LE GRAND LIVRE

’ARDUINO

Erik Bartmann

27

montages
a réaliser

@ ditions S:.RIAL
EYROLLES MAKERS

L’ouvrage de référence sur Arduino

Avec son petit microcontréleur hautement performant et
facilemment programmable, la carte Arduino a révolutionné
le mouvement Do [t Yourself. Se couplant aisément avec
d’autres composants (écrans LCD, capteurs, moteurs...), elle
est devenue aujourd’hui un élément indispensable dans de
nombreux dispositifs électroniques. Sa simplicité d’utilisa-
tion, I'étendue de ses applications et son prix modigue ont
conqguis un large public d’amateurs et de professionnels :
passionnés d’électronique, designers, ingénieurs, musiciens...

D’une pédagogie remarquable, cet ouvrage de référence
vous fera découvrir le formidable potentiel d’Arduino, en
vous délivrant un peu de théorie et surtout beaucoup de
pratigue avec ses 27 montages a réaliser. Mise a jour avec
les derniéres évolutions d’Arduino, cette quatrieme édition
entierement refondue s’est enrichie de nouveaux projets a
monter, qui vous familiariseront notamment avec I'Internet
des objets grace a 'ESP32, Node-RED et MQTT.

A qui s’adresse ce livre ?
Aux makers, électroniciens, bricoleurs, bidouilleurs, ingénieurs,
designers, artistes...

créer un séquenceur de lumiéere
fabriquer un afficheur LCD
commander un moteur pas-a-pas

faire de la musigque avec Arduino

Sur www.editions-eyrolles.com/dl/0100583
Téléchargez le code source des sketches Arduino présentés
dans cet ouvrage.

MAKERS

Electronicien de formation, Erik
Bartmann est aujourd’hui déve-
loppeur pour le principal fournis-
seur européen d’infrastructures
informatiques. Passionné d’électro-
nique depuis toujours, il est I'auteur
de plusieurs ouvrages sur Arduino,
Raspberry Pi et ’'ESP8266.

www.editions-eyrolles.com

http://www.editions-eyrolles.com

LE GRAND LIVRE

D’ARDUINO

CHEZ LE MEME EDITEUR

Dans la collection « Serial Makers »

J. Bover. — Réparer son électroménager et ses autres appareils électriques.
N°0100460, 2022, 432 pages.

R. SararaN. — Robots DIY.
N°0100473, 2021, 192 pages.

D. NiBarT. — 46 activités avec le mBot2.
N°0100628, 2022, 96 pages.

D. NiBarT. — 45 activités avec le mBot.
N°0100270, 2021, 88 pages.

D. NiBarT. — 30 défis robotiques.
N°0100119, 2021, 64 pages.

D. NiBarT. — 50 activités avec la carte micro:bit.
N°0100296, 2021, 80 pages.

J. Bover. — Réparez vous-méme vos appareils électroniques (2¢ édition).
N°67621, 2018, 408 pages.

C. PrarT. — Pélectronique en pratique (2° édition).
N°14425, 2016, 328 pages.

M. BercHon. — Le grand livre de 'impression 3D.
N°67770, 2020, 280 pages.

C. Bosqut, O. Noor et L. Ricarp. — FabLabs, etc. Les nouveaux lieux de fabrication numérique.
N°13938, 2015, 216 pages.

® Editions

Erik Bartmann

LE GRAND LIVRE

D’ARDUINO

’%RIAL

EYROLLES ‘VIAKERS

EDITIONS EYROLLES

61, bd Saint-Germain

75240 Paris Cedex 05
www.editions-eyrolles.com

Authorized French translation of the German edition of Mit Arduino die elektronische Welt ent-
decken, 4. Auflage by Erik Bartmann, ISBN 978-3-946496-29-8 © 2021 by Bombini Verlags GmbH.
This translation is published and sold by permission of Bombini Verlags GmbH, which owns or
controls all rights to publish and sell the same.

Traduction autorisée de 'ouvrage en langue allemande intitulé Mit Arduino die elektronische Welt
entdecken, 4. Auflage d’Erik Bartmann (ISBN : 978-3-946496-29-8)

Adapté de I'allemand par Catherine Queruel-Haas et Danielle Lafarge

[’éditeur remercie vivement Jean Boyer pour sa validation technique de l'ouvrage.

En application de laloi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement
le présent ouvrage, sur quelque support que ce soit, sans autorisation de I’Editeur ou du Centre
francais d’exploitation du droit de copie, 20, rue des Grands-Augustins, 75006 Paris.

© Planner/shutterstock pour la photo page 203

© Groupe Eyrolles, 2014, 2015
© Editions Eyrolles 2018, 2022 pour la présente édition, ISBN : 978-2-416-00583-1

Preface

Cher Erik,

En 2016, je suis tombé sur un
de vos livres, qui portait sur [/
PESP8266, un microcontro-
leur que ma société Espressif
avait développé et commercia- |
lisé deux ans plus tot. Cétait le
premier livre jamais écrit sur
’ESP8266. Bien que je ne parle A
pas allemand et que, par conséquent, je ne puisse pas le lire, j’ai tout de
meéme compris les affirmations de base que vous avez faites sur 'ESP8266,
en parcourant votre texte. Vos belles et nombreuses illustrations m’ont
aidé a deviner le texte d’accompagnement. Surtout, j’ai aimé que vous
fassiez la promotion du microcontréleur ESP8266 comme outil du mou-
vement maker dés 2016. Quoi qu’il en soit, votre évaluation de I'époque
s’est avérée correcte : aujourd’hui, dans chaque atelier maker, ou que
ce soit dans le monde, on peut trouver un ESP8266 ou son successeur,
’ESP32, aux cotés d’un Arduino et d’une carte Raspberry Pi.

Comme je I'ai appris plus tard, vous avez également écrit un livre complet
sur Arduino. Depuis sa premiere publication en 2011, celui-ci a déja connu
trois éditions et s’est imposé comme un ouvrage de référence sur Arduino
en allemand et en francais. Dans ce livre, vous décrivez non seulement
les fonctionnalités du matériel et du logiciel Arduino, mais vous abordez
également les themes chers aux makers. Vous expliquez les bases de
I’électronique de maniére tres claire, vous donnez une introduction a la
programmation et vous montrez dans de nombreux montages tout ce
qui peut étre développé avec la plate-forme Arduino.

En outre, vous amenez le maker hors des sentiers battus, en lui présen-
tant des projets pointus comme Node-RED ou MQTT qui stimuleront
sa créativité. Je suis heureux de voir que vous avez également couvert
I’ESP32 avec son propre montage dans votre ouvrage. Je vous souhaite
beaucoup de succes pour cette quatrieme édition !

Teo Swee Ann, P-DG d’Espressif

Table des matieres

AVANT-PrOPOS. . oottt e e

ArdUINO POUT TOUS o vt ittt ettt e et e et e e e e e e e e e
Une erreur de conception quifaitdate............ i i
Les bienfaits du copier-coller et ses limites,
Structure de ouvrage
Structure des MONEAZESottt ittt ittt
Monsite Internet e
PrérequUIS. . . oot
Composants NECESSAITESottt ettt
Reglesde conduiteot

Partie | : Les bases

Chapitre 1 - Arduino:lematériel

Les différentes cartes Arduino.oov i e
Lacarte ArduinO UNO. .. oottt et e et et et et et et et e

Chapitre 2 - Arduino: lelogiciel i

IDE Arduino ou Arduino Create ?oitit ittt ittt
Présentation de environnement ittt
Raccordementdelacarte Arduino
Testons la communication entre 'ordinateur et Arduino.
La gestion des bibliothéques. e
La gestion des Cartesttt e
Le code du sketch dans I’environnement de développement.
Problemes Courantsuuinii it i ettt e e
De l'idée jusqu’au téléchargement dans le microcontroleur.

21

22
23
25
26
32
33
35
36
39

vil

Chapitre 3 - N'ayons pas peur de la programmation : les bases du codage. 41

Qu’est-ce qu’un programme, ousketch?........ L 42
Que sont les structuresde controle ? i i e 48
Chapitre 4 - La carte Arduino Discoveryboard, 59
COmMPOSANES NECESSAITES .+« .ottt ettt ettt et e et 60
Schéma des CONNEXIONS.ottt ettt e ettt e e e e 62
Lafficheur sept segments.ttt 62

Partie 2 : Les montages

Montage 1 - Hello World - faire clignoterune LED 67
« Hello World » clignote. e 67
Problemes courantst e 73
QU’AVEZ-VOUS @PPTIS 2. . ot ottt ettt et et e e e e 81
Workshop pour faire clignoterune LED. i 82

Montage 2 - Programmation Arduinodebasniveau................o, 83
Les acces du microcontroleuro e 84
Programmation d’un port e 85
Registres et InStructions C++.t e 91
Larésistance pull-up i e 92
Problemes courantsot e 94
QUAVEZ-VOUS @PPTIS 2. . e ettt ettt e e e et e e e e e 94

Montage 3 - Interrogation d’'un bouton-poussoir. ..., 97
Manipulation d’une résistance pull-upinterne 97
COMPOSANTS NECESSAITES .+ ¢ v ot ettt ettt et et et et et ee e tie e 101
SChéma . ..o e 101
Réalisation du circuit 102
Sketch Arduino.o e 103
Revue de code. oo e 103
QU’AVEZ-VOUS @PPTIS 2. . ottt ettt e et e e e e e 105

Montage 4 - Clignotement avec gestion des intervalles........................... 107
Appuyez sur le bouton-poussoir etil réagit............. ool 107
COmMPOSANES NECESSAITES .+« .ottt ettt et et et e et 108
SChéma ... 108
Réalisation du circuit oot e 109

@ Table des matiéres

Sketch Arduino . . .o oot e 109

Revue de Code.t 111
Problemes courantso e 115
QU’AVEZ-VOUS APPTIIS 2. o ottt e 115
Montage 5 - Le bouton-poussoir récalcitrant. 117
Une histoire derebond e 117
Composants NECESSAITESottt es 119
SChema . .o 119
Réalisation du circuit oot e 120
Sketch Arduino.o e 120
RevUE de COde. . ..ttt e 121
Problémes courants 122
QUAVEZ-VOUS @PPTIS 2. . e ettt ettt e e e e e e e e et et e 122
Montage 6 - Le séquenceur de lumigre.c.iiiiiiiiii e 123
Cest Chacun SON tOUT.ttt e et e i e aas 123
COMPOSANTS NECESSAITES .+ v v vt ettt ettt et et et ee e ie e ae s 124
SChéma . ..o e 125
Réalisation du circuit e 125
Sketch Arduino.o e 126
Revue de code. e 126
Manipulation des registres.t e 133
Problemes courantsottt e 139
QU’AVEZ-VOUS @PPIIS 2 o .ottt e e e 140
Montage 7 - Extensionde port 141
Leregistre a décalage.ottt e 141
Registre a décalage conventionnel i 145
COMPOSANTS NECESSAITES .+ ¢ v vt ettt ettt ettt et ettt ie e iee s 145
SChéma . .. e 146
Réalisation du circuit oo e 147
Sketch Arduino.o 147
ReVUE dE COAE. . ..ttt e 148
Extension du sketch : premiére partie i 152
Extension du sketch : deuxiéme partie.t 156
Problemes courantsot e 158
QU’AVEZ-VOUS @PPTIIS 2. o . ottt 159
Montage 8 - Comment créer une bibliothéque ? 161
Les bibliotheques o e 161
Qu’est-ce qu'une bibliotheque exactement ?........ 162

Table des matiéres @

En quoi les bibliothéques sont-elles utiles 2. o i i, 163

Que signifie programmation orientée objet? il 164
Labibliotheque-dé. e 172
QU’AVEZ-VOUS APPIIS 2. o ottt ettt s 180
Montage 9 - Les feux de circulation. o i 181
COMPOSANTS NECESSAITES .+ v v v vttt ettt et e ee e et et e ee et ee e e 181
Phases de signalisation. i 182
SR .« .o e 182
Réalisation du circuit 183
SKetch Arduino . . . oo e e 184
Revue de code. oot e 185
Des feux de circulation interactifs. 189
Problemes COUTANSottt ettt ettt et et et ie e 201
QU’AVEZ-VOUS @PPTIIS 2. o .ottt e e 201
CadeaU L. et e e 202
Montage 10- Le dé électroniqueoonriii i 203
Qulest-ce qu'un dé électronique ?. e 203
COmMPOSANES NECESSAITES . .« .ottt et ettt et et et e et 205
SCREMa . . o 205
Réalisation du Circuitoov ot e 206
Codedusketch.o i 207
ReVUE e COAE. . o\ttt e e e e 207
Problemes COUTaNTSottt ettt et et et ettt 219
Montage du dé électronique surune platine i, 219
Exercice complémentairecouuniiiiii e 221
QU’AVEZ-VOUS @PPTIS 2. . o ettt ettt e e e et e e e e 221
Montage 11 - Des détecteursde lumiére........ ..., 223
Larésistance variable. e 224
Composants NECESSAITESottt ittt 224
SR . .o e e 225
Réalisation du circuit 226
SKetch Arduinoo oo e 226
Revue de code.t e 227
Devenons communicatifs. 231
Problemes COUTANSottt ettt et et et et et i 237
Exercice complémentaire i 237
QU’AVEZ-VOUS @PPIIS 2. ¢ v ot ettt ettt ettt et et e e e 238

@ Table des matiéres

COMPOSANTS NECESSAITES .+« v vttt ettt ettt ettt ettt et e ae e
SCREMA . oo

COmMPOSANES NECESSAITES . .« v vttt ettt et et et e et
SCREMIA . .o e
Réalisation du circuit i e
SKetch ArdUuinoo oo e
Revue de code. . ..o e
Affichage de valeurs analogiques sur 'IDE Arduino
Problemes courants ot e

COMPOSANTS NECESSAITES . . . vttt ettt ettt ee ettt eee et iae e inneeas
Réflexions préliminaires.uet it e e
SCRMIA . .o
Réalisation du circuit i
Sketch Arduino.o
Réalisation dushield
Construction d’un shield Arduino. i i
Exercice complémentairettt e
Problemes Courantsttt i e e e e

Montage 15 - Un afficheur alphanumérique

Qulest-ce quun afficheur LCD 2o
COMPOSANTS NECESSAITES .+« o vt ettt ettt ettt ettt ettt
SCRMa . .o
Réalisation du circuit i e
Revue de code. ...ttt e

Table des matiéres

239

239
243
243
243
244
245
251
252
253

255

255
260
260
261
261
262
263
267
267

269

269
271
271
274
275
275
281
284
288
288
288

289

289
290
293
294
294

()

Jeu:deviner un NOMDIeE it e 297

Définir des caractéres personnels. i 303
Un afficheur LCD multiligne 306
Exercice complémentaire i 307
Problemes courantsooiu it e 308
QU’AVEZ-VOUS APPIIS 2. ¢ v ottt ettt ettt ettt et e e e 308
Montage 16 - Le MOteUr Pas-a-Pas.ouurree et eiiiieens 309
Encore plus de moOuvementouuiininiiin it 309
COmMPOSANTS NECESSAITES . . . vttt ettt ettt e e ettt ee e e een 312
SChéma . ..o 313
Réalisation du circuit o e 313
Revue de codettt 314
Construire un shield pour moteur. it i i 316
Commande de SerVOMOLEUT'Sttt ittt et eiaae e 316
Problemes courantsot e 318
QU’AVEZ-VOUS @PPTIS 2. . ottt et ettt e e et e e e 319
Montage 17 - Commande d'un ventilateuro 321
Unpeude pratique.ttt e 321
Composants NECESSAITESottt ittt es 322
Schéma d’un circuit de commandede moteur oL 322
Schéma d’un circuit de commande du ventilateur 328
Réalisation du circuito e 329
ReVUE de COde. . ..ttt e 330
Exercice complémentaire oottt e 332
Problemes courantsooiuii it e 333
QU’AVEZ-VOUS @PPIIS 2. ¢ v ot ettt ettt ettt et et e e e 333
Montage 18 - Faire de la musique avec Arduino., 335
Yapasleson? 335
ComPOSANt NECESSAITE . . . o vttt ettt et et et e e 336
SChema . .. 336
Réalisation du Circuit oot e 337
Revue de code.oio i e 337
Jeu de la séquence descouleurs it 340
Problemes courantsoi i e 347
Exercice complémentaire i 348
QUAVEZ-VOUS @PPTIS 2. . o ettt ettt e e e e e et e e e 348
Montage 19 - LArduino-Talker. e e 349
Communiquer avec PArduino 349

X Table des matiéres

COmMPOSANTS NECESSAITES . . . vttt t ettt e e ettt eiaee e e

Schéma

Comprendre le code, étape par €tape.oveit ittt e
Problémes courantsouiu ittt e
Utilisation d’un filtre passe-bas i
QU’AVEZ-VOUS @PPIIS? ¢ v ottt ettt et et e e e

Montage 20 - Communication sans fil par Bluetooth

Qu’est-ce que la communicationradio ? i
COmMPOSANTS NECESSAITES . . . vttt t ettt e e et e e e e aae e e
Utilisation d’un adaptateur Bluetooth. i
Ajout d’'un nouveau shield BT
Réalisation du Circuit oo i e e
Le module Bluetooth HC-06o it et e
Exercice complémentairecouuuiiiiiii e
Problémes courants it e

Montage 21 - CommuNIiCation MeSEaUttt e e e

QU’eSE-CE QUIUN TESEAU 2 . o o\ttt ettt et et e e e et
Composants NECESSAITESottt ittt e

Sketch Arduino
Revue de code

Exercice complémentaireouuuiiiiiiii e
Problémes courants

Montage 22 - Lacarte ESP32

Présentation de lacarte ESP32 it
Faire clignoter aveclemodule ESP32............ i
Montage : le log de températuresttt e
Réalisation du circuit i e
Problemes Courantsttt e

Montage 23 - Numérique appelle analogiqueoiiiiiiiiinn..

Comment convertir des signaux numériques en signaux analogiques?
Composants NECESSAITESottt

Schéma

Réalisation du CIrCUItottt e e e e e e e

Sketch Arduino

Table des matiéres

350
350
352
359
359
362

363

363
364
366
370
370
373
375
375
376

377

377
382
384
386
390
391
392

393

393
400
403

411

414

415

415

417

417
419
420
421
421

RevVUE de COde. . ..ottt e e e e e 422

Réalisation dushield i 422
Commande du registre de POIt.couiunn ittt 423
Problemes courants e 428
Exercice complémentaireiiuii it e 428
QUAVEZ-VOUS @PPTIS 2. . e ettt ettt e e e et e e e e e 429

Montage 24 - Programmer Arduino avec un langage de programmation par blocs.... 431

S4A — Scratch for Arduino. o e 431
ArduBlock — Arduino par blocs. 438
Open Roberta Lab. e 441
Node-RED, langage de programmation par blocs pour I'loT 442
Problemes courantsttt e 443
QUAVEZ-VOUS @PPTIS 2. . e e ettt et e e e e e e e e et e 443
Montage 25 - Quand Arduino rencontre Raspberry Pi............ 445
Réveillons 'Arduino qui sommeille dans tout Raspberry Pi...................... 445
Liaison série entre le Raspberry Piet PArduino.............ot 459
QU’AVEZ-VOUS APPIIS 2. ¢ v ot ettt ettt ettt e e e e e 462
Montage 26 - Programmer pour U'Internet des objets avec Node-RED 463
Comment fonctionne Node-RED ?ttt 464
Installation de Node-RED.ttt e i ee 465
Démarrage de Node-RED.ottt i 466
Installation de Nodes ou de Flows supplémentaires............................ 468
Préparation de lacarte Arduino Unooiiiitiiiii i 471
Node-RED dans le navigateurttt 471
Le Flow du clignotant.ottt e e 472
Montage avec le capteur de température et d’humidité DHT11................... 480
COmMPOSANES NECESSAITES . o« .ottt ettt et et et et et 480
SChéma . ..o e 481
Sketch Arduino.ot e 482
Envoi pare-mail e 486
Le Dashboard i e 489
Affichage des valeurs de mesure sur un smartphone 493
Exporter le code a partirde Node-REDoviuuiiiniiiniin i, 494
Problemes courantsooouuii i e 496
QUAVEZ-VOUS @PPTIS 2. . e ettt ettt et e e e e e e e e et e 496
Montage 27 - MOTT ... e 497
Communication M2M aveC MQT T ..t vti ittt et et ettt et et e et 497
Conventions de nommage dans MQTTottt iiiinnenn 498

Xiv Table des matiéres

Structure de messagerie MQTT
Métacaractéeres MQTT
Installation de MQTT
Un test rudimentaireiniin ittt et ittt et et
Le module ESP32

Table des matiéres

499
499
501
504
507
513
513

515

(=)

Avant-propos

Arduino pour tous

Lorsque j’ai écrit mon premier livre sur Arduino, il n’existait en Allemagne
que deux ou trois distributeurs chez lesquels on pouvait acheter la carte
Arduino, tandis que YouTube affichait pres de 800 vidéos quand on entrait
le mot-clé Arduino. A cette époque, les professionnels de électronique ne
s’intéressaient guere a ce microcontroleur et, lorsqu’ils le faisaient, c’était
pour se moquer de ses performances.

Les développeurs d’Arduino, qui se sont penchés en 2005 a I'Institut de
design d’Ivrée en Italie sur la conception d’'un microcontroleur facile a pro-
grammer, ne ciblaient pas a l'origine les professionnels de I’électronique,
mais les étudiants en art ayant peu de connaissances en programmation
et en matériel informatique. Leur préoccupation d’alors était de pouvoir
concrétiser rapidement des idées, de faire du prototypage. ’étudiant pou-
vait ainsi réaliser lui-méme un concept artistique sans I’aide d’ingénieurs
ni de programmeurs.

Une erreur de conception
qui fait date

Les créateurs de la carte Arduino, qui n’étaient pas des spécialistes en
matériel informatique, lancérent le premier microcontréleur Arduino,
I’Arduino Uno, sous licence libre, transposant ainsi 'expérience du mou-
vement Open Source au domaine du matériel informatique. Les schémas
de connexion étaient en libre acces, de sorte que n’importe qui pou-
vait compléter ou transformer la carte. Ils mirent également I’environ-
nement de programmation Arduino, également appelé IDE (Integrated
Development Environment) sous licence Open Source pour que chacun
puisse utiliser le logiciel librement.

XVl

Bientot, la carte Arduino ne fut pas utilisée que par des étudiants de I'uni-
versité italienne, mais s’avéra étre une plate-forme de prototypage bien
pratique, pour les passionnés d’électronique d’abord, imités ensuite par
les amateurs du monde entier. Internet a largement contribué au succes
de cette plate-forme en permettant de diffuser facilement les circuits et
les logiciels correspondants et en les rendant utilisables par tous grace a
la licence en libre acces. Cela donna naissance a un foisonnement d’idées
partout dans le monde, développées par des amateurs fiers de présenter
leurs projets a la communauté internationale. Les idées de projet étaient
reprises par des amateurs a 'autre bout du monde, améliorées et remises
sur le Net.

Durant les années qui suivirent, Arduino et son environnement de déve-
loppement devinrent quasiment un standard au sein des développeurs
amateurs de tous les pays. Une nouvelle plate-forme facile d’accés pour
les amateurs d’électronique était née. Les grands fabricants de matériel
informatique ne s’y trompeérent pas et remarquérent que la carte Arduino
était de plus en plus utilisée pour toutes les applications possibles de
commande et de mesure. Pour élargir les possibilités de la carte Arduino,
des platines complémentaires appelées Shields furent développées, qui
s’adaptaient exactement a la carte Arduino Uno.

Le jour ou 'un des plus grands fabricants de matériel informatique demanda
a son département de développement de se baser, a I’avenir, sur la concep-
tion physique de la carte Arduino pour son matériel, il était devenu évident
que 'Arduino était devenu incontournable dans le monde de la technique.
Petite anecdote au passage : les développeurs d’Arduino qui, comme on I’a
vu, n’étaient pas a l'origine des spécialistes de matériel informatique, ont
construit la carte Arduino Uno avec une erreur de conception. Pour rester
compatible avec le quasi standard, le fabricant de renommeée mondiale a
docilement repris cette erreur de conception, que 'on retrouve encore
aujourd’hui sur la carte.

Les bienfaits du copier-coller
et ses limites

Je me suis demandé, lorsque j’ai commencé la rédaction de mon premier
livre d’Arduino, de quoi un bricoleur avait besoin pour réaliser ses projets
avec la carte Arduino. On pouvait déja a ’époque se procurer des pro-
grammes sur Internet, ou via les communautés et forums Arduino naissants,
les télécharger sur sa propre carte Arduino et faire fonctionner le projet
chez soi, en y ajoutant peut-étre quelques interventions ciblées dans le
code. Pour installer du matériel supplémentaire, il suffisait de s’orienter
sur le circuit pour le reproduire.

Avant-propos

Que devrait donc contenir un livre sur Arduino en plus de la description
de la carte et de 'environnement de développement et de la maniere de
transférer les programmes du PC vers le microcontroleur ? Que se passe-t-il
lorsqu’on reproduit un circuit et qu’on y ajoute des composants ? En quéte
d’une bonne approche conceptuelle pour mon livre, je me suis demandé
ce qui m’avait vraiment aidé lors de la réalisation de mes montages électro-
niques. La réponse est d’une simplicité confondante : mes connaissances
de base en électrotechnique m’ont permis de transformer des idées en
projets techniques concrets.

Je trouve absolument impressionnant que des personnes qui n’ont rien
d’autre a apporter que I'envie de bricoler puissent, avec Arduino, faire fonc-
tionner un circuit de feux de signalisation sur une planche de connexion
apres seulement une demi-heure, sans avoir jamais tenu un microcontro-
leur dans les mains ou écrit une seule ligne de code. Il suffit en effet de
regarder une vidéo sur YouTube, et éventuellement une description pas
a pas, pour que les LED clignotent au rythme souhaité sur votre table de
bureau. On peut alors s’amuser a modifier le rythme en bidouillant dans
le code a I'endroit approprié, qui est facile a trouver, et le tour est joué.
Mais pour aller plus loin, il faut avoir quelques connaissances de base en
électronique et en électrotechnique. C’est pourquoi j’ai écrit ce livre.

Structure de 'ouvrage

Je pense qu’il est important dans un premier lieu de vous présenter le plus
de choses possible sur le matériel et le logiciel de la carte Arduino pour
que vous fassiez connaissance de toute la palette de fonctions disponibles.
Le chapitre 1, « Arduino : le matériel », vous présente de maniere assez
détaillée la carte Arduino et tous ses composants, I’alimentation électrique
et les interfaces. Ce sera également l'occasion de rappeler certains termes
de base, usuels dans I'univers de la microélectronique. Chapitre que vous
pouvez lire... ou pas. Au chapitre 2, « Arduino : le logiciel », vous appren-
drez a controler la carte. Vous verrez comment se déroule le flux entre un
ordinateur fixe ou portable et la carte Arduino, et comment est construit
le code Arduino permettant de commander le microcontroleur.

Quant au chapitre 3, « N’ayons pas peur de programmer : les bases du
codage », celui-ci vous fournira les connaissances de base sur la program-
mation. Ce chapitre, comme les précédents, va parfois tres loin, mais en
cas de doute, la régle est la méme : vous pouvez le lire, mais vous n’étes pas
obligé de le faire tout de suite. Les premiers chapitres doivent étre consi-
dérés comme des chapitres de référence, que vous pourrez consulter plus
tard au fil de votre lecture ou de la réalisation de vos montages Arduino,
si vous voulez avoir des précisions sur un sujet.

Avant-propos

XIX

Au chapitre 4, « La carte Arduino Discoveryboard », je vous présente une
carte de développeur que j’ai développée moi-méme. J’ai monté sur une
platine des composants électroniques standards qui reviennent en per-
manence dans les montages Arduino. J’ai soudé ces composants sur la
platine, il me suffit ensuite de raccorder la carte Arduino avant de réaliser
les projets. L’avantage ? Plus besoin de bricoler sur la plaque de prototypage
et la structure du circuit est plus claire. Vous pouvez reproduire la carte
Arduino Discoveryboard tout en vous exercant au soudage.

Il sera ensuite temps de réaliser vos montages Arduino et vos idées de
génie ! Les projets sont faciles au début mais ils deviennent rapidement
de plus en plus complexes. J’ai ajouté des encadrés de texte aux endroits
qui requiérent des connaissances de base pour éclairer le montage d’un
point de vue un peu plus théorique. Espérons que vos connaissances en
électronique augmenteront au fil des montages et que vous serez capable
avotre tour de modifier mes montages ou méme de développer les votres.

Structure des montages

Comme je I’ai évoqué, les montages vont par ordre de difficulté croissante.
Ce que vous avez appris dans un montage vous servira pour les montages
suivants. Et si vous avez besoin de connaissances de base, celles-ci vous
seront données a I’endroit approprié. Les montages ont tous la méme
structure :

o analyse du code : je passe en revue le code de programmation étape
par étape et jexplique exactement chaque aspect du programme ;

o schéma des connexions : le schéma des connexions est la représenta-
tion schématique du montage, le plan de construction pour ainsi dire ;

e structure des connexions : le circuit enfiché sur une plaque de pro-
totypage ou soudé sur une platine est représenté a I’aide de photos ;

e dépannage : la recherche systématique d’erreurs est AMHA (a mon
humble avis) 'une des aptitudes particuliéres que j’aimerais enseigner
a tout futur bricoleur électronique. Cest la raison pour laquelle elle
fait partie intégrante de mes montages ;

e composants nécessaires : je vous donne un apercu des composants
nécessaires a la réalisation du montage. Vous pourrez ainsi voir tout
de suite si vous disposez déja de ces composants ;

e code de programmation : le code de programmation utilisé pour les
montages est exposé, parfois divisé en plusieurs parties.

(w)

Avant-propos

Pour certains montages, je proposerai des solutions Quick & Dirty qui
pourront surprendre a premiére vue. Mais elles seront suivies d’une variante
ameéliorée qui devrait vous faire dire : « Tiens, ca marche aussi comme ca
et méme pas mal du tout ! Cette solution est encore meilleure ». Si c’est le
cas, alors j’aurai atteint le but que je m’étais fixé. Sinon, ce n’est pas grave.
Tous les chemins ménent a Rome.

Le code des montages présentés dans cet ouvrage est disponible a I'adresse
https://www.editions-eyrolles.com/dl/0100583

Mon site Internet

Sur mon site Internet (en allemand) :

https://erik-bartmann.de/

vous trouverez entre autres des informations supplémentaires sur la carte
Arduino. Le meilleur moment pour un auteur est de recevoir les commen-
taires de ses lecteurs. Je suis parfois vraiment ému lorsqu’un lecteur me dit
a quel point il a apprécié la lecture de mon livre et le temps a bricoler. J’en
suis tres heureux et jencourage chacun a me dire ce qu’il a pensé de mon
livre, ce qu’il a particuliéerement apprécié et aussi ce qu’il estime devoir
étre amélioré. Ecrivez-moi, mon adresse e-mail est :

erik.bartmann®@yahoo.de

Prérequis

Le seul prérequis personnel est d’aimer le bricolage et les expériences.
Nul besoin d’étre un geek ni un expert en ordinateur pour comprendre
et reproduire les montages de ce livre. Nous commencerons en douceur
afin que chacun puisse suivre. Ne vous mettez pas de pression, le premier
objectif de cet ouvrage est de vous distraire !

Composants nécessaires

Notre carte Arduino est certes bien sympathique, et nous apprécions que
tout y soit si bien pensé et si petit. Mais nous verrons au cours d’une pro-
chaine étape tout ce que nous pouvons y raccorder de I'extérieur. Si vous
nm’avez pas I’habitude de manipuler des composants électroniques (résis-
tances, condensateurs, transistors, diodes...), pas d’inquiétude. Chacun
fera 'objet d’une description détaillée, afin que vous sachiez comment il
réagit individuellement et au sein du circuit. Au début de chaque montage,

Avant-propos

Figure 1 »
La carte Arduino Uno
— l'originale

jindiquerai, comme je I'ai dit plus haut, la liste des composants nécessaires
que vous devrez vous procurer. Naturellement, I’élément-clé de tout circuit
sera toujours la carte Arduino, mais je ne la mentionnerai pas forcément
de maniere explicite.

A ceux qui se demandent combien cofite une carte Arduino et s’ils peuvent
conserver leur train de vie aprés un tel achat, je répondrai : « Yes, you
can ! ». Elle est trés bon marché, aux alentours de 25 euros. J'utilise la
carte Arduino Uno dans tous les chapitres importants. Les prix des autres
composants que nous utiliserons dans les montages sont également tres
abordables.

Regles de conduite

Lorsque vous étes dans le feu de ’action et que vous vous concentrez sur
quelque chose qui vous passionne, les effets suivants se produisent :

e diminution de la consommation de nourriture, ce qui peut entrainer
une perte de poids critique et une perte inquiétante de la réalité;

o une hydratation insuffisante pouvant aller jusqu’a la déshydratation et
’'augmentation de la formation de poussieres dans I’environnement;

o abandon de toutes les mesures d’hygiéne comme se laver, prendre une
douche, se brosser les dents, associé a une présence accrue de vermine;;

o rupture de toutes les relations sociales.

Avant-propos

N’attendez pas d’en arriver la et ouvrez de temps en temps la fenétre pour
permettre aux insectes de quitter la piece et laisser entrer I'air frais et la
lumiere du soleil. Pour contrer les effets mentionnés précédemment, vous
pouvez régler votre réveil afin d’étre invité a interrompre votre activité a
intervalles réguliers. Apres la publication de ce livre, je ne veux pas étre
confronté a une vague de plaintes de la part de partenaires en colére ou
d’amis qui ont été négligés. Vous ne pourrez pas me dire que je ne vous
aurai pas prévenu. Il ne me reste plus qu’a vous souhaiter un bon divertis-
sement et une bonne réussite avec votre carte Arduino !

Avant-propos

Partie |
Les bases

Arduino : le materiel

Comme je I'ai déja évoqué dans I’avant-propos, le projet Arduino a été
développé a I'Interactive Design Institute d’Ivrée en Italie. C'est dans un bar
situé pres de ce lieu que se retrouvaient régulierement Massimo Banzi et
David Cuartielles, qui développérent la premiere carte Arduino en 2005. Le
bar portait le nom d’Arduin d’Ivrée, qui fut roi d’Italie autour de I’an 1000.
Arduino désigne aujourd’hui la plate-forme logicielle et matérielle de ce
projet Open Source.

Le présent chapitre traite de la plate-forme matérielle Arduino. 'y explique
les termes de base et les sujets indispensables pour connaitre la tech-
nique du microcontroleur. Je passe également en revue les composants
qui constituent un microcontréleur. Comme ces composants se retrouvent
pratiquement dans n’importe quel microcontroleur, il est important de
les présenter en détail. Traiter des thémes de base comme la tension ou
le courant me donnera aussi occasion de rafraichir un peu vos connais-
sances en physique.

Les differentes cartes Arduino

Nous travaillerons dans ce chapitre, et dans tout le livre, avec la carte
Arduino Uno. Elle a été la premiére carte a étre développée et produite
par les fondateurs d’Arduino. Par la suite, d’autres cartes Arduino avec des
améliorations techniques sont apparues. Quel genre d’améliorations ? Si
'on choisit des caractéristiques telles que la fréquence du processeur ou
la mémoire vive disponible comme criteres de décision pour I'achat d’une
nouvelle carte Arduino, il y a certainement des cartes qui conviennent
mieux parce qu’elles fonctionnent plus rapidement et qu’elles peuvent
stocker et traiter des programmes plus volumineux. Mais ce n’est pas for-
cément synonyme d’amélioration. Pour faire vos premiers pas, la carte
Arduino Uno est a mes yeux la meilleure solution, parce qu’elle est tres
solide et trés répandue.

La carte Arduino Yan par exemple est une carte intéressante; elle offre
en effet un certain nombre d’extensions, comme le systeme d’exploitation
Linux. Toutefois, cette carte ne s’est pas vraiment imposée au sein des

Chapitre

développeurs amateurs, peut-étre parce que le Raspberry Pi était déja sur
le marché lorsque Arduino Yun a été lancée. Etre plus rapide ou avoir plus
de fonctionnalités ne signifie pas obligatoirement étre meilleur.

J’aimerais pourtant vous indiquer quelques cartes Arduino notables :
e Arduino Leonardo;
e Arduino Mega 2560;
e Arduino Nano.

Ces cartes se distinguent par leur taille et le nombre de prises, donc de
possibilités de connexion pour communiquer avec le monde extérieur.
Elles présentent en outre des caractéristiques différentes pour ce qui est
du processeur, de la fréquence de cadence et du volume de mémoire.
Néanmoins, elles fonctionnent toutes suivant le méme principe, et peuvent
étre adressées et programmeées avec un seul et méme environnement de
développement Arduino. Selon le domaine d’application et les exigences
requises, une carte Arduino est peut-étre plus appropriée qu’une autre.
Certains auront besoin d’une carte avec de nombreuses broches E/S et
opteront par exemple pour la carte Arduino Mega ou la Due. D’autres
choisiront la carte Arduino Micro ou Nano, car elles sont toutes petites et
rentrent tres bien dans des boitiers petit format. Elles sont utilisées pour
des applications ou I'espace est restreint.

Le génie toute catégorie est selon moi la carte Arduino Uno et elle le
restera pendant encore longtemps. Elle offre une plate-forme idéale pour
ceux qui débutent dans I'univers des microcontroéleurs. La plupart des
tutoriels, projets et discussions sont également accessibles sur Internet.
Lorsque vos montages deviendront de plus en plus ardus, vous n’aurez
aucun probléme a acheter un autre modeéle de carte Arduino, car les prix
sont vraiment abordables. De nombreux amateurs se procurent plusieurs
cartes différentes au fur et a mesure pour compiler les expériences, ce qui
est a mes yeux tout a fait normal.

