors en mesure de recevoir des
messages sur le Node MCU-Board provenant du Raspberry Pi. Pour cela,
ouvrez le moniteur série de l’environnement de développement Arduino
et donnez l’instruction suivante dans une fenêtre de terminal de votre
Raspberry Pi :

Le moniteur série indique parallèlement aux messages publiés le message
du Raspberry Pi reçu :

Vous voyez que le message a été reçu. Mettons maintenant tout cela en pra-
tique dans Node-RED. Jusqu’à présent, nous n’avons utilisé qu’une fenêtre
de terminal et le moniteur série comme instances d’entrée et d’affichage.
Le Flow suivant nous permet d’afficher les messages d’outTopic dans la
fenêtre Debug :

t Figure 27-22
Message sur le Node
MCU-Board provenant
du Raspberry Pi

t Figure 27-23
Message sur l’ESP32-
Pico-Board dans le
moniteur série de la carte
Arduino-IDE

t Figure 27-24
Flow MQTT pour la
réception de messages

	 512	 Partie II. Les montages

La fenêtre debug se présente comme suit :

Vous devez saisir dans le Node MQTT-In les paramètres suivants pour le
serveur et le Topic :

Il faudra faire la même chose dans la direction opposée. À vous de jouer !
Essayez de réaliser le Flow ci-après pour qu’un message provenant de
Node-RED s’affiche sur le moniteur série Arduino. Le Flow est représenté
ci-après. À votre tour de le configurer !

Vous voyez ci-après une représentation possible dans le moniteur série.
Le message en provenance de Node-RED apparaît au milieu des messages
à envoyer :

Figure 27-265 u
Flow MQTT pour la

réception de messages

Figure 27-26 u
Configuration du

Node MQTT-In

Figure 27-27 u
Envoi d’un message

à partir de Node-RED

Montage 27. MQTT 	 513

Voilà pour les bases de MQTT et Node-RED.

Problèmes courants
Ce montage ne devrait pas poser de problèmes sur le plan matériel.
Cependant, si quelque chose ne devait pas fonctionner, passez en revue
les étapes de l’installation et de la configuration décrites dans ce montage.
Cela devrait résoudre le problème.

Qu’avez-vous appris ?
Dans ce montage, vous avez découvert les bases MQTT et appris comment
utiliser votre Raspberry Pi comme serveur MQTT. Vous avez suivi l’organi-
sation des messages en Topics, vous savez maintenant comment publier
des messages et s’y abonner. L’instance centrale pour gérer les messages
est le Broker MQTT, situé entre les capteurs et les appareils terminaux.
Node-RED fournit des Nodes « prêts à l’emploi » pour communiquer avec
MQTT et nous avons envoyé des messages de Node-RED à une fenêtre
de terminal dans le Raspberry Pi. Dans le sens opposé, des messages ont
été envoyés du Raspberry Pi à Node-RED via une fenêtre de terminal.
Vous avez également fait connaissance du module Wi-Fi ESP32 et appris
à programmer avec l’environnement de développement Arduino à l’aide
de l’extension correspondante.

t Figure 27-28
Affichage du message
provenant de Node-RED
sur le moniteur série

	 515

Index

Symboles
<< (opérateur de décalage) 135
== (opérateur d’égalité) 105
= (opérateur d’affectation) 105
>> (opérateur de décalage) 135
74HC595 142

brochage 142
1208 (moteur pas-à-pas) 310
#define 185, 200
#ifndef 173
(commentaires) 176
& (opérateur ET) 139
? (opérateur conditionnel) 197
. (opérateur point) 132
(signe dièse) 185
& (opérateur de référence) 389
* (touche spéciale) 269
(touche spéciale) 269