Les liens ci-dessous vous permettent d’accéder a des informations détaillées
sur les cartes que j’ai mentionnées :

e Arduino Uno:
https://www.arduino.cc/en/Main/ArduinoBoardUno

e Arduino Mega :
https://www.arduino.cc/en/Main/ArduinoBoardMega2560

e Arduino Leonardo :
https://www.arduino.cc/en/Main/ArduinoBoardLeonardo

e Arduino Micro :
https://www.arduino.cc/en/Main/ArduinoBoardMicro

Partie I. Les bases

e Arduino Nano :
https://www.arduino.cc/en/Main/ArduinoBoardNano

1l existe de nombreuses autres cartes Arduino et d’extensions, que vous
trouverez aux adresses suivantes :

e https://www.arduino.cc/en/Main/Products Q

e https://www.arduino.cc/en/Main/Boards

La carte Arduino Uno

Commencons par examiner de plus prés la carte Arduino. J’ai identifié sur
la figure ci-dessous les principaux composants de la platine.

< Figure 1
La carte Arduino Uno

Entrées-sorties digitales D
4 Microcontrdleur

Entrées
analogiques

<_| Alimentation

Nous allons passer en revue ces différents éléments. Tout ne vous paraitra
peut-étre pas encore tres clair, mais je vous promets que nous les exami-
nerons en détail un peu plus loin.

Le microcontrdleur

Le microcontréleur est le cceur de la carte Arduino. Il est quasiment le
centre de calcul de la carte Arduino. La carte Arduino Uno que nous utili-
serons est équipée d’un microcontroleur Atmel AVR de type ATmega328.
Sur la figure 1 ci-dessus, c’est le gros composant noir muni de nom-
breuses broches. Ce composant est fabriqué par la société américaine
Microchip Technology Inc. et se retrouve dans de nombreuses cartes.

Voici, page suivante, une petite vue d’ensemble des principales caractéris-
tiques techniques de la carte Arduino Uno.

Chapitre 1. Arduino : le matériel

Tableau 1 »

Quelques caractéristiques
intéressantes de la carte
Arduino Uno

Figure 2 »

Les entrées et sorties
numeériques de la carte
Arduino Uno

Microcontroleur ATmega328

Tension de service 5V

Tension d'entrée 7Vaizyv

(recommandée)

Tension d'entrée (limites) 6Vaz0Vv

Broches E/S numériques 114 (6 sorties commutables en MLI)
Entrées analogiques 6

Courant CC par broche d'E/S 40 mA
Courant CC pour broche 3,3V~ 50 mA

Mémoire Flash 32 Ko (ATmega328), dont 0,5 Ko est utilisé par le
chargeur d'amorcage

SRAM 2 Ko (ATmega328)

EEPROM 1 Ko (ATmega328)

Fréquence d'horloge 16 MHz

Vous trouverez des informations détaillées a I’adresse Internet suivante :

https://www.arduino.cc/en/Main/ArduinoBoardUno

Les entrées et sorties

Pour communiquer avec un microcontrdleur, il nous faut établir une
connexion physique, quelle que soit sa forme. Ces entrées et sorties sur
la carte Arduino sont appelées des ports. Comme vous pouvez le voir sur
le tableau 1, nous disposons d’un certain nombre d’entrées et de sorties
pour communiquer avec la carte Arduino. Elles constituent I'interface avec
le monde extérieur et permettent d’échanger des données avec le micro-
controleur. Jetons un ceil sur la figure ci-dessous :

4 Entrées analogiques

Entrées/sorties
numériques

Vous y voyez le microcontroleur qui peut communiquer avec nous par
le biais de certaines interfaces. Certains ports servent d’entrées, d’autres
d’entrées et de sorties.

Partie I. Les bases

QU’EST-CE QU’UN PORT ?

Un port est un chemin d'acces défini vers le microcontréleur, une sorte de
porte qui meéne a l'intérieur et qui permet de communiquer avec ce dernier.
Les broches d'entrée et de sortie sont généralement organisées en ports et
affectées dans un microcontréleur a un registre, c'est-a-dire une certaine
plage de mémoire.

Regardez la carte, vous apercevez des réglettes de raccordement noires
sur ses bords supérieur et inférieur. Vous vous demandez siirement par
exemple quelles entrées et sorties numériques sont utilisées pour les
entrées et les sorties ? Peut-étre que certaines ne fonctionnent que comme
des entrées et d’autres que comme des sorties. Cela manquerait de flexibi-
lité. C’est pour cela qu'’il existe une bien meilleure solution. Et qu’en est-il
des sorties analogiques ? Il n’y en a pas du tout ici.

Commencons par les broches numériques. Chaque broche est le raccorde-
ment séparé d’un port, qui combine plusieurs broches. Comme les spécifi-
cations I'indiquent, la carte Arduino Uno dispose de 14 broches numériques
d’entrées et de sorties, ou broches E/S, E/S étant ’abréviation d’entrée et
de sortie. On peut alors programmer de maniere tres flexible quelle broche
parmi les 14 fonctionnera comme entrée ou comme sortie. Ce processus
est appelé configuration.

Passons maintenant aux broches analogiques. Notre carte Arduino ne
dispose pas de sorties analogiques séparées. Cela peut paraitre bizarre
au premier abord, mais certaines broches numériques sont détournées
de leur destination premiére et servent de sorties analogiques. Vous vous
demandez certainement comment cela fonctionne. Voici donc un avant-
gott de ce qui sera expliqué dans le montage n°1 sur la modulation de
largeur d’impulsion, ou MLI. 1l s’agit d’un procédé dans lequel le signal
présente des phases a niveau haut et des phases a niveau bas plus ou
moins longues. Si la phase a niveau haut, dans laquelle le courant circule,
est plus longue que celle a niveau bas, une lampe branchée par exemple
sur la broche correspondante éclairera visiblement plus fort que sila phase
a niveau bas était la plus longue. Plus d’énergie sera donc apportée en un
temps donné sous forme de courant électrique A cause de la persistance
rétinienne de notre ceil, nous ne pouvons différencier des événements
changeant rapidement que sous certaines conditions, et un certain retard
se produit aussi lorsque la lampe passe de I’état allumé a celui éteint, et
réciproquement. Cela m’a tout l’air d’étre une tension de sortie qui se
modifie, bizarre, non ? Vous comprendrez certainement mieux lorsque
nous aborderons ce chapitre.

En tout cas, ce mode de gestion des ports présente d’emblée un inconvé-
nient. Quand vous utilisez une ou plusieurs sorties analogiques, c’est au

Chapitre 1. Arduino : le matériel

détriment de la disponibilité des ports numériques, il y en a alors d’au-
tant moins a disposition, mais cela ne saurait nous géner outre mesure,
car nous natteignons pratiquement pas les limites de la carte. De ce fait,
nous n’avons pas de restriction sur les montages expérimentaux a tester.
Le terme chargeur d’amorcage (ou bootloader en anglais) apparait dans les
spécifications de la carte et nécessite une explication.

QU’EST-CE QU'UN CHARGEUR D’AMORCAGE ?

Un chargeur d'amorcage est un petit programme qui doit étre installé une fois
sur le microcontroleur ATmega328. Déja installé par le fabricant lorsque vous
achetez une carte Arduino, ce programme a sa place dans une certaine zone de
la mémoire flash du microcontroleur et assure le chargement du logiciel une
fois la mise sous tension établie. Celui-ci s'exécute alors automatiquement,
sans attendre qu'il soit enregistré dans la mémoire.

La mémoire flash disponible est diminuée de la part attribuée au chargeur
d’amorcage. Normalement, un microcontroleur recoit son programme de
travail d’'un matériel informatique supplémentaire, par exemple d’un pro-
grammateur In System Programming (ISP). Le chargeur d’amorcage évite
cela, ce qui rend le téléchargement du logiciel vraiment facile. Sitot dans
la mémoire de travail du controleur, le programme de travail est exécuté.
Si jamais vous deviez changer, pour une raison quelconque, votre micro-
controleur ATmega328 sur la carte, le nouveau circuit ne saurait pas ce
qu’il doit faire, car le chargeur d’amorcage n’est pas enregistré par défaut.
Cette fonctionnalité peut étre installée selon différentes procédures que
je ne peux pas expliquer ici faute de place. Cependant, vous trouverez sur
Internet suffisamment d’informations pour vous permettre d’installer le
chargeur d’amorcage approprié au microcontroleur.

L’alimentation électrique

Commencons par la tension d’alimentation, car sans elle rien n’est possible.
1l existe différentes possibilités. Quand nous travaillons avec Arduino ou
que nous le programmons, il est indispensable d’établir une connexion
USB avec lordinateur. Cette liaison assure deux fonctions :

e transmettre I'indispensable tension d’alimentation de 5V ;
e offrir un canal de communication entre Pordinateur et la carte Arduino.

Les deux fonctions sont remplies par le port USB argenté, désigné sous
le nom de connecteur USB sur la figure 1. Dans le chapitre suivant, nous
examinerons la prise de plus prés, ainsi que son type et la procédure d’ins-
tallation du logiciel requis. Ce chemin d’accés a la carte est employé pour
le développement et le test de programme. Une seconde prise se trouve
juste a coté de la premieére : C’est la prise d’alimentation, appelée connecteur

Partie I. Les bases

d’alimentation. Elle permet de déconnecter la carte de l'ordinateur une
fois sa programmation effectuée. A quoi cela sert-il ? Clest trés simple !
Imaginons que nous construisions un robot motorisé et que la carte Arduino
doive réceptionner des commandes transmises par un émetteur radio et
exécuter les actions correspondantes. Le cable USB limiterait considérable-
ment le rayon d’action du véhicule. Nous avons simplement besoin d’une
alimentation électrique pour la carte et éventuellement pour les moteurs,
car la programmation est terminée. Comme le déclare la NASA au décollage
des fusée : le guidage est interne. La carte Arduino est autonome ! La figure 3
ci-dessous présente une alimentation électrique externe a I’aide d’une pile
9V, ce qui toutefois ne constitue pas une solution durable.

Arduino Uno

Connecteur 2,1 mm

La tension d’alimentation doit étre comprise
entre 7 et 12 V CC (CC = courant continu). Un
bloc d’alimentation a fiche avec une prise de
2,1 mm a moins de 10 € constitue la meilleure
variante d’alimentation électrique externe. Il doit
par exemple fournir une tension de 9 V CC/1A:

Il existe aussi une broche Vin, qui peut servir
également a I’alimentation électrique. Vous trou-
verez des informations détaillées aux adresses Internet suivantes :

https://www.arduino.cc/en/Main/ArduinoBoardUno

https://playground.arduino.cc/Learning/WhatAdapter

<« Figure 3

La carte Arduino Uno
avec une alimentation
électrique externe

via une pile

< Figure 4

Une alimentation
électrique avec bloc
d’alimentation a fiche

Chapitre 1. Arduino : le matériel

@ COMPRENDRE LES TERMES DE BASE

A propos de l'alimentation électrique

Savez-vous ce qu'est la tension et comment elle est produite ? Nous n'avons
pas non plus abordé la question du courant. Vous avez l'occasion de rafraichir
ici vos connaissances de base en électronique et de découvrir davantage de
possibilités avec votre carte Arduino.

Grandeurs physiques

Etant donné que sans la présence de tension, les appareils électriques ne
sont rien d'autre que des appareils inutiles, j'aimerais aborder briévement les
grandeurs physiques. Les grandeurs physiques ou grandeurs fondamentales
électriques sont principalement la tension électrique, le courant électrique,
la résistance électrique et la charge électrique. Pour pouvoir construire vos
propres projets avec la carte Arduino et ne pas vous contenter de les reproduire,
ilest indispensable de comprendre le lien entre tension, courant et résistance.
Cet ouvrage n'étant pas congu comme un manuel d'électronique, mais plutot
comme un guide pratique sur Arduino, je naborderai le sujet que de maniére
succincte.

Qu’est-ce que la tension ?

Tous les matériaux qui nous entourent, qu'ils soient solides, liquides ou
gazeux, sont composés d'atomes. Un atome est composeé d'un noyau et d'une
enveloppe, le noyau étant constitué de protons chargés positivement et de
neutrons. Dans l'enveloppe de l'atome, les électrons chargés négativement
évoluent autour du noyau. Si le nombre d'électrons est réparti uniformément,
nous ne remarquons en fait rien d'un phénomene électrique, sauf sil'équilibre
électrique est perturbé d’'une maniére ou d'une autre. Si, par exemple, ces
porteurs de charge négative, représentés par les électrons, sont retirés d’'un
corps et ajoutés a un autre corps, il existe alors un état électrique entre les
deux corps qui arompu l'équilibre de charge qui existait précédemment. Plus
ce déséquilibre est important, plus l'état électrique est important.

On pourraitcomparer cela a deux personnes qui ne seraient pas du méme avis
etentre lesquelles se formerait alors une certaine tension. Plus les divergences
sont importantes, plus la tension est grande. Et c'est ainsi que le premier
aspect d'un état électrique a été désigné par le terme de tension électrique.

La séparation des charges est un état de repos, donc statique, car rien ne
bouge apres la séparation des porteurs de charge. La tension en présence
peut étre mesurée. L'unité de mesure de la tension est le volt, dont 'abréviation
est la lettre V.

Jusqu'icitout est clair, mais a quoi sert cette différence de charge, qui représente
une certaine tension ? L'état statique change brusquement lorsqu’une liaison
plus ou moins conductrice est établie entre les deux corps, liaison que les
électrons peuvent enjamber. Cela peut se produire avec les matériaux les plus
divers, comme le cuivre, l'aluminium ou l'argent.

Partie I. Les bases

La figure 5 montre sur la gauche une répartition uniforme de porteurs de
charge négatifs et positifs. Les deux sont équilibrés et il n'y a donc pas de
différence de potentiel et pas de tension. En revanche, sur ladroite, les porteurs
de charge sont séparés. La partie gauche est dominée par les porteurs de
charge négatifs, la partie droite par les porteurs de charge positifs. Cette
différence de potentiel crée une tension.

Aucune différence de potentiel Différence de potentiel
Aucune tension Tension

Un déséquilibre de charge établi tend toujours a s'équilibrer et les électrons
se déplacent d'un corps a l'autre lors d'une liaison, la migration se faisant
du surplus d'électrons vers le manque d'électrons. C'est seulement lorsque
cette possibilité est donnée qu'un flux de courant circule, comme on le voit
surla figure 6

Circulation
= du courant

Vous savez déja qu'il existe différentes formes de tension, appelées tension
continue et tension alternative. La figure 7 page suivante montre ces formes
de tension au cours du temps, la carte Arduino fonctionnant avec une tension
continue (ou courant continu). Cette forme de tension, on parle aussi de courant
continu, est caractérisée par une intensité et une direction qui ne varient pas.
Elle est symbolisée par les lettres DC (Direct Current) ou, en France, par CC
(courant continu). Le courant alternatif est, quant a lui, noté AC (Alternating
Current) ou CA (courant alternatif). D'ou le nom du groupe de rock AC/DC. Cette
forme de courant est régalement représentée sur la figure 7.

Chapitre 1. Arduino : le matériel

< Figure 6
Circulation d'un flux
de courant

Figure 7 >
Circulation d'un flux
de courant

Figure 8 >

De nombreux électrons
circulant a travers

un conducteur

pd
o

N

\/

\

La hauteur de la tension U du courant continu n'évolue pas, tandis que la
valeur de la tension U du courant alternatif varie en permanence et oscille
entre deux valeurs limites, ['une positive et 'autre négative, en formant une
courbe sinusoidale.

Qu’est-ce que le courant ?

Vous savez maintenant qu’un courant électrique peut passer en présence de
tension. Mais de quoi s'agit-il ? Que se passe-t-il dans un matériau conducteur
comme le cuivre lorsqu'il est traversé par du courant ? La présence d'une
tension et la différence de potentiel qui en résulte font que les électrons
présents sur l'enveloppe la plus externe des atomes sont arrachés et se
déplacent sous forme d'électrons libres comme un nuage a travers le matériau.
Cela s'explique par le fait qu'en libérant les électrons libres, un atome devient
ce que l'on appelle un jon. Un ion est un atome présentant un déséquilibre
entre les électrons et les protons. Vers l'extérieur, l'atome n'est plus neutre.
Un électron arraché laisse derriére lui un vide dans la composition de 'atome,
qui peut étre comblé par un autre électron libre.

Ce processus d'arrachement et de remplissage des vides par les électrons
est désigné par le terme de courant électrique. Les deux figures ci-apres
représentent le flux de courant a travers un conducteur. La section transversale
du conducteur et la période d'observation pour mesurer le courant jouent un
role décisif. On voit sur la premiére figure six électrons entiers par segment
indiqué. Ce n'est pas beaucoup, comme on le verra plus tard, mais pour le
moment, cela ne joue qu'un role secondaire.

] 1
€ >
Période de temps

Sur la deuxieme figure, on voit comparativement moins d'électrons, seulement
quatre par segment indiqué. Le flux de courant est donc plus faible.

Partie I. Les bases

A
N .

Période de temps

Le flux électrique peut donc étre défini avec le rapport suivant :

. Nombre d’électrons
Puissance du courant = ——78M
Période de temps

Bien entendu, le diametre du conducteur joue également un réle, car plus le
canal de passage des électrons libres est étroit, plus la résistance est grande et
plus le flux de courant est faible. Comme les électrons possédent une charge,
la somme des électrons a considérer par période de temps peut aussi étre
considérée comme une quantité de charge. Cette quantité de charge est
symbolisée et désignée par la lettre Q. On peut maintenant exprimer le tout
de fagon plus précise par une formule mathématique :

AQ
At

I=

La lettre / symbolise le courant et le petit triangle A, appelé delta, est utilisé
en mathématiques pour symboliser les changements ou les différences. Cela
signifie donc que l'intensité du courant est égale a la modification de la quantité
de charge Q par le temps t. Dans 'exemple ci-dessus avec six ou quatre
électrons par intervalle de temps, on peut constater que cest trés, trés, trés
peu et le calcul suivant se rapproche un peu plus de la réalité. On souhaite
déterminer le nombre d'électrons qui traversent le conducteur pendant un
intervalle de temps d'une seconde sous une intensité de 1 A (A signifie ampere,
soit l'unité de mesure du courant électrique). Mais comment calculer cela ?
Pour ce faire, on inverse la formule indiquée selon la quantité de charge, qui
se présente alors comme suit :

AQ=1- At

L'équation se présente comme suit avec les valeurs saisies :

AQ = 1Ass

Comme on l'a vu, la quantité de charge Q est le nombre n d'électrons et il est
bon de savoir quelle est la charge élémentaire d'un électron pour résoudre
le probléme posé. Celle-ci est symbolisée par la lettre e, qui a comme valeur
1,602176 - 10717 C, ou C signifie coulomb, l'unité de mesure d'une charge

électrique. On peut alors remplacer dans la derniére formule AQ par le nombre
de charges élémentaires n et on obtient :

n-e=1As

< Figure 9
Quelques électrons
circulant a travers
un conducteur

Chapitre 1. Arduino : le matériel

Figure 10 >
Les headers de la carte
Arduino Uno

On voit tres bien ici que 1C (coulomb) peut aussi présenter ['unité A.s, ce qui

apparait immeédiatement dans la formule abrégée. On obtient :
1A.s
n= = 6,24151-10"
1,602176 - 109 A.s

Le résultat impressionne par le nombre tres élevé d'électrons (6 trillions).

Maintenant que j'ai brievement évoqué les grandeurs électriques telles que la
tension électrique et le courant électrique, il me manque encore la résistance
électrique. Afin que cela ne devienne pas trop aride et ne soit pas une récitation
de connaissances théoriques, j'aborderai la résistance électrique dans les
chapitres ou elle joue un réle important. C'est par exemple le cas dans le
montage n° 1 sur la commande d'une diode lumineuse, car ce composant
électronique qui fait office de voyant ne doit pas fonctionner sans limitation
de courant. Et cette fonction de limitation du courant est assurée par un

composant électrique précis. Nous y reviendrons plus tard.

Différents types de signaux

Je vous ai déja montré précédemment les entrées et sorties de la carte
Arduino Uno. Celles-ci sont mises a disposition par des headers (en-tétes
en francais) que vous pouvez voir sur la figure ci-apres :

D En-téte

En-téte

Vous pouvez connecter aux en-tétes de petits cables patch ou directement
des composants. Il existe différentes catégories de connexion sur lesquelles
j’aimerais revenir en détail. Mais avant, je dois faire un petit détour pour
expliquer la différence entre signaux analogiques et numériques.

Dans la nature, on trouve des formes de signaux aux tracés continus, comme
la température ou la luminosité. Le tracé du signal d’un son aura une forme
sinusoidale sur un oscillographe, comme le montre cette figure :

Partie I. Les bases

oV >

\J

1N’y a pas d’interruption au cours du temps, représenté sur I’axe horizontal
t, etles valeurs se succédent en permanence. Nous aurions du mal a repré-
senter un signal de ce type sur un ordinateur qui ne connait que les états
actif ou inactif, qui correspondent aux niveaux de tension HIGH (5 V d’une
liaison série TTL) et LOW (0 V). Le tracé pourrait ressembler a celui-ci :

ud

+5V .

ov >

Sur la carte Arduino comme sur d’autres microcontroleurs, les variations
de tension analogiques sont soumises a des restrictions sur lesquelles nous
reviendrons plus loin.

Les entrées et sorties numériques

La carte Arduino Uno dispose de diverses entrées et sorties numériques.
Les prises sont désignées par des dénominations que vous pouvez voir
sur la figure ci-dessous :

ot u e
g E Z el

I DIGITAL -

Les prises sont numérotées de droite a gauche de 0 a 13, certains chiffres
étant précédés d’un tilde. Nous y reviendrons tres vite. Il y a aussi deux

<« Figure 11
Une courbe sinusoidale
(analogique)

< Figure 12
Une courbe numérique

<« Figure 13
Les entrées et sorties
numeriques

Chapitre 1. Arduino : le matériel

Figure 14
Les entrées analogiques

prises désignées par les lettres RX et TX. Elles ne doivent pas étre utilisées
pour la transmission de commandes, car elles sont affectées d’office a
I'interface sérielle. La prise désignée par les lettres GND (Ground) corres-
pond a la masse. Peut-étre vous demandez-vous maintenant quels ports
appartiennent a la catégorie des entrées et lesquels aux sorties. La réponse
est simple. Les ports numériques peuvent étre configurés librement par
le biais de la programmation et servir aussi bien d’entrées que de sorties.
Si une prise doit servir d’entrée, il faut toujours vérifier que la tension ne
dépasse pas 5 V ! Sinon le microcontréleur pourrait étre définitivement
endommagé.

Les entrées et sorties analogiques

Venons-en aux entrées et sorties analogiques. Les entrées analogiques sont
illustrées sur la figure 14 :

Les dénominations vont de A0 a A5, soit un total de 6 entrées analogiques.
La aussi, les valeurs de tension doivent étre comprises entre 0 Vet 5 V. Ne
perdez pas votre temps a rechercher des sorties analogiques, car vous n’en
trouverez pas. Peut-étre penserez-vous qu’elles ont été oubliées. Pas tout
a fait. Elles se trouvent a un autre endroit et elles n’ont pas exactement le
comportement que l'on attendrait de leur part.

Nous en arrivons maintenant aux ports numériques dont la dénomina-
tion est précédée d’un tilde. Il s’agit des ports D3, D5, D6, D9, D10 et D11
qui peuvent étre configurés en tant que sorties analogiques. Des sorties
numériques devraient donc faire office de sortie analogiques ?! Cela parait
un peu étrange.

Cest la que la MLI entre en scéne. MLI est le pendant francais de PWM
(Pulse-Width-Modulation), autrement dit modulation de largeur d’impulsion.
Nous avons ici affaire a un signal numérique et non a un signal analogique.
Cela ne parait pas tres logique a premiére vue. Un signal MLI est un signal
de fréquence et d’amplitude de tension constantes. La seule chose qui
varie est le rapport cyclique.

Quand la fréquence f est constante, cela signifie que la durée d’une période
T lest aussi. Le seul aspect qui peut varier est la durée d’impulsion t.

Partie I. Les bases

Durée des impulsions <—¢—=>
Durée de la période

T

Plus 'impulsion est large, passant ainsi quasiment d’une droite unidimen-
sionnelle a une surface, plus grande est I’énergie qui est transmise au
consommateur. Examinons quatre possibilités.

U\ Rapport cyclique de 25 % U\ Rapport cyclique de 50 %
SV 5V
o - = t - = t

T L

U\ Rapport cyclique de 75 % U\ Rapport cyclique de 100 %
5V - 5V
oV v

— t — t

Nous examinerons la commande en détail plus loin.

L’alimentation interne

Le connecteur d’alimentation comporte les broches ayant les fonctions
suivantes :

Désignation Fonction

VIN Tension d'entrée de la carte Arduino pour une alimentation
électrique externe 5V

5V Sortie 5V régulée

3v3 Sortie 3,3 V régulée. Le courant maximum est de 50 mA. GND
GND Masse

IOREF Tension de référence des ports d’E/S ou du microcontréleur

< Figure 15

Durée d'une impulsion
et durée d'une période
au cours du temps

< Figure 16
Exemples de MLI

<« Tableau 2
Broches dalimentation
en tension

Chapitre 1. Arduino : le matériel

Figure 17 »
Le bouton de
réinitialisation

Le bouton de réinitialisation

Le bouton de réinitialisation permet de redémarrer le microcontroleur.
Le sketch téléchargé n’est pas supprimé ; il est simplement redémarré.

Bouton de réinitialisation

Linterface sérielle

Linterface sérielle offre une autre possibilité de communication avec la
carte Arduino. Elle est accessible via le port USB et peut étre interrogée par
I'intermédiaire d’un programme de terminal, tel que PiTTY. Nous n’avons
pas besoin de logiciel supplémentaire, car le moniteur série inclus dans
'environnement de développement Arduino suffit. Il affiche des valeurs
pendant la durée d’exécution du sketch, ce qui est non seulement tres
utile pour la surveillance de certaines valeurs de capteur, mais aussi pour
une éventuelle recherche d’erreurs. Des fonctions plus avancées, comme
I’échantillonnage ou I’affichage de valeurs mesurées qui sont transmises
a d’autres programmes, peuvent étre réalisées via I'interface sérielle. Le
langage de programmation Processing est tres utile dans ce contexte.

Informations relatives a Uinterface sérielle et au port USB

Froncez-vous les sourcils a la seule mention de I'interface sérielle et de la
communication par ce biais ? En effet, la carte Arduino est uniquement
raccordée a l'ordinateur via un port USB et il faudrait maintenant qu’elle
communique par l'interface sérielle ? Comment est-ce possible ? Cela
s’explique par des raisons historiques : la premiere carte Arduino était
connectée a 'ordinateur par I'interface sérielle RS232, car il n’y avait pas
de port USB. Les modéles suivants ont été dotés d’une puce FTDI (Future
Technology Devices International) qui permettait d’utiliser un port USB tel
qu’une interface sérielle. Apres I'installation du pilote correspondant, un
port COM supplémentaire est alors disponible pour la carte Arduino. A
la place de la puce FTDI (FT232RL), la carte Arduino Uno est dotée d’un
microcontroleur supplémentaire, ’4Tmega8U2. Cette puce, en plus d’étre

Partie I. Les bases

librement programmable, présente I’avantage de pouvoir étre utilisée uni-
versellement comme périphérique USB, de la méme facon qu’un clavier
ou une souris. Vous trouverez des informations sur ce theme et d’autres
aspects intéressants a I’adresse suivante :

https://learn.adafruit.com/arduino-tips-tricks-and-techniques/
arduino-uno-faq

Les différentes mémoires
J’ai cité plus haut divers types de mémoire :
o flash;
e SRAM;
e EEPROM.

Il estimportant de connaitre les différences et les domaines d’application de
chacune. Vous trouverez de plus amples informations a I’adresse suivante :
https://www.arduino.cc/en/Tutorial/Memory

La mémoire flash

Un programme, ou sketch dans 'environnement Arduino, doit étre stocké
ou enregistré dans le microcontroleur. Le sketch indique au microcontro-
leur ce qu’il doit faire et les taches qui doivent étre exécutées. Un pro-
gramme se divise en étapes (ou commandes) qui sont exécutées dans un
ordre précis. La mémoire flash se charge du stockage. Méme si la carte
Arduino n’est plus raccordée a ’'alimentation électrique, le sketch qui a été
transféré sur le microcontrdleur reste en mémoire. Ces informations sont
a nouveau accessibles aprés une nouvelle connexion électrique.

La SRAM

SRAM est I’abréviation de Static Random Access Memory. Lorsqu’un sketch
est nécessaire pour traiter par exemple des valeurs de mesure, ces valeurs
doivent étre conservées sous une forme quelconque a I'intérieur du micro-
controleur. On utilise a cette fin des variables qui occupent de la place dans
certaines parties de la mémoire pour I’échange et la manipulation des don-
nées. Toutefois, ces zones de mémoire sont volatiles, ce qui signifie que les
informations disparaissent en cas de coupure de I’alimentation électrique.
Cela n’a pas d’importance. En effet, le sketch n’utilise ces données que
durant son exécution et elles sont recréées lors d’une nouvelle exécution.
La zone de mémoire étant parfois trés limitée sur certains modeéles, il est
alors possible de stocker des données dans la mémoire flash plutot que dans
la SRAM. Vous trouverez de plus amples informations a I'adresse suivante :

https://www.arduino.cc/en/Reference/PROGMEM

Chapitre 1. Arduino : le matériel

https://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-uno-faq

L’EEPROM

EEPROM signifie Electrically Erasable Programmable Read-Only Memory.
Comme pour la mémoire flash, il s’agit d’'une mémoire non volatile qui
conserve les données qui y ont été enregistrées méme en cas de coupure
deI’alimentation électrique. Elle peut étre utilisée pour enregistrer de facon
permanente des données importantes, telles que des valeurs de mesure.
Notez toutefois que les accés en écriture et en suppression a cette zone
de mémoire sont limités a 100 000 cycles. Cette zone de mémoire n’est
donc pas adaptée pour enregistrer des données échantillonnées lors de
breves mesures cycliques.

Vous venez de recevoir une grande quantité d’informations sur le maté-
riel Arduino. La disposition des composants sur la carte Arduino Uno ne
devrait plus avoir de secrets pour vous. Vous connaissez maintenant le
microcontroleur Atmega328, le cceur de la carte Arduino. Vous savez éga-
lement comment la carte est alimentée en courant et quelles sont les
entrées et sorties numeériques et analogiques. Vous en savez un peu plus
aussi sur les mémoires utilisées sur ’Arduino. Et surtout, vous savez ce que
sont le courant et la tension et comment les représenter par des formules
mathématiques.

Je vais vous montrer au chapitre 2 comment vous allez pouvoir piloter la
carte Arduino a I'aide de son environnement de développement logiciel.

Partie I. Les bases

Arduino : le logiciel

Quand je parle d’Arduino, il s’agit aussi bien de la carte que du logiciel
dont on se sert pour commander le microcontroleur. Dans ce chapitre,
vous apprendrez a installer les logiciels indispensables sur votre ordina-
teur. Nous passerons également en revue tout ce que vous devez savoir
pour réussir a faire fonctionner correctement votre premier programme
Arduino. Je vous montrerai la disposition de 'environnement de dévelop-
pement Arduino. Vous apprendrez aussi dans ce chapitre ce qu’il se passe
a larriére-plan lorsqu’un programme se déroule sur votre carte Arduino.
Je vous indiquerai enfin tous les composants nécessaires a votre atelier de
développeur amateur.

1 existe théoriquement deux possibilités pour piloter votre carte Arduino.
Vous pouvez recourir a un programme logiciel que vous installez sur votre
ordinateur, 'environnement de développement Arduino en l'occurrence,
ou vous pouvez utiliser Arduino Create, un éditeur basé sur le Web, a ouvrir
avec votre navigateur.

Le plug-in a installer lors de I'utilisation d’Arduino Create basé sur le Web
n’est pas un plug-in de navigateur mais un agent qui fonctionne en arriére-
plan et qui configure son service quasiment indépendamment du navi-
gateur. Tout navigateur utilise cet agent et doit pouvoir ensuite établir
une connexion au cloud ou a Arduino. Cet agent redémarre a chaque
redémarrage du systeme. Les informations sur le gestionnaire de taches
sont disponibles sous l'onglet Démarrage. Vous pouvez y voir I’entrée
Arduino_Create_Agent (voir figure 1 page suivante).

Chapitre

()

Figure 1>

La configuration

des programmes de
démarrage sous Windows

%] Gestionnaire des taches — m} X
Fichier Options Affichage

Processus Performance Historique des applications Démarrage Utilisateurs Détails Services

Dernier temps de démarrage du BIOS: 3.6 secondes

Nem Editeur Statut Impact du dé...

@ Adobe Collaboration Synchr... Adobe Systems Incorpor... Activé Bas al

[#=] Arduine_Create_Agent.exe Activé Mon mesuré

§ Canon |} Network Scan Utility CANOM INC, Activé Bas

z# Canon I Network Scanner 5. CANON INC. Activé Bas

Canon Quick Menu CANOM INC. Activé Haut

s CCleaner Pinform Software Ltd Activé Bas

- | Cortana Microseft Corporation Désactivé Aucun v

(~) Moins de détails | Désactiver

Pour éviter que cet agent démarre avec Windows, placez I'état sur Désactivé.

IDE Arduino ou Arduino Create ?

Sivous avez opté pour une installation locale de I’environnement de déve-
loppement Arduino, tout votre code, y compris les bibliotheques, se trouve
sur votre ordinateur. Vous avez donc tout sous la main et vous pouvez y
accéder directement sans avoir besoin d’une connexion Internet. Lorsqu’il
y a de nouvelles bibliothéques, autrement dit des programmes Arduino
déja créés, ou de nouvelles versions de bibliothéques existantes, il releve
de votre responsabilité de mettre a jour votre systeme ou de les installer.
Vous recevez évidemment des informations sur I’existence d’éventuelles
mises a jour.

A linverse, la plate-forme Arduino Create vous propose d’enregistrer vos
codes dans I’Arduino 10T Cloud, qui est une mémoire située quelque part
sur Internet. Une connexion Internet continue est donc obligatoire, car
tout est géré via un acces du navigateur web. ’avantage de cette version
est que vous avez un acces partout dans le monde a toutes les ressources
Arduino, codes et bibliothéques. Les bibliotheques proposées sont ainsi
maintenues a un état actuel par un organe central et vous n’avez plus
besoin de les mettre a jour. Je propose que vous testiez les deux versions.
Vous pourrez ainsi opter pour celle qui vous convient le mieux. Aussi bien
I'IDE Arduino qu’Arduino Create permettent de travailler de facon pratique.
J’utilise dans ce livre I'IDE Arduino, parce que je préfére cette version et
quelle ne m’oblige pas a avoir toujours une connexion Internet, bien que
ce soit presque toujours le cas de nos jours. Personnellement, je n’aime
pas les solutions sur le cloud.

Partie I. Les bases

Ligne d'informations »>

Presentation de ['environnement

Au démarrage de I'environnement de développement Arduino que vous
avez installé sur votre ordinateur, la fenétre représentée sur la figure 2
s’ouvre : ’environnement de développement contient différentes zones.
Vous y trouverez une zone d’entrée et une autre de sortie, des éléments
de commande, ou encore des informations a propos des parametres de
connexion. Nous allons les examiner en détail.

L'éditeur
La zone dans laquelle vous saisissez votre code de programmation s’appelle
Péditeur. 1l prend en charge la fonctionnalité de syntax highlighting, ce qui

signifie que les mots-clés du langage de programmation sont généralement
affichés en couleur.

Ligne d’informations

En dessous de I'éditeur se trouve une zone étroite dans laquelle s’affichent
des informations relatives a la progression d’une opération ou des messages
sur la derniére action exécutée. Vous pouvez voir sur la figure 2 que je viens
de télécharger un sketch sur la carte Arduino.

@ sketch_decl5a | Arduino 1.8.18
Barre des menus P> |Eichier Edition Croquis Outils Aide
Barre d'icones »> < Moniteur série

sketch_dec15a | 4 Unglets
froid setup() { ~
// put your setup code here, To run once:

1

woid loop() { .
/¢ put your main cede here, te run repeatedly: R | Edneur

Chapitre 2. Arduino : le logiciel

<« Figure 2

Les différentes zones
de l'environnement de
développement Arduino

“| <« Messages du compilateur

< Informations de connexion

©

Messages du compilateur

Lorsque le compilateur, c’est-a-dire le programme Arduino interne qui
traduit votre code de programme dans un langage machine compris par
le microcontroleur, remplit son role de traduction du code source, la
zone noire affiche des messages de progression ou signale d’éventuels
problémes. Enfin, l'utilisation de la mémoire y est aussi indiquée. Pour
que le compilateur soit plus lisible, vous pouvez adapter le flux de langage
avec 'option de menu Fichier | Préférences | Avertissements du compilateur.

Rien ~ | < Avertissements du compilateur

Loption est réglée par défaut sur Rien.

Informations de connexion

Dans le bord inférieur de I’'environnement de développement, vous pou-
vez voir les informations de connexion, c’est-a-dire la carte actuellement
raccordée a un port COM. Cest utile en cas de probléme de connexion ou
pour la résolution d’erreurs.

Onglets

La barre d’onglets permet d’afficher les fichiers de codes sources d’un
méme sketch. Nous nous en servirons lorsque nous programmerons nos
propres bibliotheques et catégories. Un seul sketch par environnement de
développement peut étre exécuté. Plusieurs sketches différents ne peuvent
pas se trouver dans une instance de I'environnement de développement,
contrairement aux onglets d’un navigateur qui est capable de gérer plu-
sieurs connexions.

Moniteur série

Licone de la loupe permet d’ouvrir le moniteur série qui se sert de 'inter-
face sérielle pour afficher ou transmettre des informations.

Barre de menus

Comme dans d’autres programmes, la barre de menus permet d’accéder
aux différentes commandes servant a gérer I'application.

Partie I. Les bases

Barres d’icones

La barre d’icones contient quelques boutons essentiels qui sont associés a
des actions que vous employez fréquemment, comme la traduction (com-
pilation) du code source, le téléchargement du code traduit sur le micro-
contrdleur ou Pouverture et 'enregistrement des sketches.

Raccordement de la carte Arduino

Voyons maintenant comment raccorder la carte Arduino a 'ordinateur. La
carte Arduino Uno possede le port USB suivant :

B

Connecteur USB ;

type B

Lordinateur a besoin d’un port standard de type 4. Vous trouverez partout
un cable pour le raccordement, j’en ai une caisse pleine chez moi. Une fois
la connexion établie, ce port USB remplit deux roles :

o il sert a I’alimentation électrique de la carte Arduino;
e il sert a la communication entre la carte et 'ordinateur.

Vous trouverez des informations détaillées sur les différents ports USB a
I’adresse Internet suivante :

https://fr.wikipedia.org/wiki/USB

Lorsqu’une carte Arduino flambant neuve est alimentée en électricité, la
LED sur la carte (désignée par un L) s’allume toutes les secondes sur la carte.

LED intégrée

J=ICSP

-

<« Figure 3
Le port USB
de la carte Arduino

< Figure 4
La LED L sur la carte

Chapitre 2. Arduino : le logiciel

C’est ce qui se passe lorsqu’un sketch de base est préinstallé. Nous pouvons
vérifier la communication avec la carte Arduino a ’aide de ce sketch car
I'IDE dispose par défaut de nombreux sketches déja installés.

Testons la communication
entre |'ordinateur et Arduino

Une fois que la carte Arduino a été reconnue par I'IDE, nous allons tester
la communication entre l'ordinateur et la carte Arduino. J’emploie le mot
« communication » pour désigner le transfert d’un sketch (rappelez-vous :
C’est ainsi que I'on appelle un programme dans I’environnement Arduino)
sur le microcontroleur. Nous allons donc ouvrir le sketch Blink (clignoter)
dans I'IDE afin de modifier la fréquence du clignotement de la LED. Le pro-
gramme sera ensuite compilé et transmis a la carte Arduino. Les différentes
étapes énumeérées ci-apres présupposent que I'installation a réussi et que
la carte Arduino a été reconnue au démarrage de I'IDE.

Etape 1 : ouvrir le sketch exemple

Sélectionnez 'option de menu Fichier | Exemples | 01.Basics | Blink pour
ouvrir le sketch dans I'IDE. Il a 'apparence suivante (jai supprimé toutes
les lignes de commentaires contenant des informations complémentaires) :

void setup() {

// initialize digital pin LED_BUILTIN as an output.
pinMode (LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the
// voltage level)

delay(1ee@); // wait for a second

digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the
// voltage LOW

delay(20@@); // wait for a second

}

Nous examinerons la signification des différentes lignes de code dans le
montage n° 1. Leur role est de commander une diode LED qui se trouve
sur la carte et qui doit clignoter avec un intervalle d’'une seconde. Nous
commencerons par vérifier que le sketch a bien été transféré par 'IDE a
la carte Arduino. J’ai mentionné plus haut qu’une carte neuve est livrée

Partie I. Les bases

avec un sketch Blink préenregistré. Nous allons le modifier de fagon a
ce que la LED identifiée L sur la carte se mette a clignoter. Pour ce faire,
nous allons modifier légérement les deux lignes de code qui contiennent
I'instruction delay.

Etape 2 : modifier le sketch exemple

La valeur qui est indiquée entre parentheses définit la durée de la pause
dans le traitement du programme. La valeur 1 000 désigne le délai en
millisecondes (ms) sachant que 1 000 ms = 1 seconde. Par conséquent,
lorsque la commande delay est atteinte, I’exécution marque une pause
d’une seconde avant 'exécution de la commande située a la ligne suivante.
Si nous changeons la valeur 1000 en 100, la vitesse de clignotement sera
10 fois plus rapide. Les deux lignes dans lesquelles figure la commande
doivent étre modifiées comme suit :

delay(100);

Le sketch modifié va — bientot — pouvoir étre transféré sur la carte Arduino.
Je dis bientdt, car il faut encore faire une derniére vérification.

Etape 3 : choisir la bonne carte et le bon port COM

Comme Arduino (je parle maintenant de la société et non de la carte) a
créé de nombreux modéles de cartes, nous devons préciser a 'environ-
nement de développement le nom de la carte utilisée. Il faut également
indiquer le port COM correct. Ces deux réglages s’effectuent a I'aide des
commandes suivantes :

e Outils | Type de carte ;
e QOutils | Port.

Dans mon cas, il s’agit dArduino Uno et de COM5.

Etape 4 : compiler et télécharger le sketch

Nous en arrivons a ’étape de la programmation qui se nomme la compi-
lation. Procédons dans l'ordre. Pour représenter un programme informa-
tique sous une forme plus ou moins lisible par ’homme, on a imaginé des
langages dits évolués comme C/C++, Java et C#, pour ne citer qu’eux. Les
commandes du sketch Blink sont écrites en anglais, comme la majorité
des langages de programmation. Lintitulé de la commande décrit de facon
plus ou moins claire la fonction quelle remplit. Ainsi, la commande delay
pourrait étre traduite par retard ou avance dont le sens ne nécessite pas
de plus amples explications. Toutefois, le microcontréleur ne sera pas
plus avancé et nous devons lui donner un coup de pouce. Pourquoi ? Un
microcontroleur, comme n’'importe quel processeur, ne reconnait que les

Chapitre 2. Arduino : le logiciel

(@)

commandes exprimées dans sa langue maternelle, le langage machine
ou Native Language, qui varie en fonction des types de microcontréleurs.
Une séquence de traduction préalable est donc nécessaire pour traduire
notre langage dit évolué (le C++ pour Arduino) en un langage machine
compréhensible par le microcontroleur. Cette tache est accomplie par un
compilateur.

QU’EST-CE QU'UN COMPILATEUR ?

Tableau 1 »
Quelques icdnes
importantes pour
commencer

Un compilateur est un programme qui traduit le code source d'un langage
évolué comme C++ dans un langage que le processeur ou le microcontréleur
est en mesure de comprendre.

Lenvironnement de développement Arduino dispose, comme on I’a déja
évoqué, de plusieurs petites icones avec des actions cachées. Le tableau
ci-dessous vous indique les deux icones les plus importantes et leurs fonc-
tions. Les autres icones sont bien sr importantes, mais ne sont pas aussi
essentielles que celles-ci :

Ic6ne Fonction

O Vérification du code source par compilation
O Transmission au microcontrdleur lorsque la compilation est
terminée

La premieére icone vérifie la syntaxe du code source, le texte affiché dans
I’éditeur d’un environnement de développement. Qu’entend-on par « véri-
fier la syntaxe » ? Chaque langage possede différentes regles de syntaxe.
Leur non-respect engendre des malentendus tant lors de la communication
entre étres humains qu’avec les processeurs. Si les commandes ne sont
pas écrites ou formulées correctement, le compilateur signale imman-
quablement une erreur et interrompt le processus de traduction avec un
message d’erreur correspondant. La figure 5 ci-contre montre ce qu’il se
passe lorsque vous avez cliqué sur I'icone Veérifier.

Au début, la compilation démarre en affichant la progression a I'aide d’une
barre de progression verte. Si aucune faute de syntaxe n’a été trouvée, le
processus se termine avec le message indiquant que la compilation est
finie. Le chargement du code machine vers le microcontroleur de la carte
Arduino Uno ne s’est pas encore opéré. Cependant, si une erreur a été
détectée dans le code du sketch, le processus de compilation s’interrompt
avec un message d’erreur correspondant.

La deuxieme icone analyse également le code source avec les mémes pro-
cédures que pour la vérification, avec pour différence toutefois que le
code machine est téléchargé sur le microcontroleur de la carte Arduino

Partie I. Les bases

Uno apres une compilation sans erreur. Le déroulement du processus est
représenté sur la figure 6 :

Vérifier

< Figure 5
Déroulement apreés un clic
sur l'icne Veérifier

Compilationducroquis [N

Compilation terminée [l low was not declared in this scope
Sans erreur Avec erreur
| |
I x Annulation
Téléversement
non demande

Téléverser
: <« Figure 6

Déroulement apreés un clic

sur l'icdne Téléverser

Compilationducroquis [N

Teléversement [1 low was not declared in this scope

Sans erreur Avec erreur

x Annulation

Téléversement
demandé

,, - Téléversement
Téléversement terminé du code demandé

Au début, la compilation démarre en affichant la progression a I'aide d’'une
barre de progression verte. Si aucune faute de syntaxe n’a été trouvée, le
processus de téléchargement sur le microcontréleur démarre et affiche
également une barre de progression verte. Une fois le téléchargement

Chapitre 2. Arduino : le logiciel @

Figure 7 >
Trois LED importantes
sur la carte Arduino

réussi, un message indique que le téléchargement est terminé. En pré-
sence d’une erreur dans le code du sketch, le processus de compilation
s’interrompt avec un message d’erreur correspondant, comme dans le cas
de la vérification.

Il est également possible de choisir immédiatement le téléchargement
sans passer par la compilation préalable, car une compilation préalable y
est également exécutée. Pendant le processus d’upload (téléchargement),
certaines LED sur la carte Arduino s’allument. Regardons cela de plus prés :

\/ LED intégrées

LED transmission (TX) [> T) : 1093 ON <] LED intégrées
LED réception RY) > Saa T3 (TR 8 1 [0] i

Trois LED se trouvent a gauche du nom de la carte. Celle qui est désignée
par un L indique I’état de la broche numeérique 13. Un peu plus bas, vous
pouvez voir deux autres LED désignées par les lettres TX (Transmettre) et
RX (Recevoir). Il s’agit de l'affichage d’état de I'interface sérielle qui relie
la carte Arduino a Pordinateur. Lors du téléchargement, des informations
en langage machine sont transmises via cette interface. La carte signale
’exécution de ce processus par le clignotement irrégulier de ces deux
LED. Quand le transfert est terminé, quelle qu’en soit la raison, les diodes
s’éteignent. Cela permet de controler visuellement le processus de télé-
chargement. Une fois le téléchargement réussi, la diode L clignote plus
rapidement, ce qui indique que la modification du sketch a bien été prise
en compte. Sur le c6té droit de la figure 7, vous pouvez voir une autre LED
dénommeée ON. Elle s’allume lorsque la carte est sous tension.

(™MW LE CODE MACHINE DE LA CARTE ARDUINO

Cet encadré n'a pas de rapport direct avec la programmation de la carte
Arduino, mais il estimportant que vous compreniez les étapes qui se déroulent
en arriere-plan. Je vous ai déja un petit peu parlé de 'environnement de
développement, du compilateur et des langages de programmation C/C++.
Comment se déroule la compilation et qu'est-ce qui est au juste transféré sur
le microcontroleur de la carte Arduino ?

Partie I. Les bases

© Biink| Arduino 1,818 - o x

ital pin LED BUILTIN as an outpuc.

Nous pouvons diviser ce déroulement en quelques étapes logiques :

Etape 1
Une vérification du code du sketch est faite par l'environnement de
développement, afin de garantir que la syntaxe C/C++ est correcte.

Etape 2
Le code est ensuite envoyé au compilateur (dont le nom est AVR-GCC), qui le
transcrit en un langage lisible par le microcontroleur : c'est le langage machine.

Etape 3

Le code compilé fusionne avec certaines bibliothéques Arduino qui apportent
les fonctionnalités de base, ce qui aboutit a la création d'un fichier au format
Intel HEX. Il s'agit d'un fichier texte qui contient des informations binaires pour
le microcontrdleur. Ci-dessous un court extrait du premier sketch :

[Bink hex. Ki'l

1 :100000000C945C000C946E000C946E000CI46E00CA
:100010000C946E000C946E000C946E000C946EQ0!
:100020000C946E000C946E000C946E000C946E00
:100030000C946E000C946E000C946E000CS46E0058E
:100040000€9413010C946E000C946E000CS46E00D2
:100050000C946E00Q0C946E000C946E000CO46E006GE
:100060000C946E000C946E00000000002400270029
:100070002A0000000000250028002B0004040404CE
:100080000404040402020202020203030303030342
:10009000010204081020408001020408102001021F
:1000A00004081020000000080002010000030407FB

H O WwoNdoy Ul WwWh

e

e microcontréleur comprend ce format, car c'est son Native Language, c'est-
a-dire sa langue maternelle.

Etape 4

Le chargeur d'amorcage (bootloader) transmet le fichier Intel HEX via la liaison
USB ala mémoire flash du microcontréleur. Ledit processus de téléversement,
donc la transmission sur la carte, est assuré par le programme avrdude, qui fait
partie intégrante de l'installation Arduino. Vous le trouverez dans le répertoire
Program Files (x86)\Arduino\hardware\tools\avr.

<« Figure 8

Que se passe-t-il

en arriére-plan lors
du transfert du sketch
sur la carte Arduino ?

<« Figure 9
Extrait d'un fichier
Intel-HEX

Chapitre 2. Arduino : le logiciel

)

Figure 10

Message avertissant

de la présence de mise
a jour des hibliotheques

Figure 11 »
La liste des mises
a jour disponible

Figure 12 »
Installation d'une
nouvelle bibliotheque

La gestion des bibliotheques

Lenvironnement de développement dispose d’un grand nombre de biblio-
theques qui peuvent étre installées sur votre ordinateur. Elles peuvent étre
utilisées a différentes fins. Des mises a jour sont régulierement proposées.
Un message s’affiche pour vous en informer :

Une mise a jour est disponible pour certaines bibliotheques =

Lorsque vous cliquez sur le lien indiqué Bibliothéques, une nouvelle fenétre
s’affiche, dans laquelle les nouvelles mises a jour peuvent étre sélection-
nées. La liste des bibliotheques installées est mise a jour, ce qui est repré-
senté par la barre de progression ci-dessous :

@ Gestionnaire de bibliothéque X
Type |Tout | sujet [Tout S
Arduino Cloud Provider Examples ~

by Arduino
Examples of how to connect various Arduino boards to cloud providers
Mors info

Arduino Low Power

by Arduino LLC

Power save primitives features for SAMD and nRF52 32bit boards With this library you can manage the low power statas of
newer Arduino boards

More info

Arduino SigFox for MKRFox1200

by Arduino LLC

Helper library for MKRFox1200 board and ATABS520E Sigfox module This library allows some high level operations on Sigfox
module, to ease integration with existing projects

More info

Version 1.0.4 ~ Installer o)

Fermer

Pour installer une nouvelle bibliotheque, passez la souris sur la bibliotheque
correspondante. Deux messages s’affichent en regle générale. Une liste
vous propose les versions disponibles pour une installation ultérieure, le
bouton Installer s’affiche :

SparkFun Micro OLED Breakout

by SparkFun Electronics

Library for the SparkFun Micro OLED Breakout. Library for the Micro OLED Breakout, a monochrome, 0.66", 64x48 OLED
display. Several basic functionlity examples included.

More info

Version L3.3 ~ Installer

Partie I. Les bases

Une bibliotheque déja installée est identifiée par Pinscription verte
INSTALLED, et si une mise a jour est disponible, le bouton Mise a jour
apparait au passage de la souris :

SparkFun Micro OLED Breakout F 1 4

by SparkFun Electronics Version 1.3.2 INSTALLED ‘ Igure

Library for the SparkFun Micro OLED Breakout. Library for the Micro OLED Breakout, a monochrome, 0.66", 64x48 OLED i
display. Several basic functionlity examples included. |\‘e bOUtOﬂ MISG
Cosmiaiin a jour saffiche.
Sélectionner une version Installer Mise & jour

La gestion des bibliothéques est également accessible par 'option de menu
Outils | Gérer les bibliothéques qui permet d’ouvrir la fenétre ci-dessous.

& sketch_dec16a | Arduino 1.8.18 — m| pd <« Figure 14

Fichier Edition Croguis | Outils| Aide Ouvrir la fenétre de gestion
Formatage automatique Crl+T des bibliotheques

Archiver le croquis

sketch_dec16a Réparer encodage & recharger

woid setup() { Gérer les bibliothéques CtrbeMajel | *
FY R YOdE e Moniteur série Ctrl+Maj+M
1 Traceur série Ctrl+Maj+L
void loop() | WIFi101 / WiFiNINA Firrnware Updater
// put your main

Type de carte: "ESP32 Pico Kit" >

i Upload Speed: "921600" >
Partition Scheme: "Défaut” >
Core Debug Level: "Rien” ¥
Port

Récupérer les informations de la carte

Programmateur ¥

Graver la séquence d'initialisation

La gestion des cartes

Lenvironnement de développement Arduino peut non seulement program-
mer et controler des cartes Arduino, mais aussi celles d’autres fabricants,
par exemple les cartes ESP32 et ESP8266 tres connues et appréciées. Le
gestionnaire de cartes disponible sous 'option de menu Outils | Cartes |
Gestionnaire de cartes sert justement a intégrer ces cartes dans ’environ-
nement de développement.

Chapitre 2. Arduino : le logiciel @

Figure 15 »
QOuvrir la fenétre
de gestion des cartes

Figure 16 »

Ajouter une nouvelle carte

) sketch_dec16a| Arduino 1.8.18 — O *
Fichier Edition Croquis Outils Aide

Formatage automatique Ctrl+T

Archiver le croquis

sketch_dec16a Réparer encodage & recharger

void setup() {
// put your setu

Ctrl+Maj+| &
Ctrl+Maj+ M
Ctrl+Maj+L

Gérer les bibliothéques
Moniteur série

} Traceur série

void loop() | WiFi101 / WiFiNIMA Firmware Updater

// put your main

Type de carte: "Arduino Uno” Gestionnaire de carte

1 Port Arduino AVR Boards

Récupérer les informations de la carte ESP32 Arduino

Programmateur: "AVRISP mkll" >

Graver la séquence d'initialisation

Si je veux par exemple ajouter la compatibilité a la carte mega4VR a mon
environnement de développement Arduino, je tape en haut a droite le
terme megaAVR et le pack d’installation correspondant s’affiche. 1l peut
ensuite étre installé.

@ Gestionnaire de carte b4
Type |Tout | [megaawr|
Arduino megaAVR Boards o

by Arduino

Cartes incluses dans ce paguet:

Arduino Uno WiFi Rev2, Arduino Hano Every.
Online Help.

More Info

[187 «|| installer |

Cette recherche peut aussi s’appliquer a la gestion des bibliotheques. Vous
étes peut-étre intéressé par les cartes ESP32 et ESP8266 et vous avez cher-
ché le terme ESP32. Malheureusement, le terme recherché ne donne pas
de résultats et la liste reste vide. Pas de panique ! LCexplication est que de
nombreuses cartes de fournisseurs tiers fournissent des informations et
des fichiers d’installation dans un répertoire maison. Comment commu-
niquer ces chemins d’accés a I'environnement de développement Arduino ?
Cest tres simple ! Dans 'option de menu Fichier | Préférences, ouvrez la
fenétre de dialogue correspondante. Celle-ci se présente comme sur la
figure 17 page suivante. J'y ai déja entré le chemin d’accés requis pour la
compatibilité ESP32.

Partie I. Les bases

Préférences X
Paramétres Réseau

Emplacement du carnet de croquis

D \eanBibl \Arduing| | [Parcourr |

Choix de la langue : [System Defaut | (nécessite un redémarrage d'Arduino)
Taille de police de Fditeur : 2]

Tale de linterface: [Automatique | 100 % % (nécessite un redémarrage d'Arcuino)

Théme: [Théme par défaut + | (nécessite un redémarrage d'Arduino)

Afficher les résultats détailés pendant : [] compilation [] téléversement

Avertissement du compilateur: Rien

[] Afficher les numéras de ligne [Activer le repl de code

[Vérifier le code aprés téléversement [] Utiser un éditeur exteme

Verifier les mises & jour au démarrage Sauvegarder pendantla vérification ou le transfert

[] Use accessibiity features

Davantage de préférences peuvent Etre éditées directement dans le fichier
C:Wsers\jbfr_\AppDatalLocal\Arduino15\preferences. txt
{Editer uniquement lorsque Arduino ne 'exécute pas)

oK Annuler

Le chemin d’acceés a utiliser pour la compatibilité a la carte ESP32 est :

https://dl.espressif.com/dl/package_esp32_index.json

Pour ajouter la compatibilité de la carte ESP8266, ajoutez a 'URL précé-
dente le chemin d’acces suivant (séparé par une virgule) :

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Les deux cartes sont ensuite prétes a étre installées dans I'environnement de
développement Arduino. Il existe une source d’extension non officielle pour
des cartes de fournisseurs tiers, que vous trouverez a I’adresse ci-dessous :

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-
boards-support-urls

De trés nombreuses cartes pouvant étre programmeées avec 'IDE Arduinoy
figurent. Avant de commencer, copiez les chemins d’accés affichés sur cette
page dans les préférences Arduino dans la ligne que je vous ai indiquée.

Le code du sketch dans
I’environnement de développement

Certes, je m’ai ni la place ni la prétention de vous proposer ici une for-
mation de base en programmation C/C++. Toutefois, j’aimerais apporter
quelques précisions sur 'emploi de ce langage dans 'environnement de
développement. Le langage de programmation C/C++ fait la différence
entre les majuscules et les minuscules : en anglais, on dit qu’il est case
sensitive. Par conséquent, vérifiez la facon dont les commandes sont écrites.
Prenons I'exemple de la commande digitalWrite. Elle se compose de
deux mots (digital et Write). En programmation, la création d’'un mot par

Chapitre 2. Arduino : le logiciel

<« Figure 17

Les Préférences d'Arduino

)

Figure 18 >
Message d'erreur Arduino

I’assemblage de termes dont I'initiale est en majuscule (sauf pour le pre-
mier mot) se nomme le camel case. Le code suivant sera donc considéré
comme incorrect :

digitalwrite

Les erreurs de ce type sont détectées par I'environnement de développe-
ment Arduino et elles sont signalées. Un mot qui fait partie d’'une com-
mande est généralement affiché en couleur. S’il a été mal écrit, il "’apparait
pas en couleur et ne se distingue pas du reste du code qui reste noir. Dans
'environnement de développement, on voit que la commande de la ligne 8
est correcte et qu’elle présente un caractére de couleur correspondant.
Comme la commande a été mal écrite a la ligne 9, elle n’a pas été détectée
et elle est donc affichée en noir.

7 |woid loop() {

digitalWrite (13, E

9 digitalwrite (13, [

10}

: // Syntaxe correcte
GH); // Syntaxe incorrecte

Problemes courants

Il est inévitable que t6t ou tard, vous vous heurtiez a des problémes.
Personne n’est a I’abri, moi-méme y compris. Mais je sais par expérience
qu’il existe des sources d’erreurs récurrentes.

La carte est-elle sous tension ?

La carte ne sera pas alimentée si le cable USB est défectueux. Dans ce
cas, la LED ON ne s’allumera pas. La carte ne sera pas non plus reconnue
par le systeme et elle ne sera pas proposée sous la forme d’un port COM.

Ai-je bien choisi la carte et le port COM ?

Si la carte et le port COM n’ont pas été correctement choisis, le téléchar-
gement dure tres longtemps avant qu’un message d’erreur n’apparaisse
en rouge dans la partie inférieure de I'environnement de développement :

Une erfewr estsunenue lors du fransten du croguis (st s

—

10 Arduing Uno sur COM3

Il n’est pas possible d’accéder au port COM3 configuré précédemment.
Arduino propose une page de résolution des erreurs a I’adresse suivante :

https://arduino.cc/en/pmwiki.php?n=Guide/Troubleshooting#toc|

Partie I. Les bases

CHOISIR LE BON PORT COM @

Si vous rencontrez des problemes lors de la sélection du bon port COM, vous
disposez d'une solution tres simple. Regardez la liste des ports COM proposés
dans l'option de menu Outils | Port. Débranchez ensuite le cable USB de la carte
Arduino et regardez quel port n'est plus indiqué dans la liste. Rebranchez le
cable pour voir quel port a été ajouté. L'environnement de développement
Arduino indique tous les ports disponibles presque immédiatement apres la
modification.

CE QUE VOUS DEVRIEZ AVOIR SOUS LA MAIN DANS VOTRE Q
ATELIER DE BRICOLAGE ARDUINO

Passons maintenant au matériel que nous allons utiliser pour tous les
montages décrits dans cet ouvrage. Pour que les composants électroniques
et électriques puissent étre connectés correctement a la carte Arduino, deux
types d'éléments sont indispensables : d'une part, des plagues de prototypage,
ou breadboards, sur lesquelles les composants sont enfichés et, d'autre part,
un nombre suffisant de cables qui sont indispensables pour la connexion
électrique entre les différents composants. Nous utilisons a cette fin des
cavaliers flexibles qui se branchent facilement aussi bien sur la plaque de
prototypage que sur la carte Arduino.

<« Figure 19
Différentes plaques
de prototypage et de
cavaliers flexibles

Chapitre 2. Arduino : le logiciel

Figure 20 »
Combinaison d'une carte
Arduino et d'une plaque
de prototypage

La figure 19 de la page précédente présente deux plaques de prototypage
répandues qui existent en différentes tailles, formes et couleurs. Je vous
recommande d'acheter une ou plusieurs plaques de différentes dimensions,
car elles sont vraiment abordables. Investissez un peu plus en cas de doute
dans une plaque supplémentaire, cela en vaut vraiment la peine. Les cavaliers
flexibles, appelés également cables patch, sont également bon marché. Il
existe également de tres jolies variantes combinées a une carte Arduino et
une plaque de prototypage sur un support fixe sous forme de combinaison,
comme lillustre la figure 20. De cette facon, la carte Arduino et la plaque
de prototypage sont indissociables, ce qui facilite dans une certaine mesure
la mise en circuit. Par ailleurs, la figure 20 montre une carte Arduino Uno
proposée comme clone et donc un peu moins chére que la carte originale.
Les clones sont des copies proposeées par d'autres sociétés. Et comme la carte
Arduino Uno a été publiée avec une licence de matériel Open Source, chacun
est libre de copier la carte et de la modifier. La carte n'a pas besoin d'étre une
carte originale car 'Open Source autorise aussi ce genre de cartes.

.

Une solution trés élégante est l'utilisation d'une carte faite maison, que jai
baptisée Arduino Discoveryboard. Je vous présente cette carte en détail au
chapitre 4 et vous montre comment la construire vous-méme. L'Arduino
Discoveryboard vous fera gagner beaucoup de temps, que vous pourrez alors
consacrer a la construction des montages. Mais comme je l'ai déja dit : vous
n'étes pas obligé de le faire tout de suite.

Unmultimetre est également pratique pour mesurer des tensions, des courants
et des résistances, ou simplement pour vérifier des connexions électriques.

Il existe d'autres instruments trés intéressants que je ne peux pas tous vous
présenter ici. Je vous ai présenté les incontournables qui ne sont pas tres
nombreux et que tout bricoleur devrait avoir sous la main. Le multimetre fait
partie de ces instruments qui font gagner un temps précieux pour résoudre
les erreurs. Que ce soit pour mesurer des tensions ou des courants comme
contréleur de continuité ou pour déterminer une résistance, vous devriez
toujours avoir un multimétre sous la main.

Partie I. Les bases

De l'idée jusqu’au téléchargement
dans le microcontroleur

Dans ce chapitre, nous avons appris a installer le logiciel nécessaire au déve-
loppement d’un programme, puis a transférer un sketch sur le microcontro-
leur apreés sa saisie dans I'environnement de développement Arduino. Cette
procédure ne se limite pas a ce que nous avons pu entrevoir avec ce premier
coup d’ceil. Reprenons les différentes étapes en détail.

Idée Code Langage machine Arduino
source C++
‘ Doigt Compilateur | . Avrdude
Cerveau Editeur Systéme Mémaire AVR
de fichiers

Au début, il y a toujours une idée qui nait et mirit dans le cerveau. Comme
le microcontroéleur ne peut évidemment pas lire les pensées, nous avons
besoin d’outils. Nous nous servons d’un éditeur de texte qui fait partie
de I'environnement de développement pour transposer nos pensées en
actions qui sont formulées sous forme de commandes. Cette formulation
emploie un vocabulaire qui est composé d’é¢léments du langage de pro-
grammation C++. Ces éléments sont affichés a I'aide d’un compilateur
(AVR-GCC) qui est chargé de leur traduction dans un langage pouvant étre

< Figure 21
Un multimétre

<« Figure 22
De l'idée a sa mise
en ceuvre

Chapitre 2. Arduino : le logiciel

)

compris par le microcontroleur. La transcription de ce langage machine est
réalisée par un programme nommé Avrdude qui se charge de la transmis-
sion du code au microcontroleur Atmega328, monté sur la carte Arduino.

Au cours de ce chapitre, vous avez découvert les outils logiciels que vous
devez maitriser afin de programmer la carte Arduino, soit par le biais
du navigateur basé sur le Web soit par I'application distincte sur votre
ordinateur. Je vous ai montré comment raccorder la carte a votre ordi-
nateur et comment un sketch préinstallé fait immédiatement clignoter
la LED intégrée. En changeant le code, vous avez pu modifier la cadence
de clignotement. Je vous ai également indiqué quelques sources d’erreurs
récurrentes dans le cas ou vous rencontriez des probléemes de connexion
entre 'ordinateur et la carte Arduino.

Le chapitre 3 aborde en profondeur les bases de la programmation.

Partie I. Les bases

(w)

N’ayons pas peur
de la programmation :
les bases du codage

Dans le chapitre 2 sur le logiciel Arduino, nous avons déja un peu abordé la
programmation. Je vous ai montré un premier programme, appelé sketch,
sans préciser ce que programmer signifie. Je vais maintenant expliciter
les notions de base de la programmation : I'algorithme, les variables, les
constantes et les différents types de données. Et comme si cela ne suffi-
sait pas, je vais vous donner en plus des explications sur les structures de
controle et les fonctions. A la fin de ce chapitre, vous devriez connaitre a peu
pres la palette de fonctions dont vous disposez pour écrire un programme.

Vous connaitrez uniquement les bases du langage de programmation
C++, dans lequel ont été créés les sketches Arduino. Si vous avez envie
d’approfondir ce langage ou si vous souhaitez trouver des informations
complémentaires, vous pouvez lire 'ouvrage Programmer en C++ moderne
de Claude Delannoy (Editions Eyrolles).

Pour programmer, vous avez évidemment besoin d’une machine, que ce
soit un ordinateur ou un microcontréleur comme la carte Arduino. Il est
clair que ce genre d’appareil ne dispose pas d’une intelligence propre.
Sans instructions données par un programme, il n’est rien d’autre qu’un
matériel inutile, qui consomme tout au plus du courant. Matériel et logiciel
sont dépendants I'un de l'autre et ne peuvent fonctionner qu’ensemble.
Les programmes disent au matériel ce qu’il doit faire. Et le programmeur
dit au logiciel ce que celui-ci doit dire au matériel.

Chapitre

@

Qu’est-ce qu’un programme,
ou sketch ?

Pour ce qui est de la programmation, nous avons affaire en regle générale
a deux éléments.

Elément de programmation 1 : [’algorithme

Pour que le sketch puisse exécuter de maniére autonome une tache défi-
nie, un algorithme est créé, lequel contient un certain nombre d’étapes
indispensables a la réussite du sketch.

QU’EST-CE QU'UN ALGORITHME ?

Un algorithme est la description d’'une action en vue de régler un probléme
et se compose d'un nombre important d'étapes devant se dérouler dans un
certain ordre.

Un algorithme est une regle de calcul qui fonctionne a la maniére d’une
liste de controle. Imaginez que vous vouliez construire un boitier en bois
pour y loger votre carte Arduino, pour que cela soit un peu plus beau, plus
ordonné et plaise également a vos amis. N’achetez pas de bois sans avoir
préparé un plan répondant par exemple aux questions suivantes :

e Quelles sont les dimensions de la caisse ?
e De quelle couleur doit-elle étre ?

e Ou des ouvertures doivent-elles étre pratiquées pour installer par
exemple des interrupteurs ou des lampes ?

Apres avoir réuni le matériel, passez a la fabrication proprement dite, en
procédant étape par étape dans un certain ordre :

e fixation des plaques de bois ;

e mise a dimension des plaques de bois ;

e poncage des bords avec du papier de verre ;

e percage de certaines plaques de bois, appelées a recevoir des ports ;
e vissage des plaques de bois entre elles ;

e mise en peinture du boitier ;

e insertion de la carte Arduino et cablage des interrupteurs ou des
lampes.

()

Partie I. Les bases

Telles sont les étapes par lesquelles il faut passer pour arriver a vos fins. 11
en va de méme pour ’algorithme.

Elément de programmation 2 : les données

Vous avez tres certainement soigneusement noté les dimensions sur le
plan, de maniére a pouvoir les consulter pendant la construction. Il faut
faire en sorte que tout coincide a la fin. Ces dimensions sont comparables
aux données d’un sketch. L’algorithme utilise des valeurs temporaires qui
I’aident dans son travail de prise en charge des différentes étapes. Il utilise
pour cela une technique qui lui permet de stocker des valeurs et de les
rappeler par la suite. Les données sont en effet sauvegardées dans des
variables et disponibles a tout moment dans la mémoire. Vous en saurez
bient6t plus. Nous y reviendrons plus tard.

QUE SONT LES DONNEES ?

Lesinformations saisies et les valeurs mesurées sont généralement désignées
comme étant des données. Elles peuvent se présenter sous forme de texte
ou de valeurs numériques.

Qu’est-ce que le traitement des données ?

On entend par traitement des données I'utilisation d’un algorithme qui se sert
de données en entrée pour en obtenir d’autres, modifie celles-ci par diffé-
rents calculs et produit des résultats en sortie. Ce principe est appelé IPO.

< Figurel
Le principe IPO

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

(@)

Que sont les variables ?

Nous avons déja vu que des données étaient sauvegardées dans des
variables. Ces derniéres jouent un role central dans la programmation et
sont utilisées dans le traitement des données pour stocker des informations
de toutes sortes.

QU’EST-CE QU’UNE VARIABLE ?

Figure 2 »
Variable ledPin pointant

sur une zone de la mémoire

de travail

En programmation, une variable est un élément associant un nom a une valeur
modifiable, a laquelle il est possible d'accéder pendant le déroulement d’'un
calcul et qui est maintenue en réserve dans la mémoire.

Une variable occupe dans la mémoire une certaine place quelle garde
libre. LCordinateur ou le microcontroleur gére cependant cette mémoire
(de travail) selon ses propres méthodes. Tout ceci se fait au moyen de
désignations codées que tout un chacun a certainement du mal a rete-
nir. C’est pour cette raison que vous pouvez doter les variables de noms
évocateurs qui renvoient en interne aux adresses de mémoire concer-
nées.

Sur la figure 2, 1a variable nommeée ledPin pointe sur une adresse de départ
dans la mémoire de travail. Elle peut également étre considérée comme
une sorte de référence renvoyant a quelque chose de particulier. La ligne
suivante d’un sketch montre lutilisation d’une variable nommeée ledPin :

int ledPin = 13; // Variable déclarée + initialisée avec broche 13

a laquelle la valeur numérique 13 a été attribuée. Plus loin dans le sketch,
cette variable est évaluée et continue d’étre utilisée. Le terme int est
I’abréviation du mot Integer. 1l s’agit d’un type de donnée utilisé dans le
traitement des données pour caractériser des nombres entiers, ce qui nous
amene au point suivant.

0x14BC231F
ledPin 0x14BC2320
[— 0x148c2321

0x14BC2322

0x14BC2323

IR

Partie I. Les bases

(w)

Que sont les constantes ?

J’ai lu quelque part sur Internet qu’une variable constante est une variable
dont la valeur ne peut plus étre modifiée apres initialisation. Relisez cette
phrase et réfléchissez a ce qui suit :

e constant : non modifiable, qui persiste dans Iétat ou il se trouve ;
o variable : modifiable, non limité a une possibilité.

La premiére phrase semble étre paradoxale. Qu’est-ce que cela peut vou-
loir dire ? La deuxiéme partie de la phrase est juste : une constante apres
son initialisation ne peut plus étre modifiée pendant le déroulement du
programme. Une constante est identifiée comme étant constante par le
mot-clé const.

const int a = 17;

Les lignes de code ci-dessous seraient ainsi inadmissibles et entraineraient
un message d’erreur, étant donné que le contenu d’une constante ne doit
plus étre modifié :

const int a = 17; // Constante
void setup() {
a = 18; // Non autorisé !

}

Les types de données

Voyons maintenant les différents types de données et essayons de savoir
ce qu’est exactement un type de données et pourquoi il en existe plu-
sieurs types. Le microcontroleur gere ses sketches et ses données dans sa
mémoire. Cette mémoire est une zone structurée qui est gérée par des
adresses et qui enregistre ou restitue des informations, lesquelles sont
stockées sous la forme de 1 et de 0.

QU’EST-CE QU’UN TYPE DE DONNEES ?

Un type de données décrit une certaine quantité d'objets de données (variables),
qui ont tous la méme structure. Chaque variable doit avoir un certain type de
données.