A
adresse IP 380
adresse MAC 381
afficheur

7 segments 239
à cristaux liquides 289
LCD 289
pilote 289

alias 227, 266
anode 326

commune 241
type SA 39-11 GE 242

API (Application Programming Interface) 163
APT (Advanced Packaging Tool) 446
Aref 423
array 124, 126, 127
atome 255

auto-induction 324

B
bascule 114
baud 233
begin 132
bibliothèques 161

importer 179
bit 134

de poids faible 157
de poids fort 157

bitRead 251
Bluetooth

adaptateur 365
portée 364

boucle 126
en-tête 129
variable de contrôle 129

boucles imbriquées 210
bouton-poussoir 97, 107, 117
bouton-poussoir miniature 100

schéma de raccordement 100
bus I²C 306
buzzer piézoélectrique

symbole 336
byte 112, 134

C
C++ 164
carte de circuit imprimé perforée 284
casting 305
cathode 326
changement de niveau 110, 143
chronogramme 110
circuit 141

	 516	 Index

circuit intégré 141
classe 166
clavier à film 270, 283
clavier numérique 269
client-serveur 382
CNA (convertisseur numérique analogique) 417
code de jumelage 368
commande de moteur 311
commandes AT 367
communication unidirectionnelle 232
communication radio 363
concaténation 303
constructeur 170, 279
contrôle par front montant d’horloge 143
contrôle par un front d’horloge montant 159
convertisseur logique 459
convertisseur numérique/analogique (CNA) 227
corps de fonction 150
cristaux liquides 289

D
DAC (Digital-Analog-Converter) 417
dataArray 153
DDR (Data Direction Register) 424
débordement 112, 135
define 185
delay 107, 115
digitalRead 149
diode

à effet tunnel 328
de roue libre 323
symbole 326
Zener 328

directive de prétraitement 185
displayPips 211
diviseur de tension 229, 374
Dot-Matrix 289, 291
DP (Decimal Point) 242

E
éclairement 224
élément piézoélectrique 335
émetteur 232
encapsulation 167
état d’agrégation 255
Ethernet 379

F
fichier de classe 173
fichier d’en-tête 168, 172, 277
filtre passe-bas 359
Firmata 447, 448
flipflop 145
fonction 148

signature 149
systémique 149

fréquence de coupure 361

G
gateway 381
germanium 325
gestion des intervalles 111
GND (Ground) 229

H
HC-06 373
HD44780 289, 297
hertz 338
Hitachi HDD44780 (Display) 292
Hypertext Markup Language (HTML) 383
Hypertext Transfer Protocol (HTTP) 386
hystérésis 331

I
I²C-Bus 306
IC (Integrated Circuit) 141
IDE Arduino

traceur série 263
index 124
indicateur de distance de décalage 136
instructions de prétraitement 173
integer 149
intégrateur 360
Internet Protocol (IP) 380

J
Java 236

K
keypad 270

Index 	 517

L
langage orienté objet 132
langage Tcl 453
LCD (Liquid Cristal Display) 289
LDR (Light Dependent Resistor) 223

éclairement 224
symbole 224

Least Significant-Bit (LSB) 136, 157
LED 123
LM35 (capteur de température) 258
Local Area Network 379
Lookup-Tables (LUT) 426
LSB (Least Significant Bit) 136, 157
Lux 224

M
magic numbers 153
manipulation de bit 134
manipulation des registres 133
map 228
masque de réseau 380
masse 229
matrice de points 291
méthodes 132
millis 112
modulation PWM 352
modulo (opérateur) 218
moniteur série 130
Most Significant Bit (MSB) 157
moteur pas-à-pas 309

bipolaire 310
MSB 157
MSBFIRST 157
multiplexage 271

N
nano 449
nibble 292
niveau d’entrée défini 98
nombre entier 112
NTC (Negative Temperature Coefficient) 256

O
octet 134
opérateur % 218
opérateur conditionnel ? 175, 197

opérateur d’affectation 105
opérateur de décalage 135
opérateur d’égalité 105
opérateur d’incrémentation 135
opérateur logique ET 139
opérateur logique not 114
opérateur logique OU 138
opérateur modulo 218
opérateur point 179
opérateurs de bits 135

P
passerelle 381
photorésistance 223
piézo électrique 335
pilote

afficheur 289
pilote HD44780 289
pinMode 99
platine 284
point décimal 242
port analogique 458
potentiomètre 455
préprocesseur 185
println 132, 249
Processing 231, 263
programmation orientée objet (POO) 164
protocole 380
protocole de transmission 352
Proto Shield 284
prototypage 205
PTC (Positive Temperature Coefficient) 257
putPins 153
PuTTY 365
PyCharm 358
pyFirmata 448
pySerial 358, 448
Python 358, 449