La plus petite unité de mémoire logique est le bit, qui peut justement
enregistrer les deux états 1 ou 0. Imaginez celle-ci comme une sorte d’in-
terrupteur électronique, qui peut étre allumé ou éteint. Comme un bit
ne peut représenter que deux états, il est logique et nécessaire d’utiliser
plusieurs bits pour enregistrer des données. Un ensemble de 8 bits forme

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

(&)

Tableau 1 »

Type de données avec
plages de valeurs
correspondantes

1 octet et permet d’enregistrer 2° = 256 états différents. S’agissant d’un
systeme binaire, la base 2 est utilisée. Avec 8 bits, on peut donc couvrir
un domaine de valeurs compris entre 0 et 255.

Voici pour commencer une liste des principaux types de données, auxquels
vous serez confrontés a I’avenir :

Type de Plage Largeur Exemple
données de valeurs de données
void aucune zéro void setup() {}
octet 0a255 1 octet byte valeur = 42;
unsigned int 04 65.535 2 octets unsigned int secondes = 46547;
int -32.768 a 2 octets int ticks = -325;
32.767
long -23"a2¥-1 4octets long valeur = -3457819;
float -3.4*10%a 4octets float valeur de mesure = 27.5679;
3.4%10%
double voir float 4 octets double valeur de mesure = 27.5679;
boolean trueou false 1 octet boolean flag = true;
char -128a127 1 octet char mw = 'm’;
String variable variable String nom = “Erik Bartmann”;
Array variable variable int pinArray[] = {2, 3, 4, 5};

La plupart des types de données indiqués ici sont également utilisés dans
ce livre.

Que sont les fonctions ?

Une fonction est, dans la plupart des langages de programmation, la
désignation d’une construction permettant de structurer le code source
de sorte que ces parties du programme, qui peuvent étre qualifiées de
sous-programmes, puissent étre réutilisées dans le programme principal
et ouvertes plusieurs fois a différents endroits. Pour la programmation
orientée sur les objets, sur laquelle je reviendrai, il existe des constructions
comparables qui portent le nom de méthodes. A cela s’ajoute également le
terme d’encapsulage, qui se rapporte également aux fonctions. Un encapsu-
lage est le récapitulatif ou la dissimulation de données ou d’informations,
lacces s’effectuant via une interface définie. Cette interface est représentée
par Pouverture de la fonction. Par exemple, si vous souhaitez représenter
plusieurs fois dans un sketch la valeur moyenne de deux chiffres, les lignes
de code suivantes sont normalement presque toujours nécessaires, bien que
j’aie formulé tout cela de maniére un peu complexe pour rendre le sens de
la fonction plus claire. Il existe des fonctions qui fournissent a I’'appelant

Partie I. Les bases

(w)

une valeur de retour, comme c’est le cas ici. Il y a aussi des fonctions qui
exécutent une tache sans renvoyer a 'appelant une valeur de retour.

float a = 5.4, b = 7.36;
float somme = a + b;
float moyenne = somme / 2;

Pour calculer la moyenne de deux chiffres, ceux-ci sont additionnés et
le résultat est divisé par deux. Maintenant, si vous souhaitez créer cette
movyenne a plusieurs endroits dans le sketch, vous devrez insérer a ces
endroits les deux lignes ci-dessous. Mais cela devient plus facile avec la
définition d’une fonction. Celle-ci pourrait étre :

float moyenne(float a, float b)
{ return (a + b)/2;
3

Regardons cela de plus prés car beaucoup de choses entrent en jeu :

Type de lavaleur Nom Liste
de retour de la fonction des paramétres

Déclaration
de la fonction

\ 1 \
float moyenne (float a, float b) { «
Définition
return (a+b)/2 < d:lafonctiun

}

La premiere ligne d’une fonction est désignée sous le nom de signature
et constitue la ligne de déclaration d’une fonction. La définition d’une
fonction se trouve entre accolades. Si une fonction doit retourner quelque
chose a'appelant, le type de données de retour, float ici, doit se trouver en
téte d’instruction. Cela implique cependant la présence obligatoire d’une
instruction return dans la définition, celle-ci assurant au final le retour
d’une valeur, ce qui permet de quitter la fonction apreés son appel. On peut
transmettre a une fonction aucune, une ou plusieurs valeurs a son appel.
Dans le cas présent, deux valeurs de type de données float sont attendues,
qui doivent étre transmises a I’appel de la fonction aux parameétres a et b
indiqués. Ces parametres fonctionnent comme des variables locales, qui
sont retirées de la mémoire une fois que la fonction est terminée, car elles
ne sont plus nécessaires. Les deux fonctions prépondérantes dans I’envi-
ronnement de développement Arduino sont naturellement les fonctions
setup et loop, qui sont indispensables :

void setup() {/* ... */}
void loop() {/* ... */}

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

(w)

Vous voyez que les deux disposent du type de données de retour void,
dont la traduction est vide, parce qu’elles ne fournissent pas de valeur
en retour. Vous ne voyez pas non plus de liste de parameétres, ce qui se
caractérise par un vide entre les parentheses. Il est également possible de
ne pas transmettre de valeurs a I'appel de la fonction. 1l y aurait bien str
beaucoup d’autres choses a dire sur les fonctions, mais cela est un sujet pour
d’autres montages ou parties de tutoriels sur le langage de programmation
C++ et serait trop fastidieux a expliquer dans ce livre.

Que sont les structures
de controle ?

Les instructions ont déja été abordées au chapitre 2. Elles informent le
microcontroleur de ce qu’il doit faire. Mais un sketch se compose générale-
ment de toute une série d’instructions qui doivent étre traitées de maniere
séquentielle. La carte Arduino présente un certain nombre d’entrées ou de
sorties auxquelles vous pouvez raccorder divers composants électriques ou
électroniques. Sile microcontroleur est censé réagir a certaines influences
extérieures, vous branchez par exemple un capteur sur une entrée. La forme
de capteur la plus simple est un commutateur ou un bouton-poussoir.
Quand le contact est fermé, une LED est censée s’allumer. Le sketch doit
donc étre en mesure de prendre une décision. Sile commutateur est fermé,
la LED est alimentée (LED allumée) ; si le commutateur est ouvert, la LED
est privée d’alimentation (LED éteinte).

Partie I. Les bases

(w)

QU’EST-CE QU’UNE STRUCTURE DE CONTROLE ?

Les structures de controle sont des instructions dans les langages de
programmationimpératifs. Elles sont utilisées pour commander le déroulement
d'un programme et le dévier dans une certaine direction. Une structure de
contrdle peut ainsi étre une déviation ou une boucle. Son exécution est la
plupart du temps commandée par des expressions logiques (booléennes).

Jetons d’abord un coup d’ceil sur 'organigramme qui nous montre comment
se déroule 'exécution du sketch sur certains circuits, dans la mesure ou il
ne s’agit plus d’un parcours linéaire. Le sketch se trouve a la croisée des
chemins quand une structure de controle est atteinte et doit voir ce qu’il
est censé faire. Il doit évaluer une condition pour prendre une décision.

L’instruction if-then (si-alors)

Techniquement, nous utilisons l'instruction if-then (si-alors). Il s’agit d’'une
décision si alors.

<« Figure 3
Organigramme d'une

structure de contréle

si-alors
Faux
Vrai
Instruction(s)
-<—

Fin

Sila condition a été vérifiée, il s’ensuit ’exécution d’une, voire de plusieurs
instructions. Voici encore un court exemple :

if(boutonStatut == HIGH)
digitalWrite(ledPin, HIGH);

Si plusieurs instructions sont exécutées dans une instruction if, vous devez
constituer un bloc d’instructions avec les paires d’accolades. Il sera alors
exécuté en tant qu'unité d’instructions complete :

if(boutonStatut == HIGH)

{

digitalWrite(ledPin, HIGH);
Serial.println(“Niveau HIGH atteint.”);

}

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

(@)

Figure 4 >
Organigramme d'une
structure de contréle

si-alors-sinon

L’instruction if-else (si-alors-sinon)

1l existe aussi une forme élargie de la structure de controle si-alors. Il s’agit
d’une décision si-alors-sinon qui résulte d’une instruction if-else. La figure
suivante présente 'organigramme :

Instruction(s) Instruction(s)

< |

Fin

Lexemple de code suivant vous montre la syntaxe de l'instruction if-else.

if(boutonStatut == HIGH)
digitalWrite(ledPin, HIGH);
else

digitalWrite(ledPin, LOW);

L’instruction conditionnelle (switch-case)

Lorsque plusieurs interrogations se succedent, il est bien évidemment pos-
sible de donner plusieurs instructions if-then-else a I'aide d’une construc-
tion. Il existe cependant une version plus facile, avec une écriture simplifiée
qui est ainsi plus lisible : 'instruction switch-case (figure 5).

La syntaxe se présente comme suit :

switch(var)

{ case label1:

// Instruction(s)

break;

case label2:

// Instruction(s)

break;

default:

// Instruction(s) break;

}

Partie I. Les bases

<« Figure 5
Organigramme d'une
structure switch-case

Instruction(s) break

Instruction(s) break

Instruction(s) break

Y Y Y Y

Instruction(s) break

Fin <

Les parametres suivants sont autorisés :

e var : une variable avec les types de données autorisés int et char ;

o labell, label2 : des constantes avec les types de données autorisés
int et char.

Vous devez impérativement veiller a ce qu’apres P’exécution d’une ins-
truction, la boucle soit interrompue avec I'instruction break, sinon les
marqueurs de saut suivants seront aussi vérifiés et les instructions qu’ils
contiennent pourraient étre exécutées. Le dernier texte source d’instruction
break apres I'instruction default n’est pas obligatoire.

Opérateurs

Bien sir, dans les structures de controle et les conditions a tester, il n’y a
pas que la vérification de I’égalité. Le tableau ci-aprés vous montre tous
les opérateurs de comparaison du langage C++ :

Opérateur de Signification Exemple < Tableau 2
comparaison Opérateurs

= est égal a if(a==b) {...} de comparaison

<= est inférieur ou égala if(a<=b) {...}

>= est supérieur ou if(a>=b) {...}

égala

< est inférieur a if(<b) {...}

> est supérieur a if(a>b) {...}

1= n'est pas égal a if(a!=b) {...}

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

)

Tableau 3 »
Opérations logiques

1l existe également des liaisons par 'intermédiaire d’opérateurs logiques,
qui autorisent plusieurs conditions devant étre testées :

Opération Fonction Signification Exemple

logique

! PAS Inversion de l'état logique. if(ta) {...}
(NQT) Le résultat est vrai (true) si
'opérande est faux (false).

&& ET (AND) Le résultat est vrai (true) si if((a<=b)&&(c==5)) {...}
les deux opérandes sont vrais.

| OU (OR) Le résultat est vrai (true) si 'un if((a>=b)||(c<=6)) {...}
des deux opérandes est vrai.

Les boucles

Dans un sketch, I'exécution de plusieurs étapes récurrentes peut s’avérer
nécessaire pour calculer des données. Si ces étapes sont similaires, il n’est
pas nécessaire de les écrire en grand nombre les unes en dessous des
autres et de les faire exécuter de maniere séquentielle. Une structure de
programme spéciale a été créée a cet effet, permettant d’exécuter une
partie de programme composée d’une ou plusieurs étapes, maintes fois
répétées. Cette structure s’appelle une boucle.

QU’EST-CE QU’UNE BOUCLE ?

Une boucle, appelée loop en anglais, est une structure de controle dans un
langage de programmation. Elle répete un bloc d'instructions défini, appelé
le corps de boucle tant que la condition de la boucle logique est vérifiée. Les
boucles, dont la condition est toujours vérifiée ou dans lesquelles aucune
condition n'a été définie, sont appelées des boucles sans fin.

Voyons comment une boucle est construite. Il existe deux sortes de boucles :
e les boucles avec condition de sortie en téte ;
e les boucles avec condition de sortie en queue.

Ces deux familles de boucles possedent une instance qui controle si la
boucle doit étre itérée, et de quelle maniére elle doit ’étre. A cette instance
est rattachée une seule instruction ou tout un bloc d’instructions (corps
de boucle), qui est piloté et traité par I'instance.

Boucles avec condition de sortie en téte

Dans les boucles avec condition de sortie en téte, I'instance de controle
se situe, comme son nom I'indique, au début de la boucle. Lexécution de
la premiere itération de la boucle dépend de I’évaluation de la condition.
Pour les boucles dont la condition se situe en téte, les instructions placées

Partie I. Les bases

au sein de la boucle peuvent ne pas étre exécutées si la condition est fausse
des I'entrée dans la boucle.

Exécution du sketch

< Figure 6

Principe d'une boucle
Instance de controle avec condition de sortie

en téte

Téte de boucle

Bloc d'instructions

Corps de boucle

Lutilisation du pluriel dans le titre de cette section indique qu’il existe
plusieurs types de boucles avec conditions de sortie en téte, utilisées dans
différentes situations.

La boucle for

La boucle for est toujours utilisée quand on connait déja le nombre d’ité-
rations de la boucle avant méme de I'appeler. Examinons I'organigramme
qui sert de représentation graphique du programme.

< Figure 7
Organigramme
d'une boucle for

Initialisation de la
variable de contréle
Faux
Vrai
Instruction(s)

Réinitialisation de la
variable de contrdle

|

Fin

Une variable appelée variable de contréle est utilisée dans la boucle. Dans
la condition, elle est soumise a une évaluation qui décide si et combien de

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage @

Figure 8 p
Organigramme
d'une boucle while

fois la boucle doit étre itérée. La valeur de cette variable est généralement
modifiée au début de la boucle a chaque nouvelle itération, si bien que la
condition d’interruption doit étre remplie au bout d’'un moment dans la
mesure ou vous n’avez pas fait de faute de raisonnement. Voici un court
exemple, sur lequel nous reviendrons bientot :

for(int 1 = 9; 1 < 7; i++)
pinMode(ledPin[i], OUTPUT);

La boucle while

La boucle while est utilisée quand on ne sait qu’au moment de I'exécution
si et combien de fois la boucle doit étre itérée. Si, pendant une itération
de boucle, une entrée du microcontroéleur par exemple est constamment
interrogée ou surveillée alors qu’une action est censée étre exécutée a une
certaine valeur, cette boucle vous rendra bien service. Voyons maintenant
a quoi ressemble 'organigramme :

Instruction(s)

Sur cette boucle, la condition d’interruption se trouve également en téte.
En revanche, la variable indiquée dans la condition n’est pas modifiée.
Elle doit I’étre dans le corps de boucle, faute de quoi nous aurions affaire
a une boucle sans fin dont nous ne pourrions pas sortir tant que le sketch
s’exécute. Voici encore un court exemple d’une boucle while :

while(i > 1) { // Instance de contréle
Serial.println(i);
i=1-1;

}

Quand vous travaillez avec des valeurs ou des variables du type float, par
exemple dans I'instance de contrdle, il peut étre tres risqué d’attendre un
résultat précis a cause de I'imprécision de float. La condition d’interruption
risque de ne jamais étre remplie et le sketch se retrouvera prisonnier d’'une
boucle sans fin. Au lieu de Popérateur == pour évaluer I’égalité, utilisez de
préférence les opérateurs <= ou >=.

Partie I. Les bases

Boucle avec condition de sortie en queue

Venons-en maintenant a la boucle avec condition de sortie en queue. On
I’appelle ainsi parce que l'instance de controle est hébergée en fin de
boucle.

Exécution du sketch «Figure 9
! Bloc d'instructions Principe diu_ne boucle_
] Corps de boucle avec condition de sortie
i en queue
: {
I -------
T
[
[}
1]
]
]
]
]
1

V

Queue de boucle

Instance de contrdle

On I'appelle boucle do... while. La condition étant évaluée seulement a la
fin de la boucle, on peut déja en déduire qu’elle sera exécutée au moins

une fois.
< Figure 10
Organigramme

d'une boucle do-while

Instruction(s)

Cette boucle est peu utilisée, mais je tenais tout de méme a la citer par
souci d’exhaustivité. La syntaxe ressemble a celle de la boucle while, mais
vous remarquez que l'instance de contrdle est placée en fin de boucle.

do {
Serial.println(i);
i=zi-1;

I

} while(i > 1); // Instance de contréle

Vous utiliserez les différentes formes de boucle lorsque vous écrirez vos
sketches.

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

Commentez vos codes !

Quand on traite un probléme en programmeur et que l'on code, il peut
étre utile de prendre ca et Ia quelques notes. Il nous vient parfois une
fulgurance ou une idée géniale et, quelques jours plus tard, nous avons
du mal, et c’est souvent le cas pour moi, a nous souvenir exactement de
notre raisonnement. Qu’est-ce que j’ai bien pu programmer et pourquoi
m’y suis-je pris ainsi et pas autrement ? Chaque programmeur peut bien
slir avoir sa propre stratégie de prise de notes : bloc-notes, dos de prospec-
tus publicitaires, documents Word, etc. Toutes ces méthodes présentent
cependant des inconvénients non négligeables.

e Ou ai-je bien pu mettre mes notes ?
e S’agit de la derniére version actualisée ?
e Je marrive pas a me relire !

e Comment remettre ces notes a un ami qui s’intéresse également a
ma programmation ?

Le probléme vient de la séparation du code de programmation et des
notes, qui ne forment alors plus un tout. Si les notes sont perdues, vous
aurez vraiment beaucoup de mal a tout reconstruire. Imaginez maintenant
votre ami, qui n’a absolument aucune idée de ce que vous vouliez faire
avec votre code. Mais il existe une autre solution : vous pouvez laisser des
remarques et consignes dans le code, et ce, a I'endroit précis ou elles sont
pertinentes. Vous avez ainsi sous la main toutes les informations qui vous
sont nécessaires.

Commentaires sur une ligne

Voici un exemple pris dans un programme :

int ledBrocheRougeAuto = 7;

// La broche 7 commande la LED rouge (feu tricolore) int
ledBrocheJauneAuto = 6;

// La broche 6 commande la LED jaune (feu tricolore) int
ledBrochevertAuto = 5;

// La broche 5 commande la LED verte (feu tricolore)

Ici, des variables sont déclarées et initialisées avec une valeur. Des noms
évocateurs ont certes été choisis, mais je trouve utile de laisser encore
quelques bréves remarques complémentaires. Derriére la ligne d’instruc-
tion est ajouté un commentaire, introduit par deux barres obliques (slash).
Pourquoi ces barres sont-elles nécessaires ? C’est simple. Le compilateur
essaie bien entendu d’interpréter et d’exécuter tous les prétendus ordres
qui lui sont donnés. Prenons par exemple le premier commentaire :

Partie I. Les bases

La broche 7 commande la LED rouge (feu tricolore)

1l s’agit des divers éléments d’une phrase que le compilateur ne comprend
pas puisque ce ne sont pas des instructions. Cette notation entrainerait
une erreur pendant la compilation du code. Mais les deux // masquent
cette ligne et informent le compilateur que tout ce qui suit les deux traits
obliques ne le concerne pas et qu’il peut sans crainte ne pas en tenir compte.
Cest une sorte de pense-béte pour le programmeur, qui n’est méme pas
capable de retenir les choses les plus simples au-dela d’une certaine durée
(> 10 minutes). Soyez un peu indulgent avec lui ! Ce mode d’écriture permet
d’introduire un commentaire d’une seule ligne.

Commentaires sur plusieurs lignes

Si, en revanche, vous voulez écrire plusieurs lignes, comme une descrip-
tion succincte de votre sketch, placer deux barres obliques devant chaque
ligne peut s’avérer fastidieux. Aussi la variante a plusieurs lignes suivante
a-t-elle été créée.

/*

Auteur: Erik Bartmann

Scope: Commande feux tricolores

Date: 10.12.2020 HP: https://erik-bartmann.de/
*/

Ce commentaire présente une combinaison de signes introductifs /* et
une combinaison de signes conclusifs */. Tout ce qui se trouve entre les
deux tags (un tag étant une marque utilisée pour identifier des données
qui ont une importance particuliére) est considéré comme étant du com-
mentaire et ignoré par le compilateur. Tous les commentaires s’affichent
en gris dans I'environnement de développement Arduino, de facon a étre
immédiatement reconnaissables.

Voila donc le clavier sur lequel vous devrez jouer a I’avenir pour écrire
des sketches. Dans ce chapitre, je vous ai exposé de maniéere assez abs-
traite je ’avoue quelle méthode était utilisée pour expliquer clairement
a une machine ce qu’elle doit faire. Vous allez maintenant appliquer ces
connaissances dans les différents montages. Vous pourrez ainsi étendre
votre savoir grace a la mise en pratique de ces méthodes. Je vous conseille
de relire de temps en temps ce chapitre pour bien vous familiariser avec
ces informations.

Chapitre 3. N'ayons pas peur de la programmation : les bases du codage

)

La carte Arduino
Discoveryboard

Au cours du chapitre précédent, vous avez appris des connaissances utiles
sur la programmation, connaissances qui vous aideront stirement a I’avenir
aréaliser vos idées. J’aimerais vous présenter au cours de ce chapitre une
possibilité pratique qui consiste a installer sur une platine des composants
électriques et électroniques dont nous aurons toujours besoin et que vous
pourrez utiliser plus tard pour vos projets et vos montages Arduino. Cette
platine n’est pas obligatoire. Toutefois, elle vous simplifiera grandement la
tache dans certaines situations pour réaliser vos montages électroniques.

Si vous n’avez pas beaucoup d’expérience en matiére de soudure, je vous
recommande de commencer par les montages les plus simples décrits
dans ce livre afin de vous familiariser avec la technique et I’assemblage de
composants électriques et électroniques, puis de monter la carte Arduino
Discoveryboard. Leffort supplémentaire que vous devrez accomplir au
départ vous fera gagner beaucoup de temps par la suite, car vous n’aurez
pas besoin d’assembler constamment les mémes composants.

La figure de la page suivante représente la platine terminée dont je vais vous
présenter la construction en détail dans ce montage. Elle réunit différents
composants qui sont soudés sur une plaque d’essai, ce qui vous permettra
de les avoir tous sous la main. Je I’ai appelée Arduino Discoveryboard.

Chapitre

©

Afficheur LCD I°C

Figure 1 » .
La carte Arduino <
Discoveryboard ; Plaquede
55 prototypage miniature
Alimentati_on > ot
en tension] i Dig2 Dig3 Digd * - N . .' : .f\fﬁcheur Z segments

rduino-Discovery-Board ’ -' ’:’ ’:' ’:’ % a b caracteres

by Erik Bartmann ':76 '_’0 '_’a '_" o 3 Bargraphe I_ED

T e 7 a 10 segments

4 houtons-poussoirs
avec résistance de rappel

A
3 potentiométres Afficheur OLED I2C

Lidée m’est venue de fabriquer cette carte lorsque j’ai eu besoin pour la
nieme fois de plusieurs potentiometres pour réguler les entrées analo-
giques de la carte Arduino dans le but de réaliser le moniteur analogique.
Chaque fois, il fallait que je retourne toute ma réserve de composants pour
y retrouver les potentiometres nécessaires aux diverses expériences afin de
les raccorder a I'alimentation, puis de relier les contacts flottants aux entrées
analogiques A0 a A5. Cela ne pose pas vraiment de probléme en soi. Mais
il est fastidieux a la longue de recommencer sans cesse les mémes opéra-
tions. Lorsqu’a cela s’ajoutent des interrupteurs ou des boutons-poussoirs,
vous comprendrez a quel point il est préférable que tout soit réuni au
méme endroit. Seuls prérequis : une main sire et les composants énu-
meérés ci-apres. N'essayez pas forcément de reproduire la Discoveryboard
présentée ici. Inspirez-vous-en pour créer votre Discoveryboard person-
nelle en disposant a votre guise sur une platine les composants que vous
utilisez souvent.

Composants nécessaires

Pour la carte Arduino Discoveryboard, nous aurons besoin des composants
suivants :

Tableau 1>

Liste des composants
3 boutons-poussoirs
miniatures
(avec bouchon de couleur)

Partie I. Les bases

Composant <« Tableau 1

' Liste des composants
marron/noir/orange

suite
6 résistances de 10 k) I I ﬂ (suite)
10 KQ
orange/orange/marron
14 résistances de 330 Q — ' l l
3300

3 potentiométres de 10 kQ

1 écran LC-I’C

1 bargraphe, par ex. lmrrf
Kingbright DC-10EWA Q...

1 écran OLED 2,4 cm
(0,96 pouce), 128 x 64 pixels,
pilote LCD

3 barrettes femelles a
64 broches (RM: 2,54)

1 afficheur sept segments
a 4 caractéres, par ex.
CL5641BH

1 plaque de prototypage
miniature

Chapitre 4. La carte Arduino Discoveryboard

()

Tableau 1 » Composant

Liste des composants
(suite)
1 platine perforée 160 x 100
(RM: 2,54)
4 pieds en caoutchouc
Schéma des connexions
Le schéma des connexions est vraiment simple et facile a comprendre.
. 5VGND
Figure 2> oLeD _— | 1 e g
Le schema des w[=g B : jﬁz
connexions de la — a————" | T
. : : o
Discoveryboard] ﬁ y B
| !r l e’ . Glee
Broches de connexi B gﬁ %g;g;
Fha [GloiG 3
ODD0D0000000o0an [OlpiG 4
R 6 [8 [[e [BT
LCDisplay .
Broches de connexions

@ @
Broches de connexions | 1| [[z [s

ETJETZET'ETG
w E S S §

Pour la soudure au dos de la platine, il faut avoir la main tres stre. Mais si
j’y suis arrivé, vous y parviendrez aussi. Comme les points de soudure sont
tres rapprochés, il est conseillé d’avoir une pompe a dessouder a portée
de main, car deux points de soudure tres proches risquent de se rejoindre.
Ce n’est pas dramatique mais c’est énervant. Cela m’est arrivé tres souvent.

1
LEDI0
LEL
I
i
LED7
LEDS

%
LEDS

£l
LED3

2
LED1

Lafficheur sept segments

Nous utilisons pour I'affichage un afficheur sept segments a quatre carac-
teres avec une anode commune, de type CL5641BH. Il est évidemment
possible d’utiliser d’autres composants présentant des spécifications simi-
laires. La disposition des broches de Iafficheur est illustrée page suivante.

Partie I. Les bases

Je décrirai plus en détail dans le montage n° 12 comment commander
cet afficheur sept segments. On peut voir sur le schéma des connexions
que tous les segments des différentes positions sont reliés entre eux. Cela
signifierait évidemment que tous les segments a toutes les positions s’al-
lumeraient en méme temps, ce qui serait completement stupide. Le point
crucial est la commande ciblée ou intelligente des différentes anodes des
positions Digl a Dig4. Ces anodes sont toutes reliées entre elles, d’ou le
nom d’anode commune. Un procédé particulier entre en application pour
commander maintenant chaque position avec des valeurs de positions
différentes. Cela devient intéressant !

CL5641BH

12 7
eeo0e0e0

7 Dig 1 7

[B: £ £ £ £ £ £ £ A Cn £n £n £s K0 K A £ £ £ £ £ £ L ABE- £ K2 K2 K2 K- 50 42 A
al bl ¢c| df el f| gf dp al bl ¢ df e f| g| dp| al bl cf d| ef f] gf dpf al b ¢| d| e| | gf dpf
0000000

17 42 1105 3

Chapitre 4. La carte Arduino Discoveryboard

< Figure 3

La disposition des broches

de l'afficheur CL5641BH

@)

Partie 2
Les montages

Hello World -
faire clignoter une LED

La plupart des manuels sur les langages de programmation commencent
par la présentation d’un programme appelé Hello World. Il donne un pre-
mier apercu de la syntaxe du langage de programmation en affichant le
texte Hello World dans une fenétre. De cette maniere, un programmeur
peut se faire une idée du langage de programmation et de sa syntaxe, et
gagner ainsi du temps.

« Hello World » clignote

A quoi ressemble un programme Hello World dans univers Arduino ? En
effet, notre Arduino n’a pas d’écran a l'origine, et donc pas de console de
visualisation pour nous informer. Alors que faire ? Si aucune communi-
cation sous une forme écrite n’est possible, peut-étre lest-elle avec des
signaux optiques ou acoustiques ? Nous optons pour la variante optique,
car une diode électroluminescente, également appelée LED, se branche
sans probléme a I'une des sorties numériques et attirera a coup sar Iatten-
tion. J’ai été moi-méme trés étonné quand ¢a a marché du premier coup.
Voyons d’abord la liste des composants.

Composants nécessaires

Ce montage ne nécessite pas grand-chose et il peut méme se passer de
composants supplémentaires. En effet, la carte Arduino comporte une LED
qui est désignée par la lettre L. Toutefois, j’aimerais compléter ce montage
par quelques composants que nous réutiliserons pour d’autres montages.

Montage

(o)

Tableau 1-1 »
Liste des composants

Figure 1-1»
Le schéma
des connexions

Composant

1 LED rouge

rouge/rouge/marron
1 résistance de 220 Q
220Q

Avant d’examiner le programme Arduino, ou sketch, jetons d’abord un
ceil au schéma. Ce schéma représente le circuit du montage sous forme
graphique, certains I'appellent aussi le schéma des connexions.

Le schéma des connexions
Le schéma ne représente qu’une seule LED avec la résistance correspondante.

L’anode de la LED (la tige longue) est reliée a la broche 13 via la résistance
série de 220 Q, tandis que I'autre extrémité, ou cathode (la tige courte),
de la LED est reliée a la masse (GND) de la carte Arduino. Pour ce circuit,
j’utilise pour la premiere fois la carte Arduino combinée a une plaque de
prototypage, dont je vous ai déja parlé dans le chapitre d’introduction (cha-
pitre 2). Jutiliserai dans les montages suivants ’Arduino Discoveryboard,
mais vous pouvez évidemment réaliser de votre c6té tous les montages
sur une plaque de prototypage tout a fait normale.

. Power

a

|54

L IoREF

L RESET

L avs

L osv

K enND 2

LoNo =
&

LN *

-
-
-

L a0
Lot
L a2
L a3
LA
U as

(~=Wad) O/ TvLISIa

NI SOTVNY.

w ONM oulnply

Partie 2. Les montages

<« Figure 1-2
Le circuit sur une petite
carte combinée Arduino

ATTENTION A LA POLARITE DE LA LED

Veillez a respecter la polarité correcte de la LED, faute de quoi nous ne verrons
qu'une LED éteinte. Vous ne risquez pas dendommager quoi que ce soit
avec une LED mal raccordée mais, tant qu'a faire les choses, faisons-les
correctement.

Le sketch Arduino

Le code de notre premier sketch a pour effet de faire clignoter toutes les
secondes une LED raccordée a une résistance. Le programme est le suivant :

int ledPin = 13; // Variable déclarée
// + initialisée avec broche 13
void setup() {

pinMode(ledPin, OUTPUT); // Broche numérique 13
// définie comme sortie

}

void loop() {
digitalWrite(ledPin, HIGH); // LED au niveau HIGH (5 V)

delay(1000); // Attendre une seconde (1000 ms)
digitalWrite(ledPin, LOW); // LED au niveau LOW (@ V)
delay(1000); // Attendre une seconde (1000 ms)

}

Je recommande vivement de taper vous-méme le code. Je trouve que cela
est bénéfique sur le plan pédagogique. Vous apprendrez par exemple a

Montage 1. Hello World - faire clignoter une LED @

toujours mettre un point-virgule a la fin d’'une ligne d’instruction. Vous vous
familiariserez plus avec les finesses de la programmation si vous entrez
vous-méme les lignes de code. Cela s’applique en particulier au code du
premier montage. Pour les montages suivants, le code est parfois si long
que le taper a la main serait trop fastidieux.

Le code utilisé dans ce livre est disponible a I’adresse :

https://www.editions-eyrolles.com/dl/0100583

@ LA STRUCTURE DE BASE D’UN SKETCH ARDUINO

Figure 1-3 >
La structure de
base d'un sketch

Tous les sketches Arduino présentent la méme structure. Celle-ci est
représentée sur la figure 3

Début du sketch

Exécution
une seule fois

Exécution
une seule fois

Fonctions

Boucle infinie

L'ensemble du programme, apres le démarrage du sketch, est divisé en trois
blocs, comme vous pouvez le voir ci-dessus. Chaque bloc a une fonction
clairement définie dans un sketch.

Bloc vert : déclarations et initialisations

Dans ce premier bloc, des bibliotheques externes sont par exemple intégrées,
si nécessaire, a 'aide de linstruction #include. Vous apprendrez dans les
montages suivants comment cela fonctionne. C'est également 'endroit idéal
pour déclarer des variables globales qui seront visibles et utilisables dans
l'ensemble du sketch. La déclaration permet de définir a quel type de données
la variable doit étre affectée. Linitialisation en revanche affecte une valeur a
la variable.

Bloc bleu : fonction setup()

Les différentes broches du microcontréleur sont programmées la plupart du
temps dans la fonction setup(). Celle-ci définit donc quelles broches doivent
servirdentrées et de sorties. Certaines broches sont connectées a des capteurs
comme des interrupteurs ou des résistances sensibles a la température, qui
dirigent des signaux de l'extérieur vers une entrée correspondante. D'autres
broches transmettent les signaux aux sorties, pour commander par exemple
un moteur ou une diode lumineuse.

Partie 2. Les montages

Bloc orange 3 : fonction loop()

La fonction 1oop() estune boucle sans fin. Elle contient la logique, par exemple
lorsque des capteurs doivent étre interrogés ou des moteurs commandés en
continu. Les deux fonctions, setup() et loop() constituent ensemble un bloc
d'exécution, reconnaissable dans le code aux paires d'accolades {}. Elles servent
de limitateurs permettant de savoir ou la définition de la fonction commence
et ou elle se termine.

Les deux fonctions setup() et loop() doivent avoir ces dénominations
exactes, car elles sont recherchées au démarrage du sketch, parce quelles
servent de points d'entrée pour garantir un démarrage défini. Comment le
compilateur pourrait savoir quelle fonction doit étre exécutée une seule fois
et quelle fonction en continu dans une boucle sans fin ? Ces noms sont donc
indispensables a chaque sketch. Ils sont toujours précédés du mot-clé void.
ILindique que la fonction ne donnera probablement aucune information en
retour a la fonction qui l'a appelée.

Revue de code

Au départ, nous déclarons et initialisons une variable globale portant le
nom de ledPin et nous lui attribuons la valeur 13. A 'aide de Iinstruction
int (int = Integer), nous décidons qu’il s’agit d’un type de donnée entier.
Cette variable devient visible dans toutes les fonctions et est accessible.
Linitialisation s’apparente a une affectation de valeurs avec Popérateur
d’affectation =. La déclaration et I'initialisation s’effectuent ici sur une seule

ligne.
Type
de donnée Déclaration Initialisation
I || 1 T

Cint e 13)

La fonction setup() est appelée une fois au début du démarrage du sketch
et la broche numérique 13 est programmée comme sortie. Examinons

encore une fois I'instruction pinMode.

Numéro de
Commande la broche Mode
r R e M 1

(pinMode(13, ouTPUT) ;)

Elle présente deux arguments numeériques. Le premier pour la broche a
configurer et le deuxiéme pour définir son comportement comme entrée
ou sortie. Comme nous voulons raccorder une LED, nous avons besoin
pour cela d’une broche de sortie. Le sens de circulation du deuxiéme
argument est indiqué par une constante prédéfinie. Derriére OUTPUT se

cache la valeur 1.

Montage 1. Hello World - faire clignoter une LED

©

Tableau 1-2 p
Les constantes
et leurs valeurs

Il en va de méme pour I'instruction digitalWrite, qui présente également
deux arguments.

Numéro de

Commande labroche Niveau
11 T 1

(digitalWrite(13 , HIGH))

On trouve ici aussi une constante dont le nom est HIGH, censée servir
d’argument pour un niveau HIGH sur la broche 13. Elle est équivalente a
la valeur numérique 1. Vous trouverez les valeurs correspondantes dans
le tableau ci-dessous :

Constante Valeur Explication

INPUT 0 Constante pour l'instruction pinMode (programme
la broche en tant qu’entrée)

OUTPUT 1 Constante pour Uinstruction pinMode (programme
la broche en tant que sortie)

LOW [%] Constante pour l'instruction digitalWrite (met la broche
au niveau LOW)

HIGH 1 Constante pour Uinstruction digitalWrite (met la broche

au niveau HIGH)

Linstruction delay sert a la temporisation dans le sketch. Elle interrompt
’exécution du sketch pendant un temps correspondant a la valeur donnée
qui exprime la durée en millisecondes (ms).

Commande Durée (ms)
1T 1

Cdelay(lOOO)D

La valeur 1000 signifie une attente de 1 000 ms précisément, soit 1 seconde,
avant de continuer.

Les différentes étapes de travail de la boucle sans fin, qui a été déclenchée
par l'instruction void loop sont :

1. allumez la LED de la broche 13 ;
2. attendez 1 seconde ;
3. éteignez la LED de la broche 13;
4. attendez 1 seconde ;

5. revenez au point 1.

Partie 2. Les montages

lllustration de [’évolution temporelle

Cest difficile a voir, mais en regardant bien, on s’apercoit que la LED sur
la carte clignote en méme temps que la LED reliée extérieurement. Les
LED sont censées commencer a clignoter aussitot apres la transmission
réussie sur la carte. LCoscillogramme présente plus précisément I’évolution
temporelle de 'impulsion sur la sortie numérique.

J’ai récupéré directement le niveau sur la sortie sans résistance série. Elle
alterne constamment entre 0 V et 5V, ce qui est caractérisé ici par L (LOW)
et H (HIGH).

1.0007986 s

2.001591s

ATTENTION !

Ontrouve sur Internet des schémas de circuits ol une diode électroluminescente
est branchée directement entre masse et broche 13. Les deux fiches femelles
se trouvant l'une a c6té de l'autre, c6té broches numeériques, il est trés aisé de
brancher une LED. Je vous mets expressément en garde contre cette variante,
car la LED est utilisée sans résistance série. Ce n'est pas tant pour la LED,
mais bel et bien pour votre microcontréleur que je m'inquiéte. J'ai mesuré
une fois que l'intensité du courant atteignait 60 mA. Cette valeur est de 50 %
au-dessus du maximum et donc assurément trop élevée. Le courant admis
par une broche numeérique du microcontréleur est de 40 mA au maximum.

Problemes courants

Les erreurs ont le don de se glisser rapidement méme si vous pensez
avoir suivi a la lettre les textes et les figures. Je sais par expérience que
la recherche d’erreurs dans un programme ou un circuit est parfois fasti-
dieuse. C’est pourquoi j’'indique toujours dans chaque montage les sources
d’erreurs possibles. Si votre montage ne fait pas ce que vous attendez de
lui, passez en revue les points que jénumere dans cette section.

Si la LED ne s’allume pas, plusieurs raisons peuvent en étre la cause.

La LED est-elle mal polarisée ?

Rappelez-vous les deux connexions d’une LED que sont I’anode et la
cathode.

LED

{-lKathode o

<« Figure 1-4
Evolution du niveau
sur la broche de sortie
numérique 13

®

Montage 1. Hello World - faire clignoter une LED

©

La LED est-elle défectueuse ?

La LED a peut-étre été grillée par une surtension lors des montages précé-
dents. Testez-la avec une résistance de 220 Q sur une source d’alimentation
de5V.

Y a-t-il une erreur de raccordement ?

Vérifiez les fiches de la barrette de raccordement qui sont reliées a la LED
ou a la résistance. S’agit-il bien de GND et de la broche 13 ?

Une erreur se serait-elle glissée
dans le code ?

Vérifiez le sketch que vous avez entré dans l’éditeur de I'IDE. Peut-étre
avez-vous oublié une ligne ou commis une erreur, ou peut-étre le sketch
a-t-il mal été transmis ? Avez-vous bien mis les accolades au début et a la
fin des fonctions setup() et loop() ? Avez-vous toujours terminé une ligne
d’instructions avec un point-virgule ? Ce sont les erreurs les plus fréquentes
commises par les débutants.

Sila LED qui se trouve sur la carte clignote, la LED branchée doit elle aussi
clignoter. Le sketch fonctionne dans ce cas correctement.

(") BASES DE CALCULS DE LA RESISTANCE SERIE

Figure 1-5 >
Une LED avec
résistance série

Dans ce montage, jai utilisé une résistance de 220 O qui est amplement
suffisante pour ce petit circuit. Mais vous avez parfaitement le droit de
vous interroger sur les raisons qui ont motivé ce choix. Le circuit suivant
comporte une diode et une résistance série qui sont branchées a une source
d'alimentation.

+5V O gy <o oo

Itot

----- Utot = +sv

A\
b !LED Ulep-av

v \/

GND Oﬂ ---------------

GND

Partie 2. Les montages

Jiai ajouté quelques fleches pour les valeurs de tension et le courant total.
Pour calculer la valeur d'une résistance, on utilise la loi d'Ohm que nous avons
déja évoquée. Elle décrit le rapport entre la tension, le courant et la résistance.
Si nous amenons une tension U a un composant, le courant / qui le traverse
évolue proportionnellement ala tension. Le rapport entre les deux grandeurs,
c'est-a-dire la tension et le courant, est donc constant et il définit la résistance
électrique R. Nous obtenons alors ['équation suivante :

U
— = constante = R
I

Si je me donne la peine de mettre les lettres dans l'ordre, j'obtiens l'équation
suivante qui me sert a calculer la résistance électrique :

U

R=—
I

Un aspect important n'a pas encore été abordé : qu'est-ce qu’une résistance
série ? Les électrons circulant dans un conducteur peuvent avoir plus ou moins
de mal a le traverser. Sur leur chemin, ils rencontrent en effet des résistances
tres différentes les unes des autres. On peut établir une classification des
matériaux en fonction de leur conductibilité :

e isolants (trés haute résistance). Par exemple : la céramique ;
e mauvais conducteurs (haute résistance). Par exemple : le verre ;
e bons conducteurs (faible résistance). Par exemple : le cuivre ;

e trés bons conducteurs (supraconductivité a de trés basses températures
ou la résistance électrique tend vers 0) ;

e semi-conducteurs (la résistance peut étre controlée). Par exemple : silicium
ou germanium.

Ilexiste deux grandeurs électriques inversement proportionnelles: larésistance
R et la conductance G. Plus la résistance est élevée, plus la conductance est
faible et inversement. La relation qui lie une résistance a une conductance
est donnée par :

1

R=—

G
La résistance est la valeur inverse de la conductance. On peut comparer une
résistance élevée a un goulet d'étranglement que doivent franchir les électrons.
Le flux de courant est freiné et donc plus faible. Imaginez que vous couriez
sur une surface lisse. Avancer ne devrait pas vous poser trop de problemes.
En revanche, si vous essayez de courir dans du sable en gardant la méme
allure, c'est fatigant. Vous dépensez de 'énergie sous forme de chaleur et votre
vitesse diminue. Il en va de méme pour des électrons qui doivent traverser
par exemple du verre (mauvais conducteur) au lieu du cuivre (conducteur).

Montage 1. Hello World - faire clignoter une LED

©

Figure 1-6 >
Une résistance freinant
le flux d'électrons

Cette résistance n'est évidemment pas sans conséquences. Le frottement
plus intense des électrons, par exemple sur la paroi externe ou bien entre
eux, dégage une énergie sous forme de chaleur que la résistance transmet
a lextérieur.

Laplupart des circuits électroniques recourent a des composants spéciaux, qui
réduisent artificiellement le flux de courant. La résistance R est alors indiquée
enohms (Q)). ILs'agit de résistances fabriquées spécialement (par exemple des
résistances a couche de carbone ou a couche métallique) avec des valeurs
différentes, pourvues d'un code couleur qui permet de déduire leur valeur de
résistance respective. Nous reviendrons plus loin sur ce point.

v— g- ©-

Lorsque vous examinez de plus prés la figure 1-6 avec le flux délectrons,
vous pourriez avoir l'impression que les électrons sur le c6té gauche avancent
plus vite que ceux du c6té droit. Ce n'est pas le cas. Le courant qui circule
dans un circuit fermé est toujours le méme ! Certes, il est influencé par la
résistance illustrée ici, mais le courant avant ou apres la résistance est toujours
le mé&me. A chaque unité de temps, le m&me nombre d'électrons passe dans
le conducteur ou dans la résistance.

Revenons a notre circuit afin de calculer la résistance. Comment déterminer
le courant et la tension ? Ce n'est pas trés compliqué. A la résistance série et
la LED (entre les points A et C de la figure 1-5), on a+5 V, ce qui correspond a
la tension d'alimentation de la carte Arduino. On la retrouve aussi a la sortie
de la broche numérique lorsqu’elle est commandée avec un niveau HIGH.
Aux bornes de la LED, entre les points B et C, on a, normalement, une chute
de tension d'environ 2V, selon la LED utilisée et sa couleur. La tension aux
bornes de la résistance série, donc entre les points A et B, est par conséquent
la différence entre +5 V et +2 V, soit +3 V.

Reste a connaitre la grandeur du courant qui passe par la résistance. Lorsque
les composants sont disposés les uns derriére les autres dans un seul circuit
électrique, nous parlons de montage en série. C'est notre cas ici. Dans un
montage en série, le courant passe par tous les composants. La fiche technique
de la carte Arduino nous apprend que le courant maximum fourni par une
broche numérique est de 40 mA. Cette valeur ne doit en aucun cas étre
dépassée, faute de quoi le microcontréleur pourrait étre endommagé. Clest
pourguoi nous limitons le courant a 'aide de la résistance Rv. En électronique,
on n'est pas obligé de repousser les limites et on préfére méme s'en tenir
sagement a l'écart. Pour calculer la résistance série, j'utilise ici deux valeurs
de courant différentes soit 5 mA et 10 mA, des valeurs situées entre 5 mA et
30 mA sont courantes pour une LED.

Partie 2. Les montages

Voyons les calculs correspondants et les résultats obtenus :

u -u 5V -2V
RI _ ges LED _ _ 300 Q
I' 10 ma
et
u -u 5V -2V
RZ _ ges LED _ _ 600 Q
I 5ma

Pour une telle valeur de résistance, nous pouvons donc employer des valeurs
comprises entre 300 Q et 600 Q. La sortie de la broche Arduino correspondante
ne sera que modérément sollicitée. Une valeur de 330 Q suffit amplement en
ce qui nous concerne. Toutes les valeurs de résistance possibles ne sont pas
fabriquées, mais des E-séries normalisées sont proposées avec certaines
classes. Il faut également tenir compte de la dissipation d'énergie avec une
valeur admise de % watt. Divers assortiments sont disponibles dans le
commerce.

Je vous avais promis de vous expliquer la signification des anneaux de
couleurs des résistances. La figure ci-dessous présente une résistance dotée
de différents anneaux de couleur.

jaune/violet/rouge

470 Q

Que signifient-ils exactement et comment déchiffre-t-on le code ? Nous allons
l'expliquer en nous servant d'un exemple :

1" anneau

2° anneau
Multiplicateur
£ ; Tolérance

\

 m— (N N | I O |

Une résistance posséde généralement quatre anneaux de couleur. On a
opté pour cette forme de marquage, car il n'y a pas assez de place pour un
marquage explicite. Pour interpréter les anneaux de couleur, il faut placer les
trois anneaux les plus rapprochés sur le c6té gauche. D'apres vous, quelle est
la valeur de cette résistance ?

Valeur de
1°" anneau 2¢ anneau 3¢ anneau 4° anneau -~
la résistance
Jaune : valeur |Violet : valeur | Rouge : multiplicateur | Or:+/-5% 4,7 kQ
4 7 100

Quand on écrit ces chiffres les uns a c6té des autres, on obtient un résultat
parfaitement lisible : 4 700 correspond a 4,7 kQ. La valeur de tolérance donne

Montage 1. Hello World - faire clignoter une LED

©

Tableau 1-3
Code couleur
des résistances

Figure 1-7 »

Symboles de la résistance
fixe dans un schéma
électrique

Tableau 1-4
Différentes valeurs
de résistance

des indications sur la qualité : plus elle est basse, plus la valeur de résistance
remplit ses promesses. Mais d'ou est-ce que je tiens ces valeurs ? C'est tres
simple ! Le tableau ci-dessous reprend tous les codes couleurs avec leurs
valeurs correspondantes :

Couleur 1°" anneau 2°anneau 3°anneau 4° anneau
. Noir X 0 100=1
. Marron 1 1 10'=10 +/-1%
‘ Rouge 2 2 102=100 +-2%
‘ Orange 3 3 10°= 1000
O Jaune 4 4 104= 10000
' Vert 5 5 10°=100 000 +-5%
. Bleu 6 6 10=1000000 +/-0,25%
‘ Violet 7 7 107=10000000 +/-0,1%
O Gris 8 8 106=100000 000 +/- 0,05 %
O Blanc 9 9 107 =

1000 000 000

O or - - 107=0,1 +-5%
O Argent - - 102=0,01 +/-10%

Voicicomment sont représentées les résistances dans les schémas électriques.
Ily a des différences entre les normes européennes et américaines :

R R
[l _/\/v_
| I
Notation européenne Notation américaine

Le symbole de l'ohm (Q) est en principe absent et seul le nombre est indiqué
si la valeur est inférieure a 1 kQ (1 000 ohms), suivi éventuellement d'un K
pour kilo, si la valeur est supérieure ou égale a 1 kQ ou d'un M pour méga, si
la valeur est supérieure ou égale a 1 MQ. Voici quelques exemples :

Valeur Marquage

2200 220

1000 Q 1K

47000 4,7Kou 4K7
22M0 22M

Partie 2. Les montages

La dissipation d'énergie maximale admise pour notre montage est de % watt.
Il s'agit toujours de résistances a couche de carbone. Elles coltent moins cher
que celles a couche métallique. Vous trouverez des résistances de différentes
tailles et couleurs : plus elles sont grandes ou grosses, plus la dissipation
d'énergie est élevée.

Voila pour votre premier montage réalisé avec la carte Arduino ! Vous avez
raccordé une LED et une résistance appropriée a la carte Arduino puis,
a laide du sketch, vous avez fait clignoter cette LED a une cadence que
vous avez définie. Vous avez réussi a faire clignoter la LED ? Si la réponse
est oui, vous pouvez étre fier de vous ! Si vous vous en sentez capable,
vous pouvez maintenant vous pencher sur le théme suivant. La MLI est
un sujet que vous rencontrerez immanquablement durant votre carriére
de développeur amateur. Si vous ne comprenez pas tout tout de suite,
n’hésitez pas a revenir sur le sujet plus tard.

LA COMMANDE MLI

Nous en arrivons a la commande d’'une LED par MLI. Nous avons déja vu
brievement de quoi il s'agit au chapitre 1. Il est maintenant temps de passer
a la pratique. Nous voulons allumer progressivement une LED a l'aide d'une
commande analogique, puis l'éteindre brusquement lorsqu’une valeur
maximale est atteinte. Ensuite, tout doit recommencer au début. Il s'agit
presque ici d'un clignotement en douceur, contrairement au clignotement
brusque du circuit précédent. La commande s'effectue a l'aide des broches
numériques dont le numeéro est précédé d'un tilde. Il s'agit des broches D3,
D5, D6, D9, D10 et D11. Dans cet exemple, j'ai utilisé la broche 3. Le code du
sketch est le suivant :

int ledPin = 3; // Variable déclarée + initialisée avec broche 3
int pwmvalue = @; // Variable déclarée + initialisée pour MLI

void setup() {/* Aucun code requis */ } void
loop() {

analogWrite(ledPin, pwmValue++); // Commande de la LED
// avec valeur MLI
delay(10);// Courte pause
if(pwmvalue > 255) pwmvalue = ©; // Quand valeur MLI > 255
// -> remettre a ©

Montage 1. Hello World - faire clignoter une LED

©

Revue de code

Au départ, nous déclarons et initialisons deux variables globales portant le nom
ledPin et pwmvalue et dont le type de données entier est int (int = Integer).
Examinons l'instruction analogWrite.

Numéro de
Commande la broche Niveau

T 1 I 1

CanalogWrite (ledPin, pmealue++)>

Elle présente deux arguments : le premier définit la broche et le deuxiéme la
valeur MLI qui peut varier entre 0 et 255.

pwmValue++

augmente la variable pwmvalue de la valeur 1 comme indiqué par les deux
signes +. En programmation, on parle d'incrémentation. Dans un circuit
conventionnel, on obtiendrait le méme comportement par l'ajout d'une ligne
de code supplémentaire :

pwmValue = pwmvalue + 1;

Si on laissait l'incrémentation de la variable pwmvalue se poursuivre sans
surveillance dans une boucle sans fin loop, on aboutirait t6t ou tard a une
valeur supérieure a 255. Pour [‘éviter, linstruction if vérifie si la valeur est
supérieure a 255. Sila réponse est positive, l'instruction suivante est exécutée :

pwmValue = ©;

Cela nous rameéne a la valeur initiale de 0. Par conséquent, la LED s'éteint a
la prochaine activation de l'instruction analogWrite. Nous pourrions aussi
modifier le code de telle sorte que la LED ne s'éteigne pas d’'un coup, mais
que sa luminosité décroisse progressivement.

@ IMPORTANT !

Pour commander une broche numérique par MLI avec linstruction
analogWrite, il n'est pas nécessaire de la programmer au préalable a laide
de l'instruction pinMode. La fonction setup ne contient pas d'instruction en ce
sens. Diailleurs, elle ne contient aucun code.

Vous trouverez de plus amples informations sur la MLI aux adresses suivantes:
https://www.arduino.cc/en/Tutorial/PWM
https://www.arduino.cc/en/Reference/AnalogWrite

Bon a savoir

Nous avons vu comment faire clignoter une LED avec quelques lignes de
code. On pourrait faire encore plus court.

O

Partie 2. Les montages

int ledPin = 13; // Variable déclarée + initialisée avec broche 13
void setup() {
pinMode(ledPin, OUTPUT); // Broche numérique 13 définie comme sortie

}
void loop() {
digitalWrite(ledPin, !digitalRead(ledPin)); // Bascule la LED

delay(1000); // Attendre une seconde
}

La ligne décisive est :
digitalWrite(ledPin, !digitalRead(ledPin));

Nous utilisons ici deux nouvelles structures : il s’agit d’une part de I'ins-
truction digitalRead qui permet de lire I’état d’une broche numérique.

Commande N’ de la broche
I | |

CdigitalRead (Pin))

D’autre part, nous utilisons lopérateur NOT avec le point d’exclamation (!)
qui sert a inverser le résultat. Dans le langage de programmation C/C++,
il n’existe pas de type de donnée pour les valeurs logiques, comme vrai
ou faux. On utilise donc une valeur de type int. Dans le tableau 1-2, nous
avons vu que le niveau LOW équivaut a la valeur @ et le niveau HIGH a la
valeur 1. Popérateur NOT permet de passer de I'un a I'autre, c’est-a-dire de
basculer entre I'un et I'autre. Vous trouverez de plus amples informations
sur les opérateurs booléens a I’adresse suivante :

https://www.arduino.cc/en/Reference/Boolean

Si vous souhaitez approfondir la thématique autour des résistances, vous
pouvez lire 'ouvrage L'électronique par la pratique de Charles Platt (Editions
Eyrolles).

’ .
Qu'avez-vous appris ?
Vous avez appris a déclarer et a initialiser correctement une variable globale.

e Vous connaissez désormais la structure de base du sketch.

e Vous avez déterminé le sens de transmission des données pour une
certaine broche comme OUTPUT avec I'instruction pinMode, si bien que
vous avez pu envoyer un signal numérique (HIGH ou LOW) au moyen
de l'instruction digitalWrite a la sortie, a laquelle est raccordée la LED.

Montage 1. Hello World - faire clignoter une LED

)

_ Figure 1-8 >
Evolution du niveau
sur la broche de sortie

numérigue 13 a un rapport

cyclique de 25 %

e Vous avez créé un temps d’attente dans I'exécution du sketch au moyen
de l'instruction delay, si bien que la LED restait allumée ou éteinte
un certain temps.

e Vous avez vu une variante abrégée du code pour faire clignoter la LED
a l’aide de l'opérateur NOT et de l'instruction digitalRead.

e Vous savez que pour utiliser une LED, il faut une résistance série dimen-
sionnée en conséquence.

e Vous savez calculer une résistance série a ’aide de la loi ’Ohm.

e Il est tres facile de connaitre la valeur d’une résistance indiquée par
ses anneaux colorés en se référant au tableau des codes couleurs.

e Vous avez vu comment commander une LED depuis une broche MLI.

Workshop pour faire clignoter
une LED

A lissue de ce montage, voici un petit exercice : modifier le sketch de telle
sorte que les temps durant lesquels la LED est allumée ou éteinte soient
déterminés par deux variables. Cela vous permet de changer le rapport
cyclique. 1l correspond au rapport entre la durée de Uimpulsion et la durée
de la période. Le résultat est la plupart du temps exprimé en pourcentage.
Le chronogramme suivant montre les différentes durées pour t ou T:

500.408 ms @)

2.00159s @@

] 1]
r AN t AUS

]]]
t=durée de l'impulsion T=durée de la période
La formule pour calculer le rapport cyclique est la suivante :
t
Rapport cyclique = -

Programmez le sketch de telle sorte que la LED reste allumée pendant
0,5 s et éteinte pendant 1,5 s. Le rapport cyclique se calcule comme suit :

Ceci correspond a un rapport cyclique de 0,25. Par rapport a la durée
complete de la période, la LED est allumée pendant 25 % du temps.

Partie 2. Les montages

Programmation
Arduino de bas niveau

Le cceur de la carte Arduino Uno est son microcontroleur, qui fait office
d’unité centrale traitant les différentes opérations informatiques. Outre
Palimentation, il existe bien str d’autres connexions offrant une commu-
nication avec le monde extérieur. Il existe ainsi des entrées et sorties ana-
logiques et numériques (nous les avons déja rencontrées au chapitre 1) qui
peuvent étre interrogées et utilisées. Comme un microcontroleur effectue
des opérations élémentaires dites de bas niveau a I'aide de signaux numé-
riques, les informations sont stockées sous forme de niveaux HIGH ou LOW
(HAUT ou BAS). Certaines d’entre elles peuvent se trouver dans des zones
de stockage interne particuliéres appelées registres. Dans ce montage, nous
allons raisonner au niveau le plus bas, ce qui peut sembler ardu mais sera
tres utile pour bien comprendre les bases du systeme. Mais pas de panique,
nous allons procéder pas a pas.

Vous vous demandez certainement ce qu’est un registre. Pour pouvoir
étre programmé, un microcontroleur dispose d’un certain nombre d’em-
placements de mémoire pour gérer et enregistrer en interne des valeurs.
La plupart de ces mémoires présentent un acces en écriture et en lecture,
permettant ainsi de stocker et de lire des données. D’autres mémoires
peuvent seulement étre consultées et ne fournissent qu’un accés en lecture.
Ces emplacements de mémoire sont appelés des registres. Les ports que
nous allons justement découvrir ci-apres en font partie.

Montage

Montage 2. Programmation Arduino de bas niveau

()

Les acces du microcontroleur

Pour communiquer avec un microcontroleur, vous devez pouvoir envoyer
et recevoir des signaux. Pour cette raison, certaines connexions, appelées
ports,sont proposées. Port vient du latin porta qui signifie porte ou acces.
Sur la carte Arduino, plusieurs broches de connexions ont été regroupées
en blocs fonctionnels. Nommés ports, ces blocs ont une largeur de données
de 8 bits. Vous voyez certains de ces ports sur la figure 2-1:

Figure 2-1»
Les ports de la carte
Arduino Uno

|
o
B
E
&

DIGITAL I/O (PWM=~)
~= Arduino UNO *~ g
RX mm

POWER ANALOG IN .

L RESET

.
L PortC |

Les ports signalés ici sont connectés aux broches suivantes :
e port B : broches numériques 8 a 13 ;
e port C: entrées analogiques (A0 a A5) ;
e port D : broches numériques 0 a 7.

Comme chacun de ces trois ports doit pouvoir étre programmé individuel-
lement, des registres supplémentaires sont nécessaires pour les configurer.
La petite lettre x sera remplacée par le port requis. Ces ports, qui ont
également une largeur de données de 8 bits, sont les suivants :

e DDRX (Data Direction Register) - Définit une broche comme entrée (0)
ou comme sortie (1) : lecture/écriture ;

e PORTx (Pin Output Value) - Définit Iétat de la broche sur HAUT ou
BAS : écriture ;

e PINx (Pin Input Value) - Lit la valeur d’une broche : lecture seule.

e https://www.arduino.cc/en/Reference/PortManipulation

Partie 2. Les montages

Programmation d’un port

Regardons cela en détail, méme si je précise encore une fois que ce type
de programmation est d’un niveau avancé, mais qu’il va nous permettre
de mieux comprendre tout le systéme. Jetons un coup d’ceil au port B
correspondant aux broches numériques 8 a 13.

Port B

<« Figure 2-2
Port B

>
o
s
[~

R Oogoooon
9 8

Pin: 13 12 11 10

Certaines de ces broches, appelées aussi headers, ne sont pas affectées a
un port. Elles se distinguent des autres broches par leur petite croix. A coté
de ces broches figure un libellé qui donne une indication de leur fonction,
ce qui est tres utile. Les quatre connecteurs de gauche ne peuvent pas étre
utilisés pour nos projets car ils sont associés au bus I°C, a alimentation en
tension et a la masse. Pour pouvoir accéder aux broches numériques 8 a
13, il faut avoir configuré les registres appropriés. Mais il faut d’abord savoir
quelles broches doivent fonctionner comme entrées et comme sorties. En
résume, nous avons :

e broches 8, 9 et 10 : entrées ;
e broches 11, 12 et 13 : sorties.

J’ai déja évoqué les registres, utilisés pour la configuration et le contréle des
ports. La figure 2-3 montre deux registres, ayant une largeur de données de
8 bits, qui assurent ces fonctions. Plus loin dans ce montage, nous ferons
connaissance d’un registre supplémentaire.

Registre | Bits | <« Figure 2-3
DDRx I 7 | 6 | 5 |4 | 3 | 2 | 1 | 0 | Quelle direction ? Les registres DDRx

PORTx [7[6[5[2[3[2[1]0] ouellebroche? et PORTx

Ils se nomment DDRx et PORTx. Commencons par DDRXx, qui gére la direc-
tion du flux de données, ou x est le port. Dans notre cas, ce sera donc
DDRB. Nous savons que les entrées sont configurées avec la valeur 0 et
les sorties avec la valeur 1.

Montage 2. Programmation Arduino de bas niveau

Figure 2-4 >
La configuration
du port B

Pin: 13 12 11 10 9 8

Les fleches indiquent la direction du flux de données et nous devons effec-
tuer la programmation dans I’environnement de développement selon le
sketch suivant. Je vous renvoie a mes explications détaillées du montage
n° 1:lafonction de configuration setup est exécutée une seule fois au début
du sketch et la fonction loop est une boucle sans fin.

void setup() {
DDRB = ©b11111000; // Broches 8, 9, 10 en ENTREE. Broches 11,
// 12, 13 en SORTIE
PORTB = 0b00111000; // Broches 11, 12, 13 au niveau HAUT
}

void loop() {/* vide */}

Dans cet exemple, le code n’est présent que dans la fonction setup car nous
avons juste besoin d’une exécution unique. La fonction loop est donc vide.
Lattribution d’une valeur au registre peut se faire en format binaire, ce qui
simplifie beaucoup la compréhension, car cela montre immédiatement
comment chaque broche du port fonctionne. A la suite du préfixe @b se
situe la valeur binaire :

DDRB = @b11111000; // Correspond a la valeur décimale 248

Composants nécessaires

Pour ce montage, nous aurons besoin des composants suivants :

Liste des composants

6 LED vertes /

orange/orange/marron

6 résistances de 330 0 —_— n l I
330Q

@)

Partie 2. Les montages

Composant

marron/noir/orange

3 résistances de 10 kQ — I I I
10 kQ

3 boutons-poussoirs
miniatures /

Le schéma des connexions pour commander les LED est le suivant :

<« Figure 2-5
| Le schéma des
@ 4 connexions avec six LED
L]
L 1orReF
LI RESET
B =
U sv Q
L aho 3 g.
L eND
o B o g
c

-] > =)
alilE = o
Laz 2 () o
L a3] [=}
O as o
L as 5§

() ()

La réalisation du montage sur une carte Arduino Discoveryboard peut
étre la suivante :
<« Figure 2-6

Configuration du test
avec six diodes sur la carte
Arduino Discoveryboard

Avec ce montage, il est possible de modifier les différentes valeurs de
controle pour un résultat immédiatement visible. Vous remarquerez que

Montage 2. Programmation Arduino de bas niveau @

Figure 2-7 >

Les symboles d'une LED

Figure 2-8 »
Une entrée ouverte

seules les broches 11, 12 et 13 peuvent étre configurées comme sorties.
Cependant, le montage utilise six diodes reliées aux broches numériques
8 a 13. Que faut-il changer pour que les six diodes électroluminescentes
puissent étre controlées ? La réponse est tres facile | Mais avant cela, regar-
dons de plus pres ce qu’est une diode électroluminescente et comment
la controler. Une diode électroluminescente (appelée aussi LED) est un
dispositif semi-conducteur qui émet une lumiére d’une certaine longueur
d’onde dépendant du matériau semi-conducteur utilisé. Comme le laisse
entendre le mot diode, le sens de branchement de la diode a une impor-
tance, car la LED ne transmet la lumiere que dans un sens. Si la LED est
branchée a l’envers, elle reste éteinte, ce qui ne veut pas dire qu’elle est
défectueuse. Par ailleurs, il est impératif de veiller a ce qu’elle soit toujours
reliée a une résistance série d’une valeur appropriée. Sinon, elle s’allumera
une fois avec une tres forte luminosité, mais plus jamais ensuite. Vous avez
vu au montage n° 1 comment définir la valeur de la résistance série. 330 Q
est une bonne valeur. Tout comme une diode classique, une LED possede
deux contacts, I’anode et la cathode. Son symbole est quasiment le méme
qu’une diode normale, avec en plus deux petites fleches représentant le
flux lumineux émis :

N\

LEF

Revenons maintenant a notre configuration, ou les broches 8, 9 et 10 sont
configurées comme des entrées. Comment vérifier leur comportement ?
Pour cela, il faut aller un peu plus loin. Dans la technologie numérique,
il n’y a rien de pire qu’un circuit qui est défini comme une entrée et qui
n’a rien de connecté. Essayons de comprendre pourquoi en examinant le
circuit suivant :

5V o—
]

Poussoir /L —|

2 Vers broche d'entrée de ['Arduino
Pin

Poussoir: —” — U=2???

Poussoir : U= 5V

Partie 2. Les montages

Si linterrupteur est fermé, la tension de +5 V est présente a la broche
d’entrée, et si nous 'ouvrons, vous pensez peut-étre étre en présence de
0 V. Il n’en est rien, parce qu’une entrée ouverte a laquelle aucun niveau
défini nest affecté recoit des signaux d’interférences parasites. Il suffit de
toucher avec le doigt la broche d’entrée pour injecter un signal de niveau
important en constante évolution. Pour cette raison, nous devons utiliser
le circuit suivant comportant une résistance de rappel dite pull-down.

5Vo—
1
Poussoir /— —{
5 Vers broche d'entrée de ['Arduino
< $——1Pin>
& .
=k Poussoir :—” — U= GND
S| |10K _
2 Poussoir - U=5v
=
¢——0
NGND

Si 'interrupteur est fermé, rien ne change par rapport a la situation précé-
dente, le +5 V est appliqué a la broche d’entrée ou tombe sur la résistance
pull-down de 10 kQ reliée a la masse. Mais si I'interrupteur est ouvert, le
potentiel de la masse est affecté a la broche d’entrée via la résistance, si
bien qu’un niveau LOW de 0 Vy est appliqué. Ainsi, dans les deux cas, nous
avons un signal défini sur la broche d’entrée. Pour le montage qui suit,
nous utiliserons a nouveau la carte Arduino Discoveryboard, qui dispose
de résistances pull-down fixes. Le schéma des connexions du prochain
montage est le suivant :

=
g |
P 1330 =3 LED3
=
3%
R2 LED2
c =

&)
L loReF

-
=
-

L RESET
K v

e

L GND
L onD
L vin

uamod

LA
LAt
L oaz
L a3
L oas
L as

NIDOIVNY

w ONN oulnply
(~=wmel) On TYLIDIQ

R4 RS R6
330 |330] |330

<« Figure 2-9
Une entrée ouverte avec
résistance pull-down

<« Figure 2-10

Le schéma des connexions
avec trois LED et trois
boutons-poussoirs

Montage 2. Programmation Arduino de bas niveau

)

Figure 2-11 »

La configuration de test
avec des boutons-poussoirs
supplémentaires

Figure 2-12 »
Le registre PINx

Examinons la configuration de test avec les trois boutons-poussoirs
correspondants :

R TT T N o

oo oo

0000

Nous devons bien sir modifier la programmation :

void setup() {
DDRB = ©b11111000; // Broches 8, 9, 10 en ENTREE. Broches 11, 12,
// 13 en SORTIE
PORTB = 0b00111000; // Broches 11, 12, 13 au niveau HAUT
Serial.begin(96€0); // Interface sérielle a 9600 bauds
}

void loop() {
// Sortie binaire du registre PINB sur le moniteur série
Serial.println(PINB,BIN);
delay(10@@); // Pause d'une seconde

}

Avant de passer le code en revue, nous devons parler d’un autre registre.
1l s’appelle PINXx, ou x représente encore le port.

Bits
Registre |

|
SO) 3 1 2

Le registre PINB (adresse de broche d’entrée) est essentiellement un registre
d’état qui indique I’état du port. Il ne propose qu’un acces en lecture. Nous
I'utilisons pour afficher I’état de toutes les broches sur le moniteur série.
Dans la fonction setup, I'interface sérielle est initialisée avec une vitesse de
transmission de 9 600 bauds. La sortie est effectuée ultérieurement dans
la loop (boucle) par la fonction println (print linefeed, assurant un passage
a la ligne suivante) avec le parametre supplémentaire BIN qui produit une
sortie binaire de la valeur.

Partie 2. Les montages

Le moniteur série s'ouvre dans 'environnement de développement via
Iicone encadrée en rouge.

Moniteur

Apres un clic avec la souris, le moniteur apparait comme suit :

@ com3 - m] hed

| | Eoyer |
111000

111001

111010

111011

111100

111101

111110

111111

[Defilement automatique [] Afficher [horodatage Nouvelle igne v | [os00baud | | Effacer la sortie

Les trois bits les moins significatifs a droite refletent I'état des trois inter-
rupteurs. Sur quel(s) bouton(s) ai-je appuyé ici pour obtenir ces combi-
naisons de bits ?

REMARQUE CONCERNANT LE REGISTRE D’ENTREE PINX

<« Figure 2-13
L'ouverture du
moniteur série

<« Figure 2-14
La fenétre du
moniteur série

Pour ce qui est du registre PINx, toutes les informations d'état du port
correspondant sont lues a la fois.

Registres et instructions C++

Pour programmer ou controler les différentes broches, ce type de pro-
grammation peut s’avérer un peu lourd. Heureusement, on peut utiliser
différentes instructions en C ++ qui permettent de nous faciliter la tache.
Nous en parlerons plus en détail dans le montage n° 3, mais je souhaite le
mentionner ici dés a présent.

Registre Instruction C++ Exemple

DDRB pinMode pinMode(13, OUTPUT);
PORTB digitalwrite digitalwrite(10, HIGH);
PINB digitalRead digitalRead(8);

Voici quelques informations sur les instructions utilisées.

<« Tableau 2-2
Les registres et leurs
équivalents en instructions

Montage 2. Programmation Arduino de bas niveau

©

pinMode

Linstruction pinMode programme le sens du flux de données d’une broche
numérique. Elle nécessite deux paramétres : le premier spécifie la broche
concernée, et le second le sens, ou OUTPUT correspond a sortie et INPUT a
entrée.

digitalWrite

Linstruction digitalWrite influence 'état d’'une broche numérique. Elle
nécessite deux parameétres : le premier spécifie la broche concernée, et le
second le niveau, ou HIGH correspond a 5 VetLOWa O V.

digitalRead

Linstruction digitalRead lit 'état d’une broche numérique, dont le résultat
est HIGH ou LOW.

REMARQUE CONCERNANT LE REGISTRE DE SORTIE DDRD

Il existe une méthode plus sdre pour les deux broches RX et TX de l'interface
sérielle, situées sur le port D, dont le sens de flux de données ne doit pas étre
changé. L'exemple suivant programme les broches 2 a 7 comme sorties et
ne modifie pas les broches O et 1 : DDRD |= ©b11111108;

Comment ¢a marche ? Nous utilisons un opérateur OU binaire avec le
registre utilisé. Pour les broches critiques 0 et 1, 'opérateur utilise la valeur
0, ce qui signifie que ces deux bits restent inchangés. Des informations plus
détaillées sur la manipulation des bits peuvent étre trouvées a I'adresse
suivante :

https://playground.arduino.cc/Code/BitMath

Pour obtenir des détails sur le mappage des broches, I’adresse suivante
vous sera certainement utile :

https://www.arduino.cc/en/Reference/Atmegal68Hardware

La résistance pull-up

Nous avons vu qu’une entrée ouverte sur une broche numérique causait
des problémes et nécessitait par conséquent un circuit externe, utilisant
par exemple une résistance pull-down. Mais on peut également prévoir un
circuit comportant une résistance pull-up. Il s’agit d’'une résistance normale,
mais contrairement a la pull-down reliée a la masse, elle est reliée au +5 V
de I’alimentation. Dans le cas d’une entrée ouverte, 5 V sont donc appliqués
a la broche d’entrée. Considérons le circuit suivant :

Partie 2. Les montages

=5V

GND

Je tiens a faire remarquer que le microcontroleur contient des résistances
pull-up intégrées qui peuvent étre activées si nécessaire. Comment
ca marche ? Nous devons effectuer deux actions qui sont en réalité
contradictoires :

e programmer une broche en entrée ;
e fournir a la broche un niveau HIGH.

Pourquoi sont-elles contradictoires ? Eh bien, si dans un premier temps une
broche est programmeée en entrée, on s’attend a ce que de P’extérieur un
niveau lui soit appliqué puis change si nécessaire. Mais si dans un deuxieme
temps nous programmons un niveau HIGH pour cette broche, comme si
elle était utilisée en sortie, la résistance de pull-up interne est alors activée.
Regardons le sketch correspondant, qui utilise les registres DDB et PORTB

void setup() {
DDRB = 0b0OORR00O; // Toutes les broches sont en INPUT
PORTB = @b@000O111; // Résistances pull-up activées pour les
// broches 8, 9 et 10
Serial.begin(9600); // Initialisation de 1'interface sérielle
// a 9600 bauds

void loop() {
Serial.println(PINB, BIN);
delay(500); // Pause de 560 millisecondes

Si nous avons maintenant seulement trois interrupteurs miniatures sans
résistances, reliés aux entrées numériques 8, 9 et 10, notre circuit fonc-
tionne parfaitement, car les résistances pull-up assurent un niveau cor-
rect et sans interférence. Bien sir, nous ne pouvons pas utiliser pour ce
montage les boutons-poussoirs de la carte Arduino Discoveryboard, car
ils disposent d’une résistance pull-down fixe. Ce n’est cependant pas un

Montage 2. Programmation Arduino de bas niveau

<« Figure 2-15
Une entrée ouverte
avec résistance pull-up

()

Figure 2-16 »
Un circuit avec trois
boutons-poussairs

probleme. La carte Arduino Discoveryboard présente une petite plaque
de prototypage, sur laquelle vous pouvez trés bien enficher les boutons-
poussoirs miniatures.