R
R2R 417
Raspberry Pi 445
Raspbian Jessie 448
rebond 117
récepteur 232
redondance de code 151
registre à décalage 141

	 518	 Index

réseau 377
routeur 378

réseau en échelle de résistances 417
réseau R2R 417
résistance

pull-up 97
résistance à coefficient de température négatif 256
résistance R2R 429
réutilisation 163
RJ45 378

S
semi-conducteurs 325
sens de transmission des bits 157
séquence des couleurs 340
séquenceur de lumière 123
Serial Plotter (Traceur série) 263
serveur 383
servomoteur 309, 455
shebang 450
shield 205, 281, 422
shield Bluetooth

configuration 367
shield Ethernet 379
shiftOut 156, 157
Shift Register 143
signal d’horloge 141
signature 169
signature de la fonction 149
silicium 325
slash 384
son 335
SPE (Stani’s Python Editor) 449
Storage Register 143

surcharge 171, 315
système binaire 134, 156

T
tableau 126

bidimensionnel 207, 208
unidimensionnel 207

Tag 383
Tcl (Tool Command Language) 452, 453
TCP/IP 380
température 255
thermistance LM 35 258
thermistance PTC 257
Thermistor NTC 4K7 256
touches spéciales 269
Traceur série 263
Transfer Control Protocol (TCP) 380
transistor Darlington 322

U
unsigned 277
unsigned long 112

V
variable

de contrôle 129
locale 129, 199

W
WLAN 363
wrapper 163

	Le grand livre d’arduino
	Préface
	Table des matières
	Avant-propos
	Arduino pour tous
	Une erreur de conception qui fait date
	Les bienfaits du copier-coller et ses limites
	Structure de l’ouvrage
	Structure des montages
	Mon site Internet
	Prérequis
	Composants nécessaires
	Règles de conduite

	Partie I : Les bases
	Chapitre 1 - Arduino : le matériel
	Les différentes cartes Arduino
	La carte Arduino Uno

	Chapitre 2 - Arduino : le logiciel
	IDE Arduino ou Arduino Create ?
	Présentation de l’environnement
	Raccordement de la carte Arduino
	Testons la communication entre l’ordinateur et Arduino
	La gestion des bibliothèques
	La gestion des cartes
	Le code du sketch dans l’environnement de développement
	Problèmes courants
	De l’idée jusqu’au téléchargement dans le microcontrôleur

	Chapitre 3 - N’ayons pas peur de la programmation : les bases du codage
	Qu’est-ce qu’un programme, ou sketch ?
	Que sont les structures de contrôle ?

	Chapitre 4 - La carte Arduino Discoveryboard
	Composants nécessaires
	Schéma des connexions
	L’afficheur sept segments

	Partie 2 : Les montages
	Montage 1 - Hello World – faire clignoter une LED
	« Hello World » clignote
	Problèmes courants
	Qu’avez-vous appris ?
	Workshop pour faire clignoter une LED

	Montage 2 - Programmation Arduino de bas niveau
	Les accès du microcontrôleur
	Programmation d’un port
	Registres et instructions C++
	La résistance pull-up
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 3 - Interrogation d’un bouton-poussoir
	Manipulation d’une résistance pull-up interne
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Qu’avez-vous appris ?

	Montage 4 - Clignotement avec gestion des intervalles
	Appuyez sur le bouton-poussoir et il réagit
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 5 - Le bouton-poussoir récalcitrant
	Une histoire de rebond
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 6 - Le séquenceur de lumière
	C’est chacun son tour
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Manipulation des registres
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 7 - Extension de port
	Le registre à décalage
	Registre à décalage conventionnel
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Extension du sketch : première partie
	Extension du sketch : deuxième partie
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 8 - Comment créer une bibliothèque ?
	Les bibliothèques
	Qu’est-ce qu’une bibliothèque exactement ?
	En quoi les bibliothèques sont-elles utiles ?
	Que signifie programmation orientée objet ?
	La bibliothèque-dé
	Qu’avez-vous appris ?