. Power

1

[5

L 10REF
L RESET
L avs
K sv

L oND
L enD

- XY
- XL
-

¥amod

L vin

WMd) 0/l TYLIDIa

K a0
O At
K Az
L A3
L as
L as

NI9OTVNY

» ONN oulnply

o
gopopooonon

Sinous ouvrons maintenant le moniteur série, nous verrons que lorsqu’au-
cun bouton-poussoir n’est pressé, les bits respectifs sont au niveau HIGH, ce
qui était a prévoir. Si nous appuyons maintenant sur un bouton-poussoir,
le niveau du bit correspondant change de HIGH vers le niveau LOW. Bien
entendu, vous pouvez activer ou désactiver les résistances pull-up internes
a I'aide d’'une commande Arduino classique. Nous en reparlerons.

Problemes courants

o Vérifiez les fiches sur la plaque de prototypage pour voir si elles cor-
respondent bien au schéma des connexions.

Qu’avez-vous appris ?

e Nous avons expliqué le rapport entre les broches Arduino et les
registres internes du microcontroleur.

e Lesregistres DDRx, PORTx et PINx permettent de définir et d’interro-
ger la direction du flux de données et les niveaux logiques.

Partie 2. Les montages

e Nous avons étudié la LED et la maniére de la piloter correctement.

e Nous avons évoqué le probleme di a une entrée numérique non
connectée et avons décrit une solution utilisant une résistance dite
pull-down.

e Des instructions appropriées ont permis d’activer les résistances
internes pull-up, de sorte qu’aucun circuit externe comportant des
résistances supplémentaires soit nécessaire.

Montage 2. Programmation Arduino de bas niveau

()

Montage

Interrogation
d’un bouton-poussoir

Manipulation d’une résistance
pull-up interne

A quoi peut bien ressembler une résistance pull-up interne ? Examinons
le schéma de raccordement suivant :

<« Figure 3-1
+5V Résistance pull-up interne
connectée a la broche

numérique 9
R
1

Interrupteur —|

d >

1

Résistance pull-up
interne

Arduino

J’ai choisi dans cet exemple la broche 9, a laquelle par exemple votre
bouton-poussoir est relié. On peut voir que la résistance pull-up R relie
la broche 9 a la tension d’alimentation de +5 V via un interrupteur élec-
tronique quand celui-ci est fermé. La question est de savoir comment cet
interrupteur peut étre fermé pour que la broche présente un niveau HIGH
en I'absence de niveau d’entrée. Les instructions suivantes sont nécessaires,
pin ayant icila valeur 9 :

()

pinMode(pin, INPUT); // Configurer la broche comme entrée
digitalWrite(pin, HIGH); // Activer la résistance pull-up interne

Elles ont pour effet de fermer P'interrupteur.

Figure 3-2 » 5V
La résistance pull-up o
interne est activée. =
S
28 R
E

pinMode (pin, INPUT);
digitalWrite (pin, HIGH):;

Interrupteur

Arduino

Vous remarquerez que nous configurons une broche numérique en
tant qu’entrée parce que nous voulons y raccorder un bouton-poussoir.
Jusque-la, ca va. Mais nous essayons ensuite de modifier le niveau de cette
broche avec l'instruction digitalWrite alors qu’elle n’a pas été configurée
en tant que sortie. Qu’est-ce que ca veut dire ?

Clest ca Iastuce. La séquence d’instructions en question permet d’activer
la résistance pull-up interne qui posséde par ailleurs la valeur de 20K. Cela
permet de fixer le potentiel de la broche a +5 V quand I'entrée est ouverte
tout en obtenant un niveau d’entrée défini.

Yl RESISTANCE PULL-DOWN OU PULL-UP ?

Comme le raccordement d'une broche numérique peut se faire soit a l'aide
d'une résistance pull-down externe soit d'une résistance pull-up interne,
l'interrogation de la broche ne se programme pas de la méme facon.
Réfléchissez un peu avant de poursuivre votre lecture. Dans le cas d'une
résistance pull-down, le niveau est LOW quand l'entrée est ouverte. Pour
produire un changement de niveau, il faut appliquer +5 V depuis lextérieur.
Cela signifie que linterrogation du bouton-poussoir s'effectuera au moyen
de la ligne suivante, la variable buttonState devant préalablement avoir été
initialisée.

Nous y reviendrons tres vite.

if(buttonState == HIGH) ...

Partie Il. Les montages

Jusqu’ici, tout va bien. Supposons que vous travaillez maintenant avec
une résistance pull-up interne qui génére un niveau HIGH quand le bou-
ton-poussoir est ouvert. Pour produire un changement de niveau, le bou-
ton-poussoir fermé doit appliquer depuis ’extérieur un signal LOW, ou
0 V. Linterrogation du bouton-poussoir s’effectuera alors au moyen de la

ligne suivante :

if(buttonState == Low) ...

Il existe encore une autre facon de manipuler une résistance pull-up interne.
A partir de la version 1.0.1 de 'environnement de développement Arduino,
il est possible d’influencer la résistance a I'aide d’un parametre de mode

avec I'instruction pinMode.

+5V

Résistance pull-up
interne

Interrupteur

Arduino

-----l| pinMode (pin, INPUT PULLUP) ;

in >
9

Une seule instruction pinMode ferme linterrupteur. La désactivation s’ef-
fectue a I'aide du mode INPUT qui rouvre Pinterrupteur interne.

+5V

Résistance pull-up
interne

Interrupteur

-----li pinMode (pin, INPUT);

>
9

Arduino

La aussi, il suffit d’'une seule instruction pinMode avec le mode indiqué.
Nous allons prendre un exemple concret illustrant I'interrogation de I’état

Montage 3. Interrogat

ion d’'un bouton-poussoir

<« Figure 3-3
La résistance pull-up interne
est activée.

<« Figure 3-4
La résistance pull-up interne
est désactivée.

)

Figure 3-5 »
Bouton-poussoir miniature

100

d’une broche numérique. Nous utiliserons I'instruction digitalRead. Nous
avons déja vu sa syntaxe dans le montage précédent de la LED clignotante.

Instruction Broche

l l
{ || \

(digitalRead (buttonPin) ;)

Cette fonction n’est pas seulement appelée, elle nous renvoie également
une valeur de retour que nous pouvons mettre a profit. La valeur est trans-
mise a la variable buttonState au moyen de I'opérateur d’affectation =. Les
valeurs restituées peuvent étre HIGH ou LOW, qui représentent des constantes
prédéfinies par le systéme — souvenez-vous.

Avant de nous intéresser au sketch, aux composants nécessaires et au
schéma de montage correspondant, j’aimerais revenir sur la construction
et le fonctionnement d’un bouton-poussoir miniature. La figure suivante
présente un bouton-poussoir miniature qui possede quatre pattes. Deux
broches sont nécessaires pour fermer un seul contact. Mais ce n’est pas
parce que nous disposons de quatre broches que le boitier contient deux
boutons-poussoirs indépendants.

© (4]
T

o 2]
Sur le schéma de raccordement qui montre le cablage interne, vous pou-
vez voir que deux pattes sont toujours connectées ensemble. Le bouton
est donc accessible au moyen des pattes 1 et 2 ou 3 et 4. Lorsque vous
tournez le bouton de 90° et que vous utilisez le méme schéma de raccor-
dement, le bouton est constamment fermé. Il faut donc faire particuliére-
ment attention aux pattes qui dépassent sur le coté du boitier. Elles sont
court-circuitées lorsque vous actionnez le bouton. Au besoin, utilisez un

multimétre et son testeur de continuité pour identifier avec certitude les
contacts du bouton.

Partie Il. Les montages

1l existe différents modeles de boutons-poussoirs.

<« Figure 3-6
Plusieurs types
de boutons-poussoirs

Composants nécessaires

Ce montage ne nécessite pas grand-chose et il peut méme se passer de
composants supplémentaires. En effet, la carte Arduino comporte une LED
qui est désignée par la lettre L. Toutefois, ’aimerais compléter ce montage
par quelques composants que nous réutiliserons pour d’autres montages.

Composant <« Tableau 3-1
Liste des composants
1 LED rouge /
orange/orange/marron
1 résistance de 330 Q I l I
330Q

marron/noir/orange

1 résistance de 10 kQ
10 kQ

1 bouton-poussoir miniature

Schema

Le schéma montre une entrée externe assurant un niveau d’entrée sir grace
a une résistance pull-down externe sur la broche numérique 8.

Montage 3. Interrogation d'un bouton-poussoir 101

Figure 3-7 >
Schéma d'interrogation
d'un bouton-poussair

Figure 3-8 »
Réalisation du circuit
d'interrogation
d'un bouton-poussair

102

R1 e

Jiossnod-uoynoq

7

N7
N

[e]
GND +5V

®
O

Realisation du circuit

Le circuit est facile et rapide a réaliser sur une plaque de prototypage.

LED de houton-poussoir LED clignotante
. 1

=l

bouton-
poussoir

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Partie Il. Les montages

Sketch Arduino

Voici le sketch d’interrogation d’un bouton-poussoir et de commande de

laLED:
int ledPin = 13; // LED - broche 13
int buttonPin = 8; // bouton-poussoir - broche 8
int buttonState; // variable d’état du bouton

void setup() {
pinMode(ledPin, OUTPUT); // broche LED comme sortie
pinMode(buttonPin, INPUT); // broche du bouton-poussoir comme
entrée

}

void loop() {
buttonState = digitalRead(buttonPin);
if(buttonState == HIGH)
digitalWrite(ledPin, HIGH);
else
digitalwrite(ledPin, LOW);

Revue de code

Dans cet exemple, on voit d’emblée qu’on a affaire a plusieurs variables qui
doivent étre déclarées deés le début. Les explications figurent sous forme
de commentaires derriére les lignes d’instructions.

BROCHE NUMERIQUE

Une broche numérique opére de maniere standard comme entrée et n'a donc
pas besoin d'étre configurée en tant que telle au moyen de l'instruction pinMode.
C'est cependant utile pour une meilleure compréhension d'ensemble. Vous
pouvez malgré tout laisser tomber cette étape dans la mesure ou la quantité
de mémoire est limitée et ou chaque octet compte.

Examinons le schéma de raccordement suivant :
Iy <« Figure 3-9
émarrage f
boucle Organigramme
pour commander la LED
Y

Touche Oui
enfoncée ?

» LED niveau HIGH

Non

»| LED niveau LOW

Montage 3. Interrogation d'un bouton-poussoir 103

104

Figure 3-10 »
Organigramme pour
structure de contréle
if-else

Lorganigramme se lit trés facilement. Lorsque I'exécution du sketch arrive
a la boucle sans fin loop, I’état de la broche du bouton-poussoir est conti-
nuellement interrogé et consigné dans la variable buttonState. Voici la
ligne de code correspondante :

buttonState = digitalRead(buttonPin);

Selon la valeur recgue, I’évaluation est effectuée a la suite de I'interroga-
tion par une structure de controle sous la forme d’une décision if-else
(si-alors-sinon).

if(buttonState == HIGH)
digitalwWrite(ledPin, HIGH);
else
digitalwrite(ledPin, Low);

Linstruction if évalue la condition entre parenthéses, laquelle peut étre
librement traduite comme suit : « Le contenu de la variable buttonState
est-il égal a HIGH ? Si oui, exécuter la ligne d’instruction qui vient aussitot
apres l'instruction if. Si non, poursuivre avec I'instruction qui vient apres
le mot-clé else. »

Lorganigramme suivant permet de mieux comprendre cette structure de
controle.

A4

Instruction(s) Instruction(s)

|

Fin

Il existe une variante plus simple de la structure de controle if, dans laquelle
la branche else est absente. Nous y reviendrons plus tard. Vous voyez donc
que le déroulement d’un programme n’est pas forcément linéaire. On peut
y insérer des ramifications qui permettent a diverses instructions ou blocs
d’instructions d’étre exécutés selon différents mécanismes d’évaluation.

Partie Il. Les montages

Un sketch n’agit pas seulement, mais réagit également a des influences
externes, par exemple des signaux de capteur.

OPERATEUR D’EGALITE ET D’AFFECTATION

Une erreur trés fréquente chez les débutants consiste a confondre opérateur
d'égalité et opérateur d'affectation. L'opérateur d'égalité == et l'opérateur
d'affectation = ont des missions complétement différentes, mais sont souvent
utilisés l'un a la place de l'autre. Le pire est que les deux modes d'écriture sont
utilisables et valables dans une condition.

Voici l'utilisation correcte de I'opérateur d’égalité :

if(buttonState == HIGH)

Voici maintenant l'utilisation erronée de 'opérateur d’affectation :

if(buttonState = HIGH)

Comment se fait-il que ce mode d’écriture ne produise pas d’erreurs ?
Cest tres simple : il s’ensuit une affectation de la constante HIGH (valeur
numérique 1) a la variable buttonState. 1 n’étant pas une valeur nulle,
elle est interprétée comme étant true (vraie). Dans le cas d’une ligne de
code if(true).., I'instruction qui suit est toujours exécutée. Une valeur
numérique 0 est évaluée comme false (fausse) dans C/C++ et toute autre
différente de @ est évaluée comme true. De telles erreurs sont difficiles a
discerner et cela prend toujours énormément de temps.

Vous trouverez plus d’informations sur les commandes utilisées aux
adresses suivantes :
o if
https://www.arduino.cc/en/Reference/If

o if-else
https://www.arduino.cc/en/Reference/Else

Qu’avez-vous appris ?

e Le microcontroleur de la carte Arduino Uno dispose d’une résistance
pull-up interne qui possede la valeur de 20K.

e Ces résistances peuvent étre activées ou désactivées soit a I'aide d’une
séquence d’instructions pinMode ou digitalWrite, soit a 'aide d’une
seule instruction pinMode avec le mode INPUT_PULLUP ou INPUT.

Montage 3. Interrogation d'un bouton-poussoir 105

Clignotement
avec gestion
des intervalles

Dans le montage n° 1 de commande d’une LED, nous avons vu comment
interrompre momentanément I’exécution d’un sketch a un endroit par-
ticulier avec la fonction de retardement delay. La LED reliée a la broche
de sortie numérique 13 clignotait a intervalles réguliers. Un tel circuit ou
une telle programmation présente cependant un inconvénient que nous
entendons déceler et éliminer. Pour cela, il nous faut modifier et compléter
le circuit clignotant en y ajoutant quelques composants.

Appuyez sur le bouton-poussoir
. ’ .

et il reagit

Que se passerait-il si vous branchiez en plus un bouton-poussoir sur une
autre entrée numérique pour interroger continuellement son état ? Une
LED est censée s’allumer si vous appuyez sur le bouton-poussoir. Peut-
étre voyez-vous déja ou je veux en venir ? Tant que I’exécution du sketch
est prisonniére de la fonction delay, le traitement du code est interrompu

et entrée numérique ne peut étre interrogée. Vous appuyez donc sur le
bouton-poussoir et rien ne se passe.

Montage

107

108

Composants nécessaires

Ce montage nécessite les composants suivants.

Tableau 4-1 » Composant
Liste des composants
P 1 LED rouge

1 LED jaune

\\

1 bouton-poussoir miniature

1 résistance de 330 Q orange/orange/marron

3300

1 résistance de 10K marron/noir/orange

10 kQ

Schema

Le schéma montre un niveau d’entrée siir grace a une résistance pull-down
externe sur la broche numérique 8.

Figure 4-1» —= g
Schéma d'interrogation 1 330 | NLED1
, N . R1
d'un bouton-poussair
et de commande des LED .
[330 &'—0
RD LED2
[10K]

Partie Il. Les montages

Realisation du circuit

La plaque de prototypage est un peu plus remplie.

LED de bouton-poussoir LED clignotante <« Figure 4-2
Réalisation du circuit

d'interrogation
d'un bouton-poussoir

bouton-
poussoir

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino

Le code du sketch suivant ne fonctionne pas comme nous I’aurions voulu.

// Le code ne fonctionne pas comme prévu

int ledPinBlink = 13; // LED clignotante rouge - broche 13

int ledPinButton = 10; // LED de bouton-poussoir jaune - broche 10
int buttonPin = 8; // Bouton-poussoir - broche 8

int buttonState; // Variable d'état du bouton

void setup() {
pinMode(ledPinBlink, OUTPUT); // Broche LED clignotante comme sortie
pinMode(ledPinButton, OUTPUT); // Broche LED de bouton-poussoir comme
// sortie
pinMode (buttonPin, INPUT); // Broche du bouton-poussoir comme entrée

}

void loop() {
// Faire clignoter la LED clignotante
digitalwrite(ledPinBlink, HIGH);// LED rouge au niveau HIGH
delay(1000); // Attendre une seconde
digitalWwrite(ledPinBlink, LOW); // LED rouge au niveau LOW

Montage 4. Clignotement avec gestion des intervalles

109

Figure 4-3 »

Chronogramme des signaux

110

sur les broches 13, 8 et 10

delay(1000); // Attendre une seconde
// Interrogation de 1’'état du bouton-poussoir
buttonState = digitalRead(buttonPin);
if(buttonState == HIGH)
digitalWrite(ledPinButton, HIGH); // LED jaune au niveau HIGH
else
digitalWrite(ledPinButton, LOW); // LED jaune au niveau LOW

Vous remarquerez que ’exécution du sketch repasse bien a un moment
donné sur la ligne d’interrogation du bouton-poussoir dans la boucle sans
fin. Létat est alors bien interrogé correctement.

Vous avez tout compris : I'expression « @ un moment donné » sied ici a
merveille ! Vous voulez programmer un sketch qui réagisse a tout moment
de son exécution a une action sur le bouton-poussoir et pas seulement a
un moment donné quand I’exécution du code atteint 'emplacement cor-
respondant. La fonction delay entrave la poursuite du code, donc nous ne
pouvons pas 'employer ici. Je vous montre le comportement sur un chro-
nogramme, ou figurent les signaux pertinents, ceux de la LED clignotante
(broche 13), du bouton-poussoir (broche 8) et de la LED de bouton-poussoir
(broche 10).

(1) e e [4)
Name 0T Scan 2000 samples at 100 Hz | 2016-10-21 11:01:27.532
Broche13 [0X| | | | 1] | 4 | 4 L4
Broche 8 C 1X ‘ ;
Broche 10 s 2 x l ‘_

Le signal du haut (ici, en bleu) représente I’état de la LED clignotante
sur la broche 13 qui bascule infatigablement chaque seconde entre les
niveaux HIGH et LOW. Le signal suivant (ici, en violet) représente le niveau
sur le bouton-poussoir raccordé a la broche 8 qui essaye de commander
la LED du bouton-poussoir sur la broche 10. Le dernier signal devrait donc
changer de niveau en méme temps que le signal sur le bouton-poussoir,
mais ce n’est pas le cas. J’ai numéroté quatre points significatifs sur ce
chronogramme. Au point 1, je maintiens le bouton-poussoir enfoncé, mais
le front descendant du signal ne semble pas étre concerné. Pourquoi la LED
de bouton-poussoir connectée a la broche 10 ne réagit-elle pas ? Cest tres
simple ! Il y a deux activations de delay. La premiére fonction delay est
activée au moment du passage de HIGH a LOW alors que nous nous trouvons
encore dans la deuxieme fonction delay. ’état du bouton-poussoir n’est
donc pas interrogé. Cette interrogation s’effectue uniquement au point 2 ou
j’ai enfoncé le bouton au moment du changement de niveau de LOW a HIGH.
Linterrogation de la broche numérique 8 a laquelle le bouton-poussoir
est connecté est effectuée avant le changement de niveau suivant. Létat

Partie Il. Les montages

du bouton-poussoir peut maintenant étre évalué et la LED connectée a la
broche 10 s’allume. Elle le reste jusqu’au moment ou le niveau de la LED
clignotante passe a LOW avec le front montant, ce qui ne se produit qu’au
point 4 alors que ce n’était pas le cas au point 3.

Cest la raison pour laquelle nous devons renoncer a utiliser la fonction
delay et choisir une autre solution que nous montre le sketch suivant. Ne
vous en faites pas pour les lignes de code, car nous allons le développer
progressivement :

// Le code fonctionne comme prévu

int ledPinBlink = 13; // LED clignotante rouge - broche 13

int ledPinButton = 10; // LED de bouton-poussoir jaune - broche 10
int buttonPin = 8; // Bouton-poussoir - broche 8

int buttonState; // Variable d'état du bouton

int interval = 2000; // Intervalle de temps (2 secondes)
unsigned long prev; // Variable de temps

int ledStatus = LOW; // Variable d’état pour la LED clignotante

void setup() {
pinMode(ledPinBlink, OUTPUT); // Broche LED clignotante comme sortie
pinMode(ledPinButton, OUTPUT); // Broche LED de bouton-poussoir comme

// sortie
pinMode(buttonPin, INPUT); // Broche du bouton-poussoir comme entrée
prev =millis(); // Mémoriser le compteur de temps actuel

}

void loop() {
// Faire clignoter la LED clignotante via la gestion des intervalles
if((millis() - prev) > interval) {
prev = millis();
ledStatus = !ledStatus; // Bascule 1'état de la LED
digitalwrite(ledPinBlink, ledStatus); // Bascule la LED rouge
}
// Interrogation de 1'état du bouton-poussoir
buttonState = digitalRead(buttonPin);
if(buttonState == HIGH)
digitalWrite(ledPinButton, HIGH); // LED jaune au niveau HIGH
else
digitalWrite(ledPinButton, LOW); // LED jaune au niveau LOW

Examinons la signification de ce sketch.

Revue de code

Ce sketch contient quelques variables supplémentaires. Je commencerai par
la gestion des intervalles. Le chronogramme représente le comportement
du circuit qui est exactement celui que nous voulions :

Montage 4. Clignotement avec gestion des intervalles

m

Chronogramme des signaux

Figure 4-4 >

sur les broches 13, 8 et 10

112

® 0

Name 10T Scan 2000 samples at 100 Hz | 2016-10-21 11:45:29.827
oot B dX| | T] L [] [|
Broche 8 N 1X :
Broche 10 B Zx mm

Chaque fois que le bouton-poussoir (broche bouton-poussoir) est enfoncé,
le niveau suit la LED du bouton-poussoir et ce, quel que soit I’état ou le
changement de niveau de la broche 13 (LED clignotante). Pour la gestion
des intervalles, nous avons besoin de la nouvelle fonction millis qui se
présente comme suit :

Instruction

(millis() ;)

La fonction renvoie une valeur en millisecondes depuis le début du sketch. Il
faut ici tenir compte d’un aspect important. Le type de la donnée de retour
est unsigned long, donc un type de nombre entier de 32 bits non signé dont
le domaine de valeurs s’étend de 0 a 4 294 967 295 (2%-1). Ce domaine
de valeurs est aussi vaste parce qu’il doit étre en mesure de traiter des
valeurs correspondant a une période prolongée (49,71 jours maximum)
sans débordement (dépassement de capacité).

Vous trouverez de plus amples informations sur la fonction millis a
I’adresse suivante :

https://www.arduino.cc/en/Reference/Millis

QU’EST-CE QU’UN DEBORDEMENT ?

Un débordement signifie pour des variables que le maximum des valeurs que
leur type de données peut traiter a été dépassé et va maintenant recommencer
a 0. Pour le type de donnée byte, qui présente une donnée de 8 bits et peut par
conséquent stocker 28 = 256 états (de 0 a 255), un débordement se produit au
moment de l'action 255 + 1. La valeur est 256, ce que le type de donnée byte
n'est plus en mesure de traiter.

Trois autres variables ont été ajoutées par mes soins, dont les roles sont
les suivants :

e interval (enregistre en ms le temps applicable a I'intervalle de
clignotement) ;

e prev (enregistre en ms le temps actuellement écoulé, prev vient de
previous qui signifie précédent) ;

Partie Il. Les montages

o ledstatus (la LED clignotante est commandée en fonction de létat
HIGH ou LOW).

Nous allons maintenant voir comment cela fonctionne. Le diagramme
suivant montre une évolution chronologique de la gestion des intervalles.

Intervalle =2000

Chronologie 1000 2000 3000 4000 5000
| | | | -
| ! I I t[ms]

|

l .

| GO @ Gl
!

I

)

)

I

I

.

o} -
' b o) (o) QD
2] ‘ i _
: D) D @D
3] : -
! L o) () GEED

o| | -
: (1o) @G0 @D

Analysons maintenant le diagramme, dans lequel j’ai pris au hasard des
moments marquants pour plus de clarté. Le temps ne s’écoule évidemment
pas réellement pendant ces étapes.

Moment Explication

1 Le temps actuel en millisecondes (1 000 dans le cas présent) est chargé
dans la variable prev. Cela ne se produit qu'une seule fois dans la
fonction setup. La différence millis() - prev donne la valeur 0
comme résultat. Cette valeur n'est pas supérieure a la valeur d'intervalle
2 000. La condition n'est pas remplie et le bloc if n'est pas exécuté.

2 1000 ms plus tard, la différence millis() - prev estanouveau
calculée et il est vérifié que le résultat n'est pas supérieur a la valeur
d'intervalle 2 000. 1 000 n’étant pas supérieur a 2 000, la condition n'est
toujours pas remplie.

3 1000 ms plus tard, la différence millis() - prev estanouveau
calculée et il est vérifié que le résultat n'est pas supérieur a la valeur
d'intervalle 2 000. 2 000 n’étant pas supérieur a 2 000, la condition n'est
toujours pas remplie.

4 Aprés une durée de fonctionnement de 3 001 ms, la différence donne
cependant une valeur supérieure a la valeur d'intervalle 2 000. La
condition est remplie et le bloc if mis a exécution. L'ancienne valeur
prev est remplacée par le temps actuel provenant de la fonction
millis. L'état de la LED clignotante peut étre inversé. Le jeu reprend au
début sur la base de la nouvelle valeur temps dans la variable prev.

Montage 4. Clignotement avec gestion des intervalles

<« Figure 4-5
Evolution chronologique

de la gestion des intervalles

p> Tableau 4-2
Contenu des variables
dans l'évolution
chronologique

13

114

Pendant tout le déroulement du sketch, aucun arrét n’a été inséré a aucun
endroit sous la forme d’une pause dans le code source, si bien que I'inter-
rogation de la broche numérique 8 pour gérer la LED du bouton-poussoir
n’a été absolument pas génée. Une pression sur le bouton-poussoir est
presque simultanément évaluée et affichée.

La variable ledState stocke le niveau qui commande la LED rouge ou
plutot qui est en charge du clignotement (HIGH pour allumée et LOW pour
éteinte). La ligne suivante :

digitalWrite(ledPinBlink, ledState);

permet de commander la LED. Le clignotement est précisément obtenu
par un va-et-vient entre les états HIGH et LOW. Ce va-et-vient est également
appelé bascule. Je vais reformuler la ligne de maniere a la rendre peut-étre
plus claire.

if(ledState == LOW)
ledState = HIGH;
else
ledState = LOW;

La premiere ligne demande si le contenu de la variable ledState est égal a
LOW. Si oui, il est mis sur HIGH ; sinon, il est mis sur LOW. Il s’agit également
d’une bascule d’état. La variante a une ligne suivante, que j’ai déja utilisée,
est beaucoup plus courte.

ledState = !ledState; // Bascule 1'état de la LED

Jutilise ici 'opérateur logique not, représenté par le point d’exclamation. 11
est souvent utilisé pour des variables booléennes qui ne peuvent accepter
que les valeurs logiques true ou false. Le résultat de 'opérateur not est la
valeur logique opposée a celle de 'opérande. Ceci est également valable
pour les deux niveaux HIGH et LOW.

Le bouton-poussoir relié au port 8 est finalement interrogé tout a fait
normalement et sans retardement.

buttonState = digitalRead(buttonPin);
if(buttonState == HIGH)
digitalWrite(ledPinButton, HIGH);
else
digitalwrite(ledPinButton, LOW);

Partie Il. Les montages

Problemes courants

Si la LED ne s’allume pas quand le bouton-poussoir est enfoncé ou si la
LED reste allumée, vérifiez ce qui suit.

o Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au schéma ?

e Les LED ont-elles été mises dans le bon sens ? Pensez a la polarité.

e Lesboutons-poussoirs peuvent étre a 2 ou 4 connexions. S’il s’agit d’un
modele a 4 connexions, ont-elles été correctement branchées ? Faites,
le cas échéant, un essai de continuité avec un multimetre et vérifiez
ainsi I'adéquation du bouton-poussoir et des pattes correspondantes.

e Les deux résistances ont-elles bien les bonnes valeurs ? Ont-elles été
éventuellement interverties ?

e Le code du sketch est-il correct ?

Qu’avez-vous appris ?

e Vous savez utiliser plusieurs variables a des fins les plus diverses
(déclaration pour broche d’entrée ou de sortie et enregistrement des
informations d’état).

e Linstruction delay interrompt le déroulement du sketch et instaure
une pause, de telle sorte que toutes les instructions subséquentes ne
soient pas exécutées avant la fin du temps d’attente.

e Vous avez appris, a travers la gestion des intervalles avec la fonction
millis, un moyen permettant de maintenir malgré tout I’exécution
continue du sketch de la boucle sans fin loop, de telle sorte que d’autres
instructions de la boucle loop soient exécutées et qu’une utilisation
d’autres capteurs, tels que le bouton-poussoir raccordé, soit possible.

e Vous avez appris a lire divers chronogrammes, qui représentent tres
bien graphiquement les différents états de niveau dans la courbe d’évo-
lution temporelle.

Montage 4. Clignotement avec gestion des intervalles

115

Le bouton-poussoir
recalcitrant

Dans ce montage, vous verrez qu’un bouton-poussoir, ou également un
interrupteur, ne se comporte pas toujours comme vous ’auriez voulu.
Prenons pour exemple un bouton-poussoir qui, en théorie, ferme le circuit
tant qu’il reste enfoncé, et le rouvre quand il est relaché. Rien de neuf en
soi et rien de bien difficile a comprendre. Mais les circuits électroniques,
dont le réle consiste par exemple a déterminer le nombre exact de pres-
sions sur le bouton-poussoir pour une exploitation ultérieure, posent un
probléme dont on ne peut se douter au départ.

Une histoire de rebond

En électromécanique, il existe un effet perturbateur qui se nomme le
rebond. Appuyer sur un bouton-poussoir normal et méme le maintenir
enfoncé revient a fermer le contact mécanique une seule et unique fois dans
le bouton-poussoir. Ce n’est pourtant pas le cas la plupart du temps, car le
composant en question ouvre et referme plusieurs fois le contact dans un
intervalle de temps tres court, de 'ordre de la milliseconde. Les surfaces de
contact d’un bouton-poussoir ne sont en général pas complétement lisses,
et on peut voir de multiples aspérités et impuretés quand on les observe
au microscope électronique. Ainsi, les points de contact des matériaux
conducteurs ne se touchent pas instantanément et pas durablement au
moment du rapprochement. Leffet en question peut aussi étre obtenu
par vibration ou montage sur ressorts du matériau, le contact étant alors
brievement fermé puis de nouveau ouvert plusieurs fois I'une derriére
Iautre lors de la jonction.

Montage

117

118

Figure 5-1»
Bouton-poussoir a rebond

Ces impulsions délivrées par le bouton-poussoir sont enregistrées et traitées
en bonne et due forme par le microcontroleur, c’est-a-dire comme si vous
appuyiez tres vite et trés souvent sur le bouton-poussoir. Ce comporte-
ment est bien str génant et doit étre évité d’une maniére ou d’une autre.
Regardons maintenant le chronogramme de plus preés.

Rebond Ftat stable
< >le >
LR ST] PP PR Tee
Oms 0.2ms 0.4ms 0.6ms 0.8ms

J’ai appuyé une seule fois sur le bouton-poussoir et I’ai ensuite maintenu
enfoncé, mais celui-ci a interrompu plusieurs fois la liaison souhaitée avant
que I'état stable de la connexion ne soit atteint. Cette suite de fermetures et
d’ouvertures du circuit jusqu’a ce que le niveau HIGH définitif souhaité soit
atteint est appelée rebond. Ce comportement peut aussi se constater dans
Popération inverse. Si je relache le bouton-poussoir, plusieurs impulsions
peuvent éventuellement étre générées jusqu’a ce que jobtienne enfin le
niveau LOW souhaité. Le rebond du bouton-poussoir est a peine percep-
tible, voire carrément invisible, par I'ceil humain et si un circuit censé
commander une LED quand le bouton-poussoir est enfoncé était construit,
les différentes impulsions se verraient comme un niveau HIGH du fait de la
persistance oculaire. Essayons donc une autre solution. Nous pourrions
construire un circuit avec un bouton-poussoir sur une entrée numérique
et une LED sur une autre sortie numeérique.

Certes, ce type de rebond ne se voit pas dans un circuit. Mais notre circuit
n’est pas le seul composant. Il y a en effet le matériel, mais il y a aussi le
logiciel et nous entendons le configurer de telle sorte que la LED s’allume
a la premiere impulsion. Elle doit s’éteindre a I'impulsion suivante et se

Partie Il. Les montages

rallumer a celle d’apreés et ainsi de suite. Nous avons donc affaire a une
bascule du niveau logique. Si maintenant plusieurs impulsions sont enre-
gistrées par le circuit ou plutot par le logiciel quand le bouton-poussoir
est pressé, la LED change alors plusieurs fois d’état. Dans le cas d’un bou-
ton-poussoir sans rebond, les états doivent étre tels que représentés dans
le diagramme de la figure 5-2.

Name 10 T| Scan |2000 samples
Bouton-poussoir ‘ 0 x ﬂ ; | ; ; | H ;
LED B 11X | [| |

On voit que dans le cas de multiples appuis sur le bouton-poussoir (front
montant), ’état de la LED bascule.

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant

1 LED rouge /

1 résistance de 330 0 orange/orange/marron
3300

1 résistance de 10K marrin/noir/orange
10 kQ

1 bouton-poussoir miniature

Schema

Le schéma vous est certainement familier puisqu’il est identique a celui
du montage n° 3.

<« Figure 5-2

Changement du niveau
de la LED pour un appui
sur le bouton-poussoir

<« Tableau 5-1
Liste des composants

Montage 5. Le bouton-poussoir récalcitrant

Figure 5-3 »

Carte Arduino

avec bouton-poussoir

et LED illustrant le rebond

R2
Bouton-poussoir
2°l C

Realisation du circuit

Le circuit est identique a celui du montage n° 3. Maintenant que nous
avons élucidé les questions techniques, nous allons pouvoir nous pencher
sur le sketch.

Sketch Arduino

Le sketch suivant change I’état de la LED connectée chaque fois que le bou-
ton-poussoir est enfoncé. Quand le bouton est maintenu enfoncé pendant
un temps plus long, I’état ne change plus apres la bascule :

int buttonPin = 2; // Bouton-poussoir - broche 2
int ledPin = 8; // LED - broche 8
int ledState; // Etat de la LED

int buttonStateActual; // Enregistre 1'état actuel du bouton-poussoir

int prevbuttonState; // Enregistre 1'état précédent du bouton-poussoir

int debouncedButtonState; // Enregistre 1'état lissé du bouton-poussoir

int debounceInterval = 50; // Intervalle de 50 ms

unsigned long lastDebounceTime = ©; // Période sans changement d’état de
// la LED

void setup() {
pinMode(ledPin, OUTPUT); // Broche du bouton-poussoir comme sortie
pinMode(buttonPin, INPUT); // Broche du bouton-poussoir comme entrée

}

void loop() {
buttonStateActual = digitalRead(buttonPin); // Lit 1'état du bouton

Partie Il. Les montages

unsigned long currentTime = millis(); // Lit la période de lissage

if(buttonStateActual != prevbuttonState) lastDebounceTime = currentTime;
if(currentTime - lastDebounceTime > debounceInterval){
if(buttonStateActual != debouncedButtonState){
debouncedButtonState = buttonStateActual;
// Changement du niveau de la LED quand 1'état du bouton = niveau HIGH
if(debouncedButtonState == HIGH) ledState = !ledState;
}
}
digitalwrite(ledPin, ledState); // Commande la LED
prevbuttonState = buttonStateActual; // Enregistre 1'état précédent
// du bouton-poussoir

Examinons la signification de ce sketch.

Revue de code

Au début de la boucle loop, le niveau actuel du bouton-poussoir est toujours
consigné dans la variable buttonStateActual. La date et I’heure actuelles
depuis le début du sketch sont consignées dans la variable currentTime
avec la fonction millis. Sil’état actuel du bouton-poussoir est différent de
Iétat précédent, la période de lissage est ramenée au nouvel état. Celle-ci
est utilisée dans I'interrogation suivante afin de déterminer si I'intervalle
prédéfini est écoulé.

if(currentTime - lastDebounceTime > debounceInterval){...}

Si Cest le cas, I’état courant du bouton-poussoir est comparé a I’état lissé
du bouton-poussoir. S’ils sont différents, il faut déterminer si un niveau
HIGH est présent pour le changement d’état. Ce n’est qu’a cette condition
que le changement d’état de la LED aura lieu. Il sera effectué par I'inversion
de ’état dans la variable ledState.

if(debouncedButtonState == HIGH) ledState = !ledState;

Enfin, il ne reste plus qu’a commander la LED a ’aide de cette méme
variable ledState

digitalWrite(ledPin, ledState);

et a transférer I’état actuel du bouton-poussoir dans I’état précédent.

prevbuttonState = buttonStateActual;

Tout reprend depuis le début.

Montage 5. Le bouton-poussoir récalcitrant

121

122

Probléemes courants

Si la LED ne s’allume pas ou ne bascule pas, plusieurs choses peuvent en
étre la cause.

La LED peut avoir été mal polarisée. Rappelez-vous les deux différentes
connexions d’une LED que sont I’anode et la cathode.

La LED est peut-étre défectueuse et avoir été grillée par une surtension
lors des montages précédents. Testez-la avec une résistance en série
sur une source d’alimentation de 5 V.

Vérifiez les branchements de la LED et des composants sur votre plaque
d’essais.

Vérifiez le sketch que vous avez entré dans I’éditeur de 'IDE. Peut-étre
avez-vous oublié une ligne ou commis une erreur ou peut-étre que le
sketch a été mal transmis ?

Vérifiez le bon fonctionnement du bouton-poussoir utilisé avec un
testeur de continuité ou un multimetre.

Qu’avez-vous appris ?

Vous savez maintenant que des composants mécaniques tels que
des boutons-poussoirs ou des interrupteurs ne se ferment ou ne
s’ouvrent pas immédiatement. Plusieurs breves interruptions succes-
sives peuvent résulter par exemple de tolérances de fabrication, d’im-
puretés ou de matériel en vibration, avant d’arriver a un état stable.
Ce comportement est enregistré et traité comme tel par des circuits
électroniques. Si, par exemple, vous devez compter le nombre d’ap-
puis sur le bouton-poussoir, ces impulsions multiples peuvent s’avérer
extrémement génantes.

Ce comportement peut étre corrigé de différentes manieres :

— par une solution logicielle (par exemple, une stratégie de tempori-
sation lors de l'interrogation du signal d’entrée) ;

— par une solution matérielle (par exemple, un circuit RC).

Partie Il. Les montages

Le sequenceur
de lumiere

Vous maitrisez déja suffisamment les LED pour étre en mesure de réaliser
des montages ou clignotent plusieurs diodes électroluminescentes. Ca n’a
Iair de rien dit comme ca, mais ce n’est pas si simple. Nous allons com-
mencer par un séquenceur de lumiére, qui commande une par une diffé-
rentes LED. Souvenez-vous du premier montage pour lequel nous avions
programmé un effet similaire. Toutefois, I'objectif était simplement de
commander une LED en utilisant les ports ou la manipulation des registres
correspondants. Dans ce montage, nous parviendrons a un résultat simi-
laire, mais par un autre biais.

C’est chacun son tour

Les LED branchées sur les broches numériques doivent s’allumer confor-
mément au modeéle présenté ci-dessous.

LED1 LED2 LED3 LED4 LEDS5 LED6 LED7

o @ O O OO OO

zor QO @ O O OOO
o QO Q@O OOO
vor QOO0 @OOO
sor O OO0 @O O
sor) O O0O0O @O
i QOQOO0®

Montage

<« Figure 6-1
Séquence dallumage
des 7 LED

123

Tableau 6-1 >
Liste des composants

A chaque tour, la LED s’allume une position plus loin a droite. Arrivé a
la fin, le cycle reprend au début. Vous pouvez programmer les diverses
broches, qui toutes sont censées servir de sortie, de différentes manieres.
Dans l’état actuel de vos connaissances, vous devez déclarer sept variables
etles initialiser avec les valeurs de broche correspondantes. Ce qui pourrait
donner ceci :

int ledPinl = 7;
int ledPin2 = 8;
int ledPin3 = 9;

Chaque broche doit étre ensuite programmeée dans la fonction setup
avec pinMode comme sortie, ce qui représente aussi un travail de saisie
considérable :

pinMode(ledPin1, OUTPUT);
pinMode(ledPin2, OUTPUT);
pinMode(ledPin3, OUTPUT);

Voici donc la solution. Je voudrais vous présenter un type intéressant de
variable, capable de mémoriser plusieurs valeurs du méme type de donnée
sous un méme nom.

Mais comment une variable peut-elle mémoriser plusieurs valeurs sous
un seul et méme nom ? Et comment faire pour sauvegarder ou appeler
les différentes valeurs ?

Patience ! Cest possible. Cette forme spéciale de variable est appelée
tableau (array). On n’y accede pas seulement par son nom évocateur, car
une telle variable posséde aussi un index. Cet index est un nombre entier
incrémenté. Ainsi, les différents éléments du tableau — c’est le nom donné
aux valeurs stockées — peuvent étre lus ou modifiés. Vous allez voir com-
ment dans le code du sketch ci-apres.

Composants nécessaires

Ce montage nécessite les composants suivants.

7 LED rouges /
orange/orange/marron

7 résistances de 330 Q —— I . I
330Q

Partie Il. Les montages

Schema

Le schéma vous est certainement familier puisqu’il est identique a celui
du montage n° 3.

N <« Figure 6-2
E{LEDT Carte Arduino co’mmandant
7 LED pour un séquenceur
LED6 | delumiére

()
Zt
()

Realisation du circuit

Le circuit ressemble beaucoup a celui du premier montage.

<« Figure 6-3
Réalisation du circuit

de séquenceur de lumiére
a7LED

T

Montage 6. Le séquenceur de lumiére 125

126

@ ATTENTION AUX BRANCHEMENTS !

Quand vous branchez des composants électroniques tout prés les uns des
autres, comme c'est ici le cas, soyez tres attentif, car il arrive souvent de
se tromper et d'occuper le trou voisin sur la plaque, si bien que le circuit ne
fonctionne qu'en partie, voire pas du tout. Cela devient sérieux si vous travaillez
avec les lignes d'alimentation et de masse placées l'une a coté de l'autre. Des
problemes peuvent aussi résulter de cavaliers flexibles mal enfoncés dans
leur trou, dont les fils conducteurs dénudés ressortent en partie. Des courts-
circuits peuvent se produire quand on bouge ces cavaliers, lesquels peuvent
tout abTmer. Il faut donc se montrer soigneux.

SKetch Arduino

Voici le code du sketch pour commander le séquenceur de lumiérea 7 LED :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13}; // Tableau de LED avec
// numéros de broche
int waitTime = 200; // Pause entre les changements en ms

void setup() {
for(int 1 = 0; 1 < 7; i++)
pinMode(ledPin[i], OUTPUT); // Toutes les broches du tableau
// comme sorties

}

void loop() {
for(int 1 =0; i <7; i++) {
digitalWrite(ledPin[i], HIGH); // Elément de tableau au niveau

// HIGH
delay(waitTime); // Une pause entre les changements
digitalwrite(ledPin[i], Low); // Elément de tableau au niveau
// LOW
}
}

Examinons la signification de ce sketch, car ce programme comporte
quelques nouveautés.

Revue de code

Dans le sketch du séquenceur de lumiére, vous rencontrez pour la premiere
fois un tableau et une boucle. Cette derniere est nécessaire pour accéder
facilement aux différents éléments du tableau par le biais des numéros
de broche. D’une part les broches sont toutes programmeées en tant que
sorties, et d’autre part les sorties numériques sont sélectionnées. ’acces a

Partie Il. Les montages

chaque élément se fait par un index et comme la boucle utilisée ici dessert
automatiquement un certain domaine de valeurs, cette construction est
idéale pour nous. Commencons par la variable de type array (tableau). La
déclaration ressemble a celle d’une variable normale, a ceci pres que le
nom doit étre suivi d’une paire de crochets.

Type de donnée Nom du tableau Dimension
| | |
{ | | I
(int ledPin[7];)

Déclaration du tableau

e Letype de donnée définit quel type les différents éléments du tableau
doivent avoir.

e Le nom du tableau est un nom évocateur pour accéder a la variable.

e Le nombre entre les crochets indique combien d’éléments le tableau
doit contenir.

Vous pouvez imaginer un tableau comme un meuble a plusieurs tiroirs.
Chaque tiroir est surmonté d’une étiquette portant un numéro d’ordre. Si
je vous donne par exemple pour instruction d’ouvrir le tiroir numéro 3 et
de regarder ce qu’il y a dedans, les choses sont plutot claires non ? Il en
va de méme pour le tableau.

Index 0 1 2 3 4 5 6
e (0)[0)0)@()@)0)
du tableau

Tous les éléments de ce tableau ont été implicitement initialisés avec la
valeur @ apres la déclaration. Linitialisation peut toutefois étre faite de deux
manieéres différentes. Nous avons choisi la maniére facile et les valeurs, dont
le tableau est censé étre pourvu, sont énumérées derriére la déclaration
entre deux accolades et séparées par des virgules :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Sur la base de cette ligne d’instruction, le contenu du tableau est le suivant.

Index 0 1 2 3 4 5 6
onens(7)((8)(2)(10)(11)(52) 23]
du tableau

<« Figure 6-4
Déclaration du tableau

Montage 6. Le séquenceur de lumiére

127

128

N’avons-nous pas oublié quelque chose d’important ? Dans la déclaration
du tableau, il n’y a rien entre les crochets. La taille du tableau devrait
pourtant y étre indiquée.

Cest vrai, mais le compilateur connait déja dans le cas présent — par les
informations fournies pour I'initialisation faite dans la méme ligne — le
nombre d’éléments. Aussi la dimension du tableau n’a-t-elle pas besoin
d’étre indiquée. Linitialisation, quelque peu fastidieuse, consiste a affecter
explicitement les différentes valeurs a chaque élément du tableau :

int ledPin[7]; // Déclaration du tableau avec 7 éléments
void setup() {

ledPin[@] = 7;

ledPin[1] = 8;

ledPin[2] = 9;

ledPin[3] = 10;

ledPin[4] = 11;

ledPin[5] = 12;

ledPin[6] = 13;

/] ..

Yl INDEX D'UN TABLEAU

Figure 6-5 >
Boucle for

L'index du premier élément du tableau est toujours le chiffre @. Si, par exemple,
vous déclarez un tableau de 10 éléments, l'index admis le plus élevé sera le
chiffre 9 — soit toujours un de moins que le nombre d'éléments. Sivous ne vous
en tenez pas a cette régle, vous pouvez provoquer une erreur a l'exécution
que le compilateur de l'environnement de développement ne détecte ni au
moment du développement ni plus tard pendant l'exécution. C'est pourquoi
vous devez redoubler d'attention !

Venons-en maintenant a la boucle et regardons la syntaxe de plus pres.

Instruction Initialisation Test Incrément

| | | | |
[for(int i=0;1<7; i++D

Partie Il. Les montages

La boucle introduite par le mot-clé for estappelée boucle for. Suivent entre
parenthéses certaines informations sur les caractéristiques fondamentales.

e A partir de quelle valeur la boucle doit-elle commencer a compter ?
(initialisation)

e Jusqu’a combien doit-elle compter ? (test)
e De combien la valeur initiale doit-elle étre modifiée ? (incrément)

Ces trois informations déterminent le fonctionnement de la boucle for et
définissent son comportement au moment de I'appel.

QUAND UTILISER UNE BOUCLE FOR ?

Une boucle for est utilisée la plupart du temps quand on connait au départ
le nombre de fois que certaines instructions doivent étre exécutées. Ces
caractéristiques-clés sont définies dans ce qui est appelé l'en-téte de boucle,
qui correspond a ce qui est inclus entre parenthéses.

Mais soyons plus concrets. La ligne de code suivante :
for(int i =0; i < 7; i++)

déclare et initialise une variable i du type int avec la valeur @. L'indication
du type de donnée dans la boucle stipule qu’il s’agit d’une variable locale
qui n’existe que tant que la boucle for itere, c’est-a-dire suit son cours.
La variable 1 est effacée de la mémoire a la sortie de la boucle. Le nom
exact d’une telle variable dans une boucle est « variable de controle ».
Elle parcourt une certaine zone tant que la condition (i < 7) — désignée
ici sous le nom de « test » — est remplie. Une mise a jour de la variable est
ensuite effectuée selon I'expression de I'incrément. Lexpression i++ ajoute
la valeur 1 a la variable i.

Les signes ++ sont un opérateur qui ajoute la valeur 1 au contenu de 'opé-
rande, donc a la variable. Les programmeurs sont paresseux de naissance
et font tout pour formuler au plus court ce qui doit étre tapé. Quand on
pense au nombre de lignes de code qu’un programmeur doit taper dans
sa vie, moins il y a de caracteres et mieux c’est. Il s’agit aussi a terme de
consacrer plus de temps a des choses plus importantes — par exemple
encore plus de code - en adoptant un mode d’écriture plus court. Toujours
est-il que les deux expressions suivantes ont exactement le méme effet :
i++;eti =1+ 1;

Deux caracteres de moins ont été utilisés, ce qui représente tout de méme
une économie de 40 %. Mais revenons-en au texte. La variable de controle
i sert ensuite de variable d’index dans le tableau et traite ainsi 'un apreés
I’autre les différents éléments de ce tableau.

Montage 6. Le séquenceur de lumiére

129

130

Index 0 1 2 3 5 6

Contenu @

du tableau

Sur cette capture d’écran d’une itération de la boucle, la variable i pré-
sente la valeur 3 et a donc acces au 4° élément dont le contenu est 10.
Autrement dit, toutes les broches consignées dans le tableau ledPin sont
programmeées en tant que sorties dans la fonction setup au moyen des
deux lignes suivantes :

for(inti=0; i <7; i++)
pinMode(ledPin[i], OUTPUT);

Une chose importante encore : si, dans une boucle for, il n’y a aucun bloc
d’instructions, formé au moyen d’accolades (comme nous en verrons un
bient6t dans la fonction loop), seule la ligne venant immédiatement apres
laboucle for est prise en compte par cette derniere. Le code de la fonction
loop contient seulement une boucle for dont la structure de bloc donne
cependant acces a plusieurs instructions :

for(inti=0; i <7; i++) {
digitalWrite(ledPin[i], HIGH); // Elément de tableau au niveau HIGH
delay(waitTime);
digitalWrite(ledPin[i], LOW); // Elément de tableau au niveau LOW

}

Je voudrais vous montrer dans un court sketch comment la variable de
controle i est augmentée (incrémentée) :

void setup() {
Serial.begin(96@@); // Configuration de 1’interface série
for(int i = @; i <7; i++)
Serial.println(i); // Affichage sur 1'interface série

}

void loop(){ /* vide */ }

Puisque notre Arduino n’a pas de fenétre d’affichage, nous devons trouver
autre chose. Linterface série sur laquelle il est fréquemment branché peut
nous servir a envoyer des données. Lenvironnement de développement
dispose d’un moniteur série capable de recevoir et d’afficher ces données
sans probleme. Vous pouvez méme Iutiliser pour envoyer des données a

Partie Il. Les montages

la carte Arduino. Vous en saurez plus bient6t. Le code initialise par I'ins-
truction suivante :

Serial.begin(9600);

I'interface série avec une vitesse de transmission de 9 600 bauds. La ligne
suivante :

Serial.println(i);

envoie ensuite au moyen de la fonction println la valeur de la variable i a
Iinterface. 1l ne vous reste plus qu’a ouvrir le moniteur série pour afficher
les valeurs de la figure 6-6 :

coms - olEN|
I = 3 ==) [Envoyer |
0 A
1
2
3
4
s
6

v
‘ [v] Défilement automatique |Nouveleigne v‘ \ssocbaud vl | Effacer la sortie |

On voit ici comment les valeurs de la variable de contréle i, dont nous
avons besoin dans notre sketch pour sélectionner les éléments du tableau,
sont affichées de @ a 6. J’ai placé le code dans la fonction setup pour que la
boucle for ne soit exécutée qu'une fois et ne s’affiche pas constamment.
La figure 6-7 page suivante montre de plus pres les différents passages de
la boucle for.

Montage 6. Le séquenceur de lumiére

<« Figure 6-6
Affichage des valeurs
dans le moniteur série

131

132

Figure 6-7 >
Comportement
de la boucle for

Variable de boucle: Test: Incrémentation :

i+t
[o =¥ <

mb Serial.printin(i); E>

2

8 tour D
@’ fin de boucle

Il me faut maintenant parler de la programmation orientée objet, car elle va
me servir a vous expliquer la syntaxe. Nous reviendrons plus tard sur ce mode
de programmation puisque C++ est un langage orienté objet (ou OOP sous sa
forme abrégée). Ce langage est tourné vers la réalité constituée d’objets réels
tels que par exemple table, lampe, ordinateur, barre de céréales, etc. Aussi les
programmeurs ont-ils défini un « objet » représentant I'interface série. Ils ont
donné a cet objet le nom de Serial, et il est utilisé a I'intérieur d’un sketch.
Chaque objet possede cependant d’une part certaines caractéristiques (telles
que la couleur ou la taille) et d’autre part un ou plusieurs comportements
qui définissent ce qu'on peut faire avec cet objet. Dans le cas d’une lampe, le
comportement serait par exemple le fait de s’allumer ou de s’éteindre. Mais
revenons a notre objet Serial. Le comportement de cet objet est géré par
de nombreuses fonctions qui sont appelées méthodes en programmation
orientée objet (OOP). Deux de ces méthodes vous sont déja familieres : la
méthode begin qui initialise l'objet Serial avec le taux de transmission voulu,
et la méthode println (print line signifie en quelque sorte imprimer/affi-
cher avec un saut de ligne) qui envoie quelque chose sur l'interface série. Le
lien entre objet et méthode est assuré par I'opérateur point (.) qui les relie
ensemble. Quand je dis par conséquent que setup et loop sont des fonctions,
ce n'est qu'une demi-vérité car il s’agit, a bien y regarder, de méthodes.
Vous trouverez plus d’informations sur la programmation de l'interface
série aux adresses suivantes :

https://www.arduino.cc/en/Reference/Serial
https://www.arduino.cc/en/Serial/Begin

https://www.arduino.cc/en/Serial/Println

Partie Il. Les montages

L'INTERFACE SERIE POUR LA RECHERCHE D’ERREURS @

Vous savez maintenant comment envoyer quelque chose a l'interface série.
Vous pouvez vous en servir pour trouver une ou plusieurs erreurs dans un
sketch. Si le sketch ne fonctionne pas comme prévu, placez des instructions
d'écriture sous forme de Serial.println() a divers endroits qui vous
paraissent importants dans le code et affichez certains contenus de variable
ou encore des textes. Vous pouvez ainsi savoir ce qui se passe dans votre
sketch et pourquoi il ne marche pas bien. Vous devez seulement apprendre
a interpréter les données affichées. Ce n'est pas toujours facile et il faut un
peu d'entrainement.

Manipulation des registres

Dans le montage n°2 sur la programmation de bas niveau de la carte
Arduino, nous avons vu qu’il est tres facile d’influencer les broches numé-
riques par la manipulation des registres. Cela peut se révéler utile pour
notre séquenceur de lumiere. Le circuit suivant ne posséde que 6 LED
avec les résistances série correspondantes, chaque LED étant associée a un
numeéro écrit en rouge. Nous allons bient6t voir a quoi ca sert.

o v T | &N |
o |0 o | o |o
W jw o jw jw jwjw
i SN I SN [N RN s O i U - |
32 |16 |8 |4 |2 1

Examinons le registre du PORT B :

Position des bits

Valeurs

porT & : I

<« Figure 6-8

Circuit du petit séquenceur

de lumiere

Montage 6. Le séquenceur de lumiére

133

134

Les huit bits d’un port sont regroupés dans un octet. Chacun des bits de
cet octet posséde un numéro croissant de droite a gauche en commencant
a 0, comme vous pouvez le voir dans la rangée du haut. Cela nous permet
d’adresser chaque bit de facon univoque de 0 a 7. En plus de sa position
a l'intérieur de l'octet, chaque bit posséde une valeur qui dépend aussi de
cette position et qui augmente également de droite a gauche. La valeur
de chaque bit est indiquée dans la rangée du bas. Reste a savoir comment
nous en sommes arrivés a ces valeurs. Cest simple ! Le systéme binaire
connaissant uniquement les états 0 et 1, la base de calcul de la valeur est
le chiffre 2. Comme notre systéeme décimal utilise les chiffres 0 a 9,ily a
donc 10 états possibles. Par conséquent, la base de calcul de la valeur est le
chiffre 10. Mais revenons-en a notre systeme binaire. Comment calcule-t-on
la valeur ? On utilise I’équation suivante :

Valeur = 2Position

Exemple : quelle est la valeur du bit a la position 4 ? I’équation est la
suivante :

Valeur = 2* =16

Examinons maintenant la variante de syntaxe obtenue par manipulation
de registre ou de bit. Pour créer le motif de LED voulu, il faut simplement
écrire un 1 aux emplacements de 'octet ou les LED doivent étre allumées :

Motif de LED [§

Combinaisondebits| 0 1 0 1 0 1

Le code du sketch est alors le suivant :

void setup() {
DDRB = ©b11111111; // PORT B entierement défini comme SORTIE
PORTB = 0b00010101; // Création du motif de LED

}

void loop() { /* vide */ }

Nous voyons que la ligne contenant la combinaison de bits suivante :

PORTB = 0b00010101;

correspond précisément au motif de LED. Il ne faut évidemment pas utiliser
de nombre binaire lors de P'initialisation. Cela fonctionne aussi avec un
nombre entier. Faisons une petite expérience en affichant des combinai-
sons de bits comprises entre 0 et 63. 1l suffit d’incrémenter - c’est-a-dire
d’augmenter - constamment une valeur de 1. Mais cette fois, une partie

Partie Il. Les montages

du code doit se trouver a I'intérieur de la fonction loop, car la modification
doit avoir lieu a intervalles réguliers.

byte pattern = 0;
void setup() {
DDRB = ©b11111111; // PORT B entierement défini comme SORTIE

}

void loop() {
PORTB = pattern++; // Incrémenter le motif
delay(100); // Courte pause de 100 ms
3

La variable pattern est de type byte. Elle compte donc huit bits et peut
stocker des valeurs comprises entre 0 et 255. Quand nous I'incrémentons
a l'intérieur de la fonction loop, un débordement se produira tot ou tard,
quand le contenu de la variable atteindra 255 et que la valeur 1y sera ajou-
tée encore une fois. Ca ne fonctionnera pas, car la capacité de stockage
sera épuisée. Il se produit donc un débordement et le cycle reprendra au
début. La ligne suivante :

PORTB = pattern++;

incrémente la variable. Lopérateur d’incrémentation qui est représenté par
les deux signes + est chargé d’augmenter la valeur. Le méme résultat est
obtenu avec les lignes suivantes :

pattern = pattern + 1;
PORTB = pattern;

Cest évidemment une question de gott, mais les programmeurs préférent
les formulations aussi courtes que possible afin d’avoir a saisir moins de
code. Nous en arrivons a une partie trés intéressante : la manipulation de
bits. Les bits peuvent étre manipulés de diverses facons a I'aide d’opé-
rateurs, méme si cela demande un peu d’expérience. Une fois que I'on
maitrise ce type de programmation, on peut s’amuser a combiner les bits
a sa guise. Ce montage consiste a commander un anneau de LED qui nous
resservira plus tard. Nous allons voir comment faire circulerl’allumage
d‘une LED. Pour cela, nous utiliserons les opérateurs de bits.

Opérateurs de décalage

Pour décaler une LED d’un bit au suivant, nous utilisons I'un des opéra-
teurs de décalage.

e >>: décaler vers la droite

e << :décaler vers la gauche

Montage 6. Le séquenceur de lumiére

136

Figure 6-9 >
Contenu du registre
de PORT B a différents
moments

Comment ¢a marche ? Examinons le contenu de PORT B et son évolution
au fil du temps :

32 16 8 4 2 1

Tem p S -I . O O O O 0 1 Distance de décalage
32 16 8 4 2 1

Tem pS 2 : O 0 O 0 1 | 0 Distance de décalage

3216 1

Tem pS 3 . 0 0 0 1.L 0 0 Distancedzéécalage

On constate que le chiffre 1 qui se trouve initialement a 'extréme droite se
décale peu a peu vers la gauche. Le petit point rouge indique la position
finale a un moment donné. Mais comment décale-t-on ce 1 de droite a
gauche ? Lopérateur de décalage vers la gauche va nous étre tres utile.
Nous présupposons que le 1 qui se trouve a 'extréme droite et qui, soit dit
en passant, se nomme LSB (Least Significant Bit) c’est-a-dire bit de poids
faible, sert toujours de position de départ pour toutes les opérations de
décalage. Le code de sketch suivant exécute la fonction de décalage :

byte pos = @; // Valeur de position
void setup() {

DDRB = ©b11111111; // PORT B entierement défini comme SORTIE
}

void loop() {
PORTB = 1 << pos++; // Décaler le "1" vers la gauche
if(pos > 5) pos = ©;
delay(500); // Courte pause de 500 ms

}

La variable apparait dans la fonction en tant qu’indicateur de distance de
décalage. Au départ, elle integre la valeur 0, ce qui signifie qu’a la premiere
itération de la boucle, le 1 ne change pas de position, comme cC’est le cas au
marqueur temporel Temps 1. Apres le traitement de Iinstruction, la variable
pos est augmentée de la valeur 1, ce qui signifie qu’a la prochaine itération
delaboucle, il se produira un décalage d’une position vers la gauche. Notez
que le décalage vers la gauche fait apparaitre un 0 sur coté droit. Il en va
de méme a chaque nouvelle itération. Lorsque la valeur pos est supérieure
a 5, ce qui dépasse les possibilités d’affichage de notre dispositif a LED a
six bits, elle est ramenée a la valeur @. Le cycle reprend alors au début.

Partie Il. Les montages

Placer des bits

Nous allons maintenant voir comment placer des bits, c’est-a-dire leur
affecter lavaleur 1 sans influencer I’état actuel des bits existants. Examinons
la situation suivante dans laquelle la combinaison de bits présentée repré-
sente le masque de bits (suite de bits) de départ :

32 16 8 4 2 1

0{0({0|1]1]|0

Cette fois, nous voulons décaler le bit ayant la valeur 8 jusqu’a la position
3. Pour y parvenir, nous pouvons écrire le sketch suivant :

void setup() {
DDRB = 0b11111111; // PORT B entiérement défini comme SORTIE
PORTB = 8b@0R0R110; // Masque de bits de départ
delay(500);
PORTB = 1 << 3; // Décaler de 3 positions vers la gauche
}

void loop() { /* vide */ }

Le masque de bits de départ qui reste visible pendant 500 ms est le suivant :
32 16 8 4 2 1

Ensuite, la LED ayant la valeur 8 doit s’allumer en plus de celles qui sont

déja éclairées. Quel résultat obtient-on ? Voyez par vous-méme :

32 16 8 4 2 1
. . ' . .. o
Quel est le probléme ? Nous avons placé un 1a I'extréme droite sur le LSB,
puis nous I'avons décalé de 3 positions vers la gauche. Souvenez-vous : en
cas de décalage, un 0 est toujours intercalé a la position précédente. Ce
n’est pas ce que nous voulons ici ! Alors que faire ? La solution réside dans
un autre opérateur qui appartient a la catégorie des opérateurs de bits.

1l s’agit du OU binaire. Pour mieux comprendre I’effet de ces opérateurs,
nous allons examiner le tableau de valeurs suivant :

Montage 6. Le séquenceur de lumiére

137

138

Tableau 6-2 »
L'opérateur binaire OU

A B Q
0 0 0
0 1 1
1 0 1

Les colonnes A4 et B contiennent des valeurs de départ logiques et la colonne
Q présente le résultat de la liaison logique ou binaire OU. Lopérateur
logique OU est symbolisé par la barre verticale | (pipe). Si nous modifions
la ligne

PORTB = 1 << 3;
en
PORTB |= 1 << 3;

le bit correspondant est correctement placé, sans modifier pour autant les
bits existants. Le résultat est le suivant :

32 16 3 4 2 1
. . ' . ' . e

Comment cela s’explique-t-il ? Quand une action de décalage progressive
est constamment liée au masque de bits précédent sur le PORT B par un

I'opérateur logique OU, alors tous les bits qui contiennent un 0 ne sont
pas modifiés et tous ceux qui contiennent un 1 sont placés.

Supprimer des bits

Les bits placés peuvent bien str aussi étre supprimés. Mettons que la com-
binaison de bits suivante ait été obtenue par la ligne de code ci-dessous.

32 16 8 4 2 1

PORTB = 0b0010110;

Partie Il. Les montages

Nous voulons supprimer le bit ayant la valeur 2 a la position 1 afin d’éteindre
la LED correspondante. L’état de toutes les autres LED ne doit pas s’en
trouver modifié. Nous utiliserons un autre opérateur appartenant a la caté-
gorie des opérateurs de bits : 'opérateur logique ET. Le tableau de valeurs
ci-dessous en explique le fonctionnement.

0 0 0
0 1 0
1 0 0

Le résultat de cette liaison peut uniquement étre un 1 lorsque les deux
valeurs d’entrées sont des 1. Copérateur logique ET est représenté par le
et commercial & Tous les bits qui ont la valeur 0 dans le masque de liaison
sont supprimés. Ceux qui ont la valeur 1 ne sont pas concernés. Le code
du sketch est le suivant :

void setup() {
DDRB = ©b11111111; // PORT B entiérement défini comme SORTIE
PORTB = 8b@0010118; // Masque de bits de départ
delay(500);
PORTB &= 0b11111101;
B

void loop() { /* vide */ }
La ligne
PORTB &= 0b11111101;

produit presque un masque. Les bits existants ne passent pas aux endroits
ouilyauno0

Problemes courants

Si les LED ne s’allument pas l'une apres I'autre, débranchez le port USB
de la carte pour plus de sécurité et vérifiez ce qui suit.

o Vos fiches de raccordement sur la plaque correspondent-elles vraiment
au circuit ?

e Pas de court-circuit éventuel entre elles ?

e Les LED ont-elles été mises dans le bon sens ? Autrement dit, la pola-
rité est-elle correcte.

<« Tableau 6-3
L'opérateur binaire ET

Montage 6. Le séquenceur de lumiére

139

140

Les résistances ont-elles bien les bonnes valeurs ?

Le code du sketch est-il correct ?

Qu’avez-vous appris ?

Vous avez fait la connaissance d’une forme spéciale de variable vous
permettant d’enregistrer plusieurs valeurs d'un méme type de donnée.
Elle est appelée tableau (array). On accede a ses différents éléments
au moyen d’un index.

La boucle for vous permet d’exécuter plusieurs fois une ou plusieurs
lignes de code. Elle est gérée par une variable de controle, active dans
la boucle et initialisée avec une certaine valeur initiale. Une condition
vous a permis de définir combien de fois la boucle doit s’exécuter. Vous
controlez ainsi quel domaine de valeurs la variable traite.

Vous pouvez réunir plusieurs instructions, qui sont ensuite toutes
exécutées par exemple dans le cas d’une boucle for, en constituant
un bloc au moyen de la paire d’accolades.

La variable de contrdle, dont nous venons de parler, est utilisée pour
modifier 'index d’un tableau et accéder ainsi a ses différents éléments.

La manipulation de registre vous a permis de commander les broches
numériques d’un port pour créer un séquenceur de lumiére.

Partie Il. Les montages

Extension de port

Nous avons vu dans le montage précédent comment programmer la com-
mande des multiples LED d’un séquenceur de lumiére. Votre carte Arduino
ne disposant que d’un nombre limité de sorties numériques, ces précieuses
ressources pourraient finir par vous manquer pour ajouter d’autres LED
a votre séquenceur de lumiére. Par ailleurs, vous voulez peut-étre aussi
connecter quelques capteurs sur des entrées numeériques. Vous aurez donc
encore moins de broches numeériques a disposition. Comment résoudre
ce probleme ?

Le registre a décalage

1l existe plusieurs solutions d’extension de port, en voici une. Je dois utiliser
pour cela un registre a décalage. Vous vous demandez certainement ce que
C’est et comment il opere. Dans cette expérimentation, un circuit intégré
(IC pour Integrated Circuit) sera relié pour la premiere fois a votre carte
Arduino. Un registre a décalage est un circuit géré par un signal d’horloge et
doté de plusieurs sorties disposées 'une derriére autre. A chaque période
d’horloge, le niveau présent a 'entrée du registre est transmis a la sortie
suivante. Cette information passe ainsi par toutes les sorties existantes.
Lillustration ci-dessous montre I’action zélée du registre de décalage déca-
lant infatigablement le niveau logique HIGH a la position suivante.

Montage

<« Figure 7-1
Attrape !

141

Le circuit intégré 74HC595, que nous utilisons ici, dispose d’une entrée série
par laquelle les données sont entrées et de huit sorties équipées de registres
mémoire internes pour conserver les états. Seules trois broches numériques
sont nécessaires a alimentation, lesquelles fournissent des données au module
qui, de son coté, commande ses huit sorties. Cest en soi une économie majeure,
car le circuit 74HC595 peut étre cascadé, permettant ainsi une expansion quasi
illimitée des sorties numériques. De quoi s’agit-il exactement ? Voyons de plus
pres les différentes entrées et sorties de ce circuit. La figure suivante illustre le
brochage du circuit, vu de dessus.

BrochaZ?gzengiit; Qe[1] N 16] Vee
a décalage 74HC595 Qc[Z] 74HC595 [15]Qa
Qp[3] [14] DS
Qe[® 73] 8

Qe[F] [12] ST_CP

Qg [6] [TT]sH_cP
au[T] iR
GND[E] 9] Qu"

TRAIT HORIZONTAL AU-DESSUS D’UNE DESIGNATION DE BROCHE

Quand la désignation d'une broche comporte un trait horizontal, comme pour
les broches 10 et 13 de la figure précédente, cela signifie que ce sont des
entrées de signaux actives au niveau LOW. Pour un master reset (réinitialisation
générale) sur la broche 10, la réinitialisation sera donc déclenchée en présence
d'un niveau LOW et, en fonctionnement normal, elle devra étre raccordée a une
tension d'alimentation Vcc.

La figure suivante illustre le fonctionnement d’un registre a décalage avec
un traitement en deux étapes.

Figure 7-3 > 15
Fonctionnement du registre Shift Storage |,
a décalage 74HC595 Register Register |——» QB _
...... — 2 » QC §
14 > 13 » aD £
Q
DS—»| 4 o QE 3
Serial Data Input 5 T
...... .__’ . QF &
16 » oG
14 12 —PT QH
SH_CP—> >
Shift-Clock
__ ‘r 10 |9 013
MR > QH"
Reset Carry-Over
T_CP
Latch-Clock
OE
Output-Enable

142 Partie Il. Les montages

1t étape

Le registre a décalage (Shift Register) sur le coté gauche recoit les données en
série sur la broche DS (14) et les enregistre temporairement. Quand le front
est positif (bascule de 0 a 1) sur la broche SH_CP (11), toutes les valeurs du
flux de données entrent une par une dans le registre interne.

2¢ étape

Les données doivent encore étre transférées dans le registre mémoire
(Storage Register) afin que les données auparavant série soient transmises
en parallele aux sorties Q, a Q,,. Cela s’effectue sur un front positif (bascule
de 0 a 1) sur la broche ST_CP (12). Pour que le transfert s’exécute correc-
tement vers les sorties, la broche OFE (Output Enable) (13) doit étre reliée
a la masse, car elle est active au niveau LOW. Le tableau suivant récapitule
les différentes broches et leur signification.

Broche Signification

Vee Tension d'alimentation + 5V

GND Masse OV

Q,-Q, Sorties paralléles 1 a8
Q. Sortie série (entrée pour un deuxiéme registre a décalage)
MR Master Reset (actif LOW)

SH_CP Registre a décalage, entrée d’horloge (Shiftregister clock input)

ST_CP Registre mémoire, entrée d’horloge (Storageregister clock input)

I3 Activation de la sortie (Output enable/actif LOW)

DS Entrée série (Serial data input)

Le mode de fonctionnement du registre a décalage peut se résumer ainsi :
quand le niveau a I'entrée d’horloge SH_CP passe de LOW a HIGH, le niveau a
I'entrée série DS est lu, transmis a I'un des registres internes et enregistré
temporairement. Mais cela ne signifie pas pour autant transmis aux sorties
Q, a Q,. Ceest seulement une impulsion d’horloge a I'entrée ST_CP de Low
a HIGH qui fait transmettre toutes les informations des registres internes
aux sorties. Cest utile, car ce n’est que quand toutes les informations ont
été lues a l'entrée série qu’elles sont censées étre détectées aux sorties. Le
changement du niveau logique de LOW a HIGH est appelé contréle par front
montant d’horloge, car une action n’est entreprise que quand un changement
de niveau se produit de la maniére décrite.

Voyons maintenant un peu ce qui se passe dans le registre a décalage...

<« Tableau 7-1
Signification des broches
du registre a décalage
74HC595

Montage 7. Extension de port

Figure 7-4 >
SH_CP préparant
les données série

Figure 7-5 »

ST_CP autorisant le départ

144

des données des registres
vers les sorties

Voicijustement SH_CP au travail. Quand il tourne la pancarte de LOW a HIGH,
le candidat potentiel, qui se trouve dans la zone DS-area, passe dans le
registre suivant et attend la suite de son voyage vers la sortie.

La figure suivante montre ST_CP en train de faire partir les données des
registres internes vers les sorties.

Tout le monde est 1o 7
On peut y aller !

ARTAS

Quand il tourne la pancarte de LOW a HIGH, les portes des registres internes
s’ouvrent et alors seulement les données peuvent trouver le chemin de la
sortie. Le procédé croqué ici sera reproduit dans plusieurs sketches pour
que vous puissiez voir en direct comment marche le registre a décalage.
Nous allons tout faire de A a Z, mais vous verrez a la fin qu’il existe une
instruction bien commode pour toutes les actions a entreprendre I'une
derriere l’autre, qui vous épargnera beaucoup de travail et vous facilitera
les choses.