	Montage 9 - Les feux de circulation
	Composants nécessaires
	Phases de signalisation
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Des feux de circulation interactifs
	Problèmes courants
	Qu’avez-vous appris ?
	Cadeau !

	Montage 10 - Le dé électronique
	Qu’est-ce qu’un dé électronique ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Code du sketch
	Revue de code
	Problèmes courants
	Montage du dé électronique sur une platine
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 11 - Des détecteurs de lumière
	La résistance variable
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Devenons communicatifs
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 12 - L’afficheur sept segments
	Qu’est-ce qu’un afficheur sept segments ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 13 - La température
	Chaud ou froid ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Affichage de valeurs analogiques sur l’IDE Arduino
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 14 - Le clavier numérique
	Qu’est-ce qu’un clavier numérique ?
	Composants nécessaires
	Réflexions préliminaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Réalisation du shield
	Construction d’un shield Arduino
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 15 - Un afficheur alphanumérique
	Qu’est-ce qu’un afficheur LCD ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Revue de code
	Jeu : deviner un nombre
	Définir des caractères personnels
	Un afficheur LCD multiligne
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 16 - Le moteur pas-à-pas
	Encore plus de mouvement
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Revue de code
	Construire un shield pour moteur
	Commande de servomoteurs
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 17 - Commande d’un ventilateur
	Un peu de pratique
	Composants nécessaires
	Schéma d’un circuit de commande de moteur
	Schéma d’un circuit de commande du ventilateur
	Réalisation du circuit
	Revue de code
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 18 - Faire de la musique avec Arduino
	Y a pas le son ?
	Composant nécessaire
	Schéma
	Réalisation du circuit
	Revue de code
	Jeu de la séquence des couleurs
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 19 - L’Arduino-Talker
	Communiquer avec l’Arduino
	Composants nécessaires
	Schéma
	Comprendre le code, étape par étape
	Problèmes courants
	Utilisation d’un filtre passe-bas
	Qu’avez-vous appris?

	Montage 20 - Communication sans fil par Bluetooth
	Qu’est-ce que la communication radio ?
	Composants nécessaires
	Utilisation d’un adaptateur Bluetooth
	Ajout d’un nouveau shield BT
	Réalisation du circuit
	Le module Bluetooth HC-06
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 21 - Communication réseau
	Qu’est-ce qu’un réseau ?
	Composants nécessaires
	Sketch Arduino
	Revue de code
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 22 - La carte ESP32
	Présentation de la carte ESP32
	Faire clignoter avec le module ESP32
	Montage : le log de températures
	Réalisation du circuit
	Problèmes courants
	Qu’avez-vous appris ?
	Workshop sur le log de températures

	Montage 23 - Numérique appelle analogique
	Comment convertir des signaux numériques en signaux analogiques ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Réalisation du shield
	Commande du registre de port
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 24 - Programmer Arduino avec un langage de programmation par blocs
	S4A – Scratch for Arduino
	ArduBlock – Arduino par blocs
	Open Roberta Lab
	Node-RED, langage de programmation par blocs pour l’IoT
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 25 - Quand Arduino rencontre Raspberry Pi
	Réveillons l’Arduino qui sommeille dans tout Raspberry Pi
	Liaison série entre le Raspberry Pi et l’Arduino
	Qu’avez-vous appris ?

	Montage 26 - Programmer pour l’Internet des objets avec Node-RED
	Comment fonctionne Node-RED ?
	Installation de Node-RED
	Démarrage de Node-RED
	Installation de Nodes ou de Flows supplémentaires
	Préparation de la carte Arduino Uno
	Node-RED dans le navigateur
	Le Flow du clignotant
	Montage avec le capteur de température et d’humidité DHT11
	Composants nécessaires
	Schéma
	Sketch Arduino
	Envoi par e-mail
	Le Dashboard
	Affichage des valeurs de mesure sur un smartphone
	Exporter le code à partir de Node-RED
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 27 - MQTT
	Communication M2M avec MQTT
	Conventions de nommage dans MQTT
	Structure de messagerie MQTT
	Métacaractères MQTT
	Installation de MQTT
	Un test rudimentaire
	Le module ESP32
	Problèmes courants
	Qu’avez-vous appris ?

	Index