Partie Il. Les montages

Registre a décalage conventionnel

Certains d’entre vous seront certainement intéressés par la structure interne
d’un registre a décalage. Les différents modeles integrent des composants
variés. Nous allons examiner un exemple rudimentaire : si 'on raccorde
successivement plusieurs bascules ou verrous (flipflops, en anglais), c’est-a-
dire des circuits pouvant accepter deux états stables, on obtient un registre
a décalage. Le schéma suivant représente un registre a décalage réalisé
avec 4 verrous D.

Vous trouverez de plus amples informations sur le verrou D a I’adresse
suivante :

https://fr.wikipedia.org/wiki/Bascule_(circuit_logique)

Q1 Q2 Q3 Q4

DataIn©O D Q s D a > D Q ¢ D a
Clock OT_>C ap— >c ap— >c ap— >c ap—
D-FF1 J_ D-FF2 l_ D-FF3 D-FF4

Les niveaux sont lus aux entrées via Data In, puis ils poursuivent leur route
a chaque période d’horloge Clock. Les sorties QI a Q4 affichent de facon
paralléle les informations arrivées en série.

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant
1 registre a décalage 74HC595 w
8 LED rouges /
orange/orange/marron
8 résistances de 330 — m “ I
3300
marron/noir/orange
1 résistance de 10 kQ —— I l l
10 kQ

1 bouton-poussoir miniature

<« Figure 7-6
Registre a décalage réalisé
avec 4 verrous D

<« Tableau 7-2
Liste des composants

Montage 7. Extension de port

145

https://fr.wikipedia.org/wiki/Bascule_(circuit_logique)

Schema

Le schéma montre les différentes LED avec leurs résistances série de
330 ohms, qui sont commandées par le registre a décalage 74HC595.
Lentrée master reset de la puce est connectée, a travers la résistance pull-up,
a la tension d’alimentation +5 V, si bien que le reset ne se déclenche pas
tant que le bouton-poussoir n’est pas enfoncé puisque I’entrée MR est
active au niveau LOW. On note la présence d’un trait horizontal au-dessus de
MR, qui correspond a une négation. Lentrée output enabled est également
active au niveau LOW et reliée par un fil a la masse, car les sorties doivent
étre toujours actives. Le registre a décalage est commandé par les broches
Arduino 8, 9 et 10 avec les fonctions décrites précédemment.

<7
GND

Figure 7-7 A

Carte Arduino commandant
le registre a décalage
74HC595 par trois lignes de
signaux

146

Résistance pull-up Résistance série . w
e 330 | H
=} 4 | Bl
7 “ILED1
330 | H—o
14 Ds oA 15 R2 3 LED2
asi! LED3 |
11 2 R3 S
DSH_CP QC—o
L apf-s LEDa |
ot " R4 >
12_MsT cP aF P 33 (eDs |
1348 aclé RS
o 330 :
°|1§ e ~ILED6
5351
2 aH e L3 MIEDT |
74HC595 A,
1990 |
6 LEDS
<7
GND GND

Si vous lancez le sketch, que nous verrons bientot, la premiere LED s’al-
lume immeédiatement sur la sortie Q, car vous avez entré une seule fois 1
dans le registre a décalage. Vous devez actionner non seulement le bou-
ton-poussoir du circuit, mais aussi le bouton de reset de la carte Arduino
pour effectuer un reset (réinitialisation).

Partie Il. Les montages

Realisation du circuit

Vérifiez que les raccordements ont été correctement effectués sur la plaque
d’essais qui se remplit de plus en plus. Restez concentré !

HGFEDCBA

Bouton-poussoir

74HC595

Sketch Arduino

Voici le code du sketch pour commander le registre a décalage 74HC595
aumoyen de trois lignes de sorties numeériques. Les broches suivantes sont
nécessaires sur le registre :

e SH_CP (registre a décalage, entrée d’horloge) ;
o ST_CP (registre mémoire, entrée d’horloge) ;
e DS (entrée série pour les données).

Des variables sont affectées aux trois lignes de données, variables auxquelles
j’ai donné les noms suivants :

e SH_CP est shiftPin;
o ST_CP est storagePin ;
e DS est dataPin.

Ce sketch met I’entrée série DS sur HIGH, niveau qui est ensuite transféré
dans le registre interne quand ’entrée d’horloge SH_CP du registre a déca-
lage passe de LOW a HIGH. Les sorties sont alors programmées et enregistrées
via les registres internes au moyen de I'entrée d’horloge ST_CP du registre
meémaoire.

<« Figure 7-8

Réalisation du circuit

avec le registre a décalage
74HC595

Montage 7. Extension de port

147

148

int shiftPin = 8; // SH_CP
int storagePin =9; // ST_CP
int dataPin = 10; // DS

// Réinitialisation de toutes les broches » niveau LOW

void resetPins() {
digitalWrite(shiftPin, LOW);
digitalwrite(storagePin, LOW);
digitalWrite(dataPin, LOW);

}

void setup() {
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, OUTPUT);
resetPins(); // Mise de toutes les broches sur LOW
// Mise de DS sur HIGH pour reprise ultérieure par SH_CP
digitalWrite(dataPin, HIGH); // DS
delay(20); // Bréve pause avant traitement
// Transmission du niveau a DS dans registres mémoire internes
digitalWrite(shiftPin, HIGH); // SH_CP
delay(20); // Bréve pause avant traitement
//Transmission des registres mémoire internes aux sorties
digitalWrite(storagePin, HIGH); // ST_CP
delay(20);

3

void loop(){ /* vide */ }

Comme je I'ai mentionné plus haut, seule la sortie Q, s’allume apres la
transmission du sketch, ce qui n’a rien de spectaculaire. Mais cela ne va
pas tarder a devenir plus intéressant. Promis !

Revue de code

Les variables sont d’abord pourvues des informations de broche nécessaires
puis toutes les broches sont programmeées en tant que sorties au début de
la fonction setup. Vous rencontrez pour la premiere fois dans ce montage
une fonction écrite par vous-méme. Une fonction n’a en soi rien de nou-
veau pour vous puisque setup et loop font déja partie de cette catégorie
de structures logicielles. Je souhaite cependant revenir sur le sujet pour
en préciser le sens. Une fonction peut étre considérée comme une sorte
de sous-programme qui peut toujours étre appelé dans le déroulement
normal d’un sketch. Elle est invoquée par son nom et peut tout aussi bien
retourner une valeur a I’'appelant qu’enregistrer plusieurs valeurs transfé-
rées nécessaires au calcul ou au traitement. La structure formelle d’une
fonction est la suivante :

Partie Il. Les montages

(Type de donnée de retour Nom (paramétre))

{
}

La partie entourée est appelée signature de la fonction et représente I'inter-
face formelle avec la fonction. Cette derniére est comparable a une boite
noire : vous n"avez pas besoin de savoir comment elle fonctionne. Il vous
suffit de connaitre la structure de I'interface et de savoir sous quelle forme
une valeur est retournée. Vous programmez ici bien entendu la fonction
elle-méme et devez pour le moins connaitre la logique qu’elle renferme.
Certaines fonctions peuvent également étre obtenues par exemple sur
Internet, dans la mesure ou leur usage n’est pas limité techniquement
par une licence, et utilisées dans votre montage. Peu importe de savoir
comment elles fonctionnent du moment qu’elles ont été programmées et
testées avec succes par d’autres. Le principal est qu’elles fonctionnent !
Mais revenons a notre définition de la fonction. Si elle renvoie une valeur
en retour a ’'appelant, comme le fait par exemple digitalRead, vous devez
indiquer le type de donnée en question dans votre fonction.

Supposons que vous vouliez retourner des valeurs qui sont toutes des
nombres entiers, le type de donnée est alors Integer défini par le mot-clé
int. Si toutefois aucun retour n’est requis, vous devez le faire savoir par
le mot-clé void (qui signifie : vide) qui précede déja les deux fonctions
principales setup et loop.

Nous avons dit que les fonctions sont toujours invoquées par leur nom.
Mais qu’en est-il des deux fonctions setup et loop ? Pas besoin de stipuler
quelque part dans le code qu’elles doivent étre appelées et pourtant ca
marche. Comment est-ce possible ?

En fait, setup et loop sont des fonctions systémiques qui sont appelées
implicitement. Comme vous I’avez remarqué, vous n’avez pas besoin de
vous en occuper. Si cela vous intéresse, vous trouverez dans le répertoire
d’installation sous

C:\Program Files (x86)\Arduino\hardware\arduino\avr\cores\arduino

le fichier main.cpp que vous pourrez ouvrir avec un éditeur de texte. Vous
verrez alors ce qui suit :

<« Figure 7-9
Structure de base
d'une fonction

Montage 7. Extension de port

149

150

a3 int main(void)

34 [

a5 init() -

36

= initVariant():

38

39 [Fl#if defined (USBCON)

40 USBDevice.attach() ;
41 -#endif

42

43 setup() ;

=

SO | for (::) 1

46 loop() -

47 if (serialEventRun) serialEventRun();
41 o }

45

50 retuorn 0;

51

=1

La fonction directement appelée en début de programme avec C++ est
nommée main, comme c’est le cas ici. Elle sert quasiment de point d’acces,
pour que le programme sache par quoi il doit commencer. main contient
plusieurs appels de fonction qui sont traités I'un aprés I'autre. On y trouve
entre autres la fonction setup et I’'appel de la fonction loop dans une
boucle sans fin définie par for(;;). Vous reconnaissez certainement les
déroulements ou plutot les relations qui se créent en coulisses au début
d’un sketch quand il s’agit d’appeler setup ou loop.

Si une ou plusieurs variables sont a fournir a votre fonction, celles-ci sont
indiquées entre parenthéses derriere son nom, séparées par des virgules,
avec leur type de donnée correspondant. Les parenthéses sont nécessaires
méme s’il n’y arien entre elles, faute de variables. La signature est suivie du
corps de fonction, formé par la paire d’accolades. Toutes les instructions,
qui se trouvent entre ces deux accolades, font partie de la fonction et sont
traitées séquentiellement de haut en bas lors de ’appel. Mais revenons au
code. En quoi est-ce utile d’écrire une fonction particuliere ? Tres simple !
Ca P’est toujours quand les mémes instructions sont a exécuter plusieurs
fois dans le code et C’est ici le cas. Je dois exécuter la suite d’instructions

digitalwrite(shiftpPin, LOW);
digitalWrite(storagePin, LOW);
digitalWrite(dataPin, LOW);

a divers endroits pour réinitialiser — autrement dit, pour remettre sur
LOW — les niveaux sur les différentes broches numériques. Sans fonction,
le sketch compterait un grand nombre de lignes de code en plus et man-
querait donc de clarté.

Partie Il. Les montages

CODE REDONDANT

Le code source, quirevient plusieurs fois avec laméme séquence d'instructions
dans le sketch, est appelé code redondant ou redondance de code. Le mieux est
de le stocker dans une fonction a laguelle vous donnez un nom suffisamment
évocateur pour en saisir le sens. Si vous devez procéder a une modification,
vous intervenez de maniere centrale au sein de la fonction et non pas un
peu partout dans le code, ce qui est générateur de bien des erreurs et trés
chronophage.

Au début du sketch, 'appel de fonction :

resetPins(); // Mise de toutes les broches sur LOW

permet de mettre les broches 8, 9 et 10 au niveau LOW. Le premier signal
de niveau HIGH est ensuite appliqué a DS par la ligne :

digitalWrite(dataPin, HIGH); // DS

Puis une attente de 20 ms s’écoule avant que la ligne
digitalWrite(shiftPin, HIGH); // SH_CP

ne transmette le niveau HIGH de DS au registre mémoire interne. Il faut ici
tenir compte du fait que ce n’est possible qu’au moyen d’un controle par
front montant de LOW vers HIGH.

HIGH

LOW

I n’y a pas encore de transfert en direction du port de sortie. Une nouvelle
attente de 20 ms s’écoule, et enfin la ligne

digitalWrite(storagePin, HIGH); // ST_CP

déclenche la transmission des registres mémoire internes aux sorties, ce
qui revient a commander les LED dans le cas présent. Un changement de
niveau de LOW a HIGH est ici aussi nécessaire, d’ou le recours préalable a
la fonction resetPin qui permettra plus tard de changer encore le niveau
de LOW a HIGH.

Montage 7. Extension de port

151

Extension du sketch : premiére
partie

Complétons maintenant un peu le sketch de telle sorte que vous puissiez
rentrer plusieurs valeurs dans ’entrée série. Ce n’est encore qu’un degré
intermédiaire et non pas la solution finale que je souhaite vous présenter.
Ce code doit transmettre au registre a décalage une séquence stockée dans
un tableau de données. La construction du circuit reste la méme.

int shiftPin = 8; // SH_CP

int storagePin =9; // ST_CP

int dataPin = 10; // DS

int dataArray[] = {1, @, 1, 0, 1, 1, 0, 1};

void resetPins() {
digitalWrite(shiftPin, LOW);
digitalWrite(storagePin, LOW);
digitalWrite(dataPin, LOW);

}

void putPins(int data[]){
for(int i =0; i <8; i++) {
resetPins();
digitalWrite(dataPin, data[i]); delay(20);
digitalwrite(shiftPin, HIGH); delay(20);
}
}

void setup() {
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, OUTPUT);
resetPins(); // Mettre toutes les broches a LOW
putPins(dataArray); // Régler les broches sur le tableau de données
// Transmission des registres mémoire internes aux sorties
digitalWrite(storagePin, HIGH); // ST CP

}

void loop() { /* vide */ }

Voyons maintenant comment le code accomplit son travail. Tout tourne
autour du tableau de données qui contient le modéle de commande des
différentes LED. Il s’agit donc de la ligne de déclaration et d’initialisation
suivante :

int dataArray[] = {1, @, 1, 0, 1, 1, 0, 1};

Partie Il. Les montages

Le code lit les éléments du tableau de gauche a droite et rentre les valeurs
dans le registre a décalage. Un 1 signifie une LED allumée et un @ une LED
éteinte.

Vous remarquerez que nous avons utilisé les valeurs 1 et 0 pour comman-
der les LED. Ca marche ? Ne vaut-il pas mieux travailler avec les noms de
constante HIGH et LOW ?

J’ai preéféré utiliser les valeurs 1 et @ parce que ce sont elles précisément
qui se cachent derriére les constantes HIGH et LOW. Normalement, je ne
suis pas pour les magic numbers, mais il m’a semblé que dans ce cas, je
pouvais faire une exception. 1 et @ étant aussi les valeurs logiques, vous ne
devriez pas avoir trop de mal a comprendre ! Vous pouvez bien entendu
écrire a la place de :

int dataArray[] = {1, @, 1, 0, 1, 1, @, 1};
la ligne suivante :

int dataArray[] = {HIGH, LOW, HIGH, LOW, HIGH, HIGH, LOW, HIGH};

Mais revenons au code et a sa maniére d’exploiter le tableau. La chose
n’est pas si simple, car j’ai ajouté une fonction nommeée putPins, qui a
pour tache de remplir le registre a décalage. Elle présente un parametre
de transmission capable d’enregistrer non pas une variable normale, mais
tout un tableau de données. Il suffit de transmettre le tableau de données
comme argument dans la fonction :

putPins(dataArray);

La fonction est définie comme suit :

void putPins(int data[]){
for(int i =9; i < 8; i++) {
resetPins(); // Remise a zéro des broches et préparation a la commande
// par front montant
digitalwrite(dataPin, data[i]); delay(20);
digitalWrite(shiftPin, HIGH); delay(20);
}
b

On peut voir qu’un tableau du type de donnée int a été déclaré avec deux
crochets dans la signature de la fonction. Au moment ou la fonction est
appelée, le tableau initial dataArray est copié dans data, qui est ensuite
exploité dans la fonction. Puis chaque élément du tableau est envoyé dans
I'entrée série, au moyen de la boucle for (que vous connaissez déja), via :

digitalWrite(dataPin, data[i]);

Montage 7. Extension de port

153

et placé lors de I’étape suivante dans le premier registre interne via :

digitalWrite(shiftPin, HIGH);

Le tout s’effectue huit fois (de @ a 7), chaque registre interne transmettant
ses valeurs au suivant. Les figures suivantes montrent les choses encore
plus clairement.

Figure 7-10 >
Registre a décalage

bhase) DS 2 3456 7

' B0OBOG6

serie

Registres internes
A

Q, Q, Q. Q,Q, Q. Q, Q,
N 7

"%
Sorties

Au début, les registres sont encore tous vides. Un bit 1 attend toutefois déja
alentrée d’étre transféré dans le premier registre interne sur le c6té gauche.

lFigure 7-11» Registres internes
Registre a décalage

(phase 2) DS -- 0 1:.2.:3.:.4..5.6.. 7

7 60600066

SH_CP_|

ST_CP

N

Q, Q; Q. Q, Q; O, Q. Q,
AN P4

S
Sorties

Le 1 qui se trouve a 'entrée série est entré, pendant le front montant de
SH_CP, dans le premier registre interne. Les contenus de tous les registres
sont décalés d’une position vers la droite. Cette action donne les états
illustrés sur la page suivante.

154 Partie Il. Les montages

Registres internes

/

DS 2 3456 7

: 90000000

série
SH_CP

ST_CP

Q, Q, Q. Q, Q; Q; Q Q,
\ 7

N7
Sorties

A Tentrée se trouve maintenant un @ qui sera lui aussi entré a la prochaine
impulsion de SH_CP dans le premier registre interne. Mais avant, I’état du
septiéme registre interne sera passé au huitieme, le sixiéme au septiéme,
etc. Enfin, le 0 est entré dans le premier registre. Passons directement au
moment ou toutes les valeurs du tableau ont été entrées, conformément
au schéma précédent, dans les registres internes et ou 'impulsion ST_CP
a recopié les registres vers les sorties.

Registres internes
PN

/

DS 2 34656 7

*' 90000000

serie

SH_CP

ster [Q,Q; Q. Q, Q Q. Q; Q,
%

V
Sorties

Les valeurs du tableau lu sont appliquées aux sorties seulement maintenant,
la premiere valeur entrée se trouvant completement a droite et la derniere
completement a gauche.

Vous vous demandez peut-étre comment faire pour inverser le comporte-
ment ? En effet, vous voudriez que la premieére valeur du tableau se trouve
completement a gauche et que la derniere completement a droite se trouve
a la sortie, de telle sorte que l'ordre soit quasiment inversé.

Pas de probléme car ou les broches ont-elles été déterminées ? Exact, dans
la fonction putPins ! C’est la boucle for qui fixe I'ordre des différentes bro-
ches. Celui-ci sera inversé si vous appelez la derniére valeur a la place de

<« Figure 7-12
Registre a décalage
(phase 3)

<« Figure 7-13
Registre a décalage
(phase 4)

Montage 7. Extension de port

155

Figure 7-14
Combinaison binaire
pour le nombre entier 157

la premiére et la transmettez au registre a décalage. Voici le code modifié
de la boucle for :

for(inti=7; i >= @; i--){
/...
3

Extension du sketch :
deuxiéme partie

Maintenant que vous en savez assez sur le registre a décalage 74HC595,
je voudrais vous présenter une instruction spéciale qui vous épargnera du
travail. shiftout est vraiment facile a utiliser. Mais je dois auparavant vous
livrer quelques informations sur la sauvegarde des données dans l'ordi-
nateur, informations qui sont vraiment importantes pour comprendre le
fonctionnement d’un microcontréleur. Je me sers pour mes réalisations
du type de donnée byte, dont la taille est de 8 bits et qui peut stocker
des valeurs comprises entre 0 et 255. La figure suivante montre la valeur
décimale 157 sous sa forme binaire 10011101.

Puissances 27 2% 2% 2* 2% 22 21 2°
Valeurs 128 64 32 16 8 4

s nnnnnnnn

Sion regarde les puissances de plus prés, on voit que la base est le chiffre 2.
Nous autres humains comptons en base 10 en raison des dix doigts de nos
mains. Les valeurs des différents chiffres d’un nombre dont donc 10°, 10},
102, etc. Pour le nombre 157, cela donne 7 x 10° + 5 x 10" + 1 x 10% qui font
bien sir 157. Le microcontrodleur ne pouvant cependant stocker que deux
états (HIGH et LOW), le systéme binaire (du latin binarius, deux chacun)
est fondé sur la base 2. La valeur décimale de ladite combinaison binaire
se calcule par conséquent comme suit, en commencant en principe par
la valeur - ou bit — la plus petite :

1x2°+0le+lXZ2+1XZ3+IXZ4+OXZ5+OXZ5+1XZ7:15710

Labase figure derriere le nombre pour plus de clarté quand différents systemes
de numération sont utilisés.

Partie Il. Les montages

Avec un nombre de 8 bits (ou 1 octet), vous pouvez représenter 256 valeurs
distinctes (de 0 a 255). Ceci dit, revenons a l'instruction shiftout, qui
possede différents parameétres dont nous allons faire le tour.

Instruction DS SH_CP Sens des transmissions Valeur

(shiftOut (dataPin,shiftPin,MSBFIRST,value) ;)

Les arguments dataPin, shiftPin ou encore la valeur a transmettre sont
censés étre clairs. Mais que signifie la constante MSBFIRST ? Cet argument
permet de définir le sens de transmission des bits. Dans le cas d’un octet,
le bit de poids fort est nommeé Most Significant Bit (MSB) et le bit de poids
faible Least Significant Bit (LSB). Vous pouvez ainsi définir quel bit doit
étre transféré en premier dans le registre a décalage.

MSBFIRST
128 64 32 16

8 4 2
<~0000000

ea

MsSB LSB
LSBFIRST
128 64 32 16 4 2 1
00000000~

Voici le code complet avec Iinstruction shiftout. Le circuit n’a pas non
plus besoin ici d’étre modifié.

int shiftPin =8; // SH.CP

int storagePin = 9; // ST_CP

int dataPin = 10; // DS

byte value = 157; // Valeur a transférer

void setup() {
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, OUTPUT);

}

void loop() {
digitalwrite(storagePin, LOW);
shiftout(dataPin, shiftPin, MSBFIRST, value);
digitalWrite(storagePin, HIGH);
delay(20);

}

<« Figure 7-15
Instruction shiftout
avec ses nombreux
arguments

Montage 7. Extension de port

157

158

INDICATION D’UNE VALEUR BINAIRE

Figure 7-16 »>
Chronogramme pour le
nombre transféré 157
(B10011101)

Vous pouvez saisir directement la combinaison binaire au lieu du nombre
décimal 157 lors de linitialisation des variables et éviter ainsi la conversion.
Tapez seulement B16011101. Le préfixe Bindique qu'il s'agit d'une combinaison
binaire avec laquelle la variable doit étre initialisée.

Ce chronogramme vous montre les niveaux des trois lignes de données,
les unes par rapport aux autres, pour commander le registre a décalage
pendant le déroulement chronologique.

1. Période 2. Période 3. Période 4. Période 5. Période 6. Période 7. Période 8. Période
SRS o M

ST_CP ' ' [

D 0 0 0

On voit tout en haut le signal d’horloge SH_CP pour la prise en charge des
données a entrée série DS. A Pissue de la 8¢ période, le niveau de ST _CP
passe de LOW a HIGH et les données des registres internes sont transmises aux
sorties. Essayez avec différentes valeurs et différents sens de transmission
pour bien comprendre.

POUR ALLER PLUS LOIN

Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« 74HC595
« 75HC595 fiche technique ;
« 74HC595 datasheet.

Problemes courants

Si les LED ne s’allument pas I'une apres l'autre, débranchez le port USB
de la carte pour plus de sécurité et vérifiez ce qui suit.

e Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

e Pas de court-circuit éventuel ?

e Les différentes LED sont-elles correctement branchées ? La polarité
est-elle correcte ?

e Les résistances ont-elles bien les bonnes valeurs ?

Partie Il. Les montages

e Le registre a décalage est-il correctement cablé ? Controélez encore
une fois tous les raccordements qui sont nombreux.

e Le code du sketch est-il correct ?

Qu’avez-vous appris ?

e Vous savez ce qu’est un registre a décalage de type 74HC595 avec une
entrée série et huit sorties.

o Le premier sketch permet de commander les trois lignes de données
SH_CP, ST_CP et DS, les signaux d’horloge étant controlés par un front
d’horloge montant, autrement dit ne réagissant que quand le niveau
passe de LOW a HIGH.

e Dinstruction shiftOut permet d’envoyer au registre a décalage des
combinaisons de bits au moyen de nombres non seulement décimaux,
mais aussi binaires.

e Vous pouvez initialiser une variable du type de donnée byte avec un
nombre entier, par exemple 157, ou a I'aide de la combinaison de bits
correspondante qui doit étre précédée du préfixe B, soit par exemple
Bloe111e1.

Montage 7. Extension de port

159

Comment creer
une bibliotheque ?

Le jour viendra ou vos connaissances vous permettront de réaliser vos
propres idées, que d’autres n’auront peut-étre pas encore eues. Mais peut-
étre souhaiterez-vous aussi améliorer un projet existant parce que votre
solution est plus élégante et moins compliquée a transposer. D’innombrables
développeurs de logiciels se sont penchés avant vous sur les questions les
plus diverses et ont programmeé des bibliotheques pour épargner du tra-
vail et du temps aux autres développeurs. A travers ce projet, nous allons
découvrir les grands principes de ces bibliothéques et leur création. Si le
langage de programmation C++ — y compris la programmation orientée
objet - vous a toujours intéressé, vous allez étre servi !

Les bibliotheques

Une fois 'environnement de développement Arduino installé ou plutot
décompressé, vous disposez de quelques bibliothéques maison prétes a
I'emploi, appelées également librairies (libraries en anglais). Elles traitent
de thémes intéressants, tels que commander :

e un servomoteur ;
e un moteur pas-a-pas ;
e une connexion Wi-Fi.

Ces bibliotheques sont stockées dans le répertoire libraries du répertoire
d’installation d’Arduino. Vous pouvez utiliser 'Explorateur Windows ou
passer par 'environnement de développement Arduino pour savoir quelles
sont les bibliothéques disponibles. On y trouve une entrée de menu spé-
ciale Sketch|Import Library permettant d’afficher la liste correspondante.

Montage

161

162

Figure 8-1»

Afficher ou importer

des bibliotheques

Croquis| Outils Aide
Vérifier/Compiler Ctrl+R

Téléverser Ctrl+U

Téléverser avec un programmateur Ctrl+Maj+U A

Exporter les binaires compilées Ctrl+Alt+S Gérer les bibliotheques

Afficher le dossier des croquis Ctrl+K Ajouter la bibliothéque ZIP...

Inclure une bibliothéque Arduino bibliothéques
Ajouter un fichier...

Bridge
EEPROM
Esplora
Ethernet

Firmata

HID

Keyboard
LiquidCrystal
Mouse
NTPClient
Robet Control
Robot IR Remote
Robot Motor
SD

SPI

Servo
SoftwareSerial
SpacebrewYun
Temboo

Wire

v

Les entrées du menu coincident avec les répertoires du dossier libraries.
Tout cela est bien beau, mais voyons d’abord comment une bibliotheque
Arduino fonctionne et ce que nous pouvons faire avec.

Qu’est-ce qu’une bibliotheque
exactement ?

Avant de passer a un exemple concret, vous devez savoir ce quest une
bibliotheque. J’ai dit déja qu’elle servait quasiment a empaqueter et réunir
des taches de programmation plus ou moins complexes en un paquet de
programme. La figure 8-2 montre la coopération entre une bibliotheque
Arduino et 'API Arduino.

Partie Il. Les montages

Bibliothéque Arduino

9 pinMode random

..g digitalWrite

"g analogRead millis

- . digitalRead
analogWrite

Nous avons affaire a deux couches de programme interdépendantes. Je
procede de I'intérieur vers I'extérieur. J’ai appelé la couche interne API
Arduino. (API est ’abréviation d’Application Programming Interface c’est
une interface vers toutes les instructions Arduino disponibles.) Je n’en
ai sélectionné que trés peu par manque de place. La couche externe est
constituée par la bibliothéque Arduino, qui enveloppe la couche interne.
Elle est de ce fait appelée wrapper (enveloppe) et se sert de 'API Arduino.
Pour pouvoir accéder a la couche wrapper, une interface doit étre mise en
ceuvre, car vous entendez bien str exploiter la fonctionnalité d’une biblio-
theque. Une interface est un portail d’accés a I'intérieur de la bibliotheque,
qui est en soi une unité fermée. Le terme technique est encapsulation.
Vous allez bient6t voir en détail de quoi il s’agit et en quoi cela concerne
le langage de programmation C++.

En quoi les bibliotheques
sont-elles utiles ?

Question idiote a laquelle j’ai déja répondu plusieurs fois. Aussi me conten-
terai-je ici de vous en rappeler les avantages.

e Pour ne pas avoir a « réinventer la roue » chaque fois, les développeurs
ont trouvé un moyen de stocker le code de programme dans une
bibliotheque. Beaucoup de programmeurs dans le monde profitent
de ces structures logicielles, qu’ils peuvent utiliser sans probléme dans
leurs propres projets. Le mot-clé est ici réutilisation.

e Une fois testée et débarrassée de ses erreurs, une bibliotheque peut
étre utilisée sans en connaitre les déroulements internes. Sa fonc-
tionnalité est encapsulée et cachée du monde extérieur. Il suffit au
programmeur de savoir utiliser son interface.

e Son code propre en est d’autant plus clair et plus stable.

<« Figure 8-2
Comme fonctionne
une bibliothéque Arduino ?

Montage 8. Comment créer une bibliotheque ?

163

164

Tableau 8-1 »
Distinction entre
propriétés et
comportement

Que signifie programmation
orientée objet ?

La programmation orientée objet (ou POO) est du chinois pour la plupart
des débutants, et peut méme réserver maux de téte et nuits blanches a
certains. Mais ce n’est pas obligé et jespere pouvoir y contribuer, je veux
dire a votre compréhension et non a vos maux de téte ! Dans le langage
de programmation C++, tout est considéré comme objet et ce style — ou
paradigme — de programmation s’oriente vers la réalité qui nous entoure.
Nous sommes cernés d’innombrables objets qui sont plus ou moins réels
et que nous pouvons toucher et observer. Si vous regardez un objet banal
de plus pres, vous pourrez constater certaines propriétés. Prenons par
exemple un dé pour ne pas sortir du sujet. Vous savez déja comment
programmer et construire un dé électronique. Vous avez stirement, dans
I'un de vos jeux de société, un dé quelconque que vous pouvez regarder
de plus pres. Que pourriez-vous en dire, si vous deviez le décrire le plus
précisément possible a un extra-terrestre ?

e A quoi ressemble-t-il ?

Quelle taille a-t-il ?

Est-il léger ou lourd ?

De quelle couleur est-il ?

A-t-il des points ou des symboles ?

Quel nombre ou symbole est sorti ?
e Que peut-on faire avec ? (question idiote, non ?)

Les éléments de cette liste peuvent étre répartis en deux catégories.

Comportement

Mais quel élément fait partie de quelle catégorie ?

Propriétés Comportement
Taille Lancer le dé
Poids

Couleur

Points ou symboles

Nombre ou symbole sorti

Partie Il. Les montages

Seuls deux éléments de la liste sont pertinents pour la programmation
prévue. Les autres sont certes intéressants, mais sans objet pour un dé
électronique. Ces deux éléments sont :

e le nombre de points sorti (état) ;
e lancer le dé (action).

Voyons maintenant comment on charge des propriétés ou un comporte-
ment dans un sketch. Regardons la figure suivante.

Fonctions

Propriétés

Comportement

Les propriétés sont consignées dans des variables et le comportement est
géré par des fonctions. Mais dans le contexte de la programmation orientée
objet, variables et fonctions ont une autre désignation. Pas de quoi paniquer
cependant puisque c’est en définitive la méme chose.

Programmation procédurale P00

Variables —{Variables membres

Fonctions Méthodes

Les variables deviennent des variables membres (en anglais, fields) et les
fonctions des méthodes (en anglais, methods).

Quelle avancée formidable, vous direz-vous ! II suffit de rebaptiser deux
éléments d’un programme pour avoir un nouveau paradigme de program-
mation. Le progres tient a peu de choses, non ?

Dans la programmation procédurale que nous connaissons a travers les
langages C ou Pascal, des instructions ayant un rapport logique, nécessaires
pour résoudre un probléme, sont rassemblées dans ce qu’on appelle des
procédures semblables a nos fonctions. Les fonctions opérent en principe
au mieux avec les variables qui leur ont été transmises comme arguments
ou, dans le cas défavorable, avec des variables globales qui ont été déclarées
au début d’un programme. Celles-ci sont visibles dans tout le programme
et chacun peut les modifier a sa convenance. Toutefois, cela comporte
certains risques et c’est actuellement, tout bien pesé, la plus mauvaise
variante pour traiter des variables ou des données. Variables et fonctions

Montage 8. Comment créer une bibliotheque ?

165

166

Figure 8-3 »
Définition générale
d'une classe

ne forment aucune unité logique et vivent quasiment les unes a coté des
autres dans le code, sans avoir aucun rapport direct entre elles. La pro-
grammation orientée objet comporte une structure appelée classe. Elle
sert de container pour des variables membres ou des méthodes.

Classe

~Variable [FORGGGA]
L T
_Fonction |

La classe enveloppe ses membres, appelés members dans la POO, a la
maniére d’un grand manteau. On ne peut en principe accéder aux membres
qu’en passant par la classe.

Construction d’une classe

Qu’est-ce qu’une classe ? Si vous n’avez jamais eu affaire aux langages de
programmation C++, Java et méme C# pour ne citer que ceux-la, le terme
ne vous en dira pas plus qu’un caractére chinois pour moi. Mais la chose
est en fait assez facile a comprendre. Si vous regardez encore une fois
le dernier graphique, vous verrez qu’une classe a vocation d’entourer et
ressemble en quelque sorte a un container. Une classe est définie par le
mot-clé class, suivi du nom qu’on lui a donné. Suit une paire d’accolades,
que vous avez pu voir dans d’autres structures comme une boucle for et qui
ameéne la formation d’un bloc. I’accolade finale est suivie d’un point-virgule.

Mot-clé Nom de classe

| \
class name

};

Comme je vous I’ai déja dit, la classe est composée de différents membres
sous forme de variables membres et de méthodes, qui se fondent, selon la
définition de cette classe, en une unité. La POO offre diverses possibilités
de réglementer I’accés aux membres.

Vous vous demandez peut-étre a quoi sert cette réglementation. Quand
vous définissez une variable ou plutot une variable membre dans une classe,
vous voulez pouvoir y accéder n’importe quand. Alors a quoi cela sert-il si
vous ne pouvez plus ensuite accéder a la classe ?

Partie Il. Les montages

Vous avez bien compris le principe, appelé d’ailleurs encapsulation. On
peut protéger certains membres contre le monde extérieur, de telle sorte
qu'’ils ne soient pas directement accessibles depuis 'extérieur de la classe.
Le mot directement est ici important. Il existe bien sar des possibilités d’y
accéder. Ce sont les méthodes qui, par exemple, s’en chargent. Mais vous
devez vous demander quel est le sens de tout cela.

En fait, on peut donc toujours influer directement sur les variables
membres. Mais je pense que les figures suivantes vous permettront de
mieux comprendre le principe.

Classe

Accés possible
depuis I'extérieur

L’acces a la variable membre de la classe depuis I'extérieur est ici autorise,
car elle a recu une certaine étiquette appelée modificateur d’acces. Elle
a pour nom ici public et signifie a peu pres ceci : I'acces est autorisé au
public et tout un chacun peut s’en servir a sa guise. Imaginez maintenant
le scénario suivant : une variable membre doit piloter un moteur pas-a-pas,
la valeur indiquant ’angle. Seuls des angles compris entre 0° et 359° sont
cependant admis. Toute valeur inférieure ou supérieure peut compromettre
I’exécution du sketch, si bien que le servo n’est plus commandé correcte-
ment. Quand vous donnez libre acces a une variable membre au moyen
du modificateur public, aucune validation ne peut avoir lieu. Ce qui a été
enregistré une fois produit immanquablement une réaction qui n’est pas
forcément correcte. La solution du probléme consiste a isoler les variables
membres grace a un modificateur d’acces private (privé). Ceest le principe
de ’encapsulation déja évoqué qui est utilisé ici.

Classe

Accés impossible »
depuis l'extérieur

Cest bien beau tout ¢a ! Mais comment fait-on pour accéder a la variable
membre ? Ony accéde avec une méthode qui contient également un modi-
ficateur d’acces. 1l doit cependant étre public pour que I’acces fonctionne
depuis l’extérieur. Le tout se présente comme sur la figure 8-6.

Montage 8. Comment créer une bibliotheque ?

<« Figure 8-4
Acces a une variable
membre de la classe

<« Figure 8-5
Pas d'accés a une
variable membre
de la classe

Figure 8-6 >
Accés a une variable

membre de la classe par la

168

méthode

Tableau 8-2
Modificateurs d'acces
et leur signification

Classe

Accés possible
depuis l'extérieur

On voit clairement que I’accés a la variable membre passe par la méthode,
ceci étant un avantage et non pas un inconvénient. Vous pouvez maintenant
procéder a la validation dans la méthode, seules des valeurs admises étant
alors communiquées a la variable membre.

Mais comment la méthode a-t-elle acces a la variable membre private ?
Le modificateur d’accés private signifie que I'acces depuis I'extérieur de la
classe estimpossible. Mais des membres de la classe comme les méthodes
peuvent accéder a des membres déclarés private. lls appartiennent tous a
la classe et sont donc librement accessibles au sein de celle-ci. Pour faire
court, les modificateurs d’acces gérent I’'acces aux membres de la classe.

Modificateur d’acces Description

public L'accés aux variables membres et aux
méthodes est possible depuis n'importe
ou dans le sketch. De tels membres
constituent une interface publique de
la classe.

private L'accés aux variables membres et aux
méthodes est réservé aux membres de
la méme classe.

Si vous voulez ajouter une classe a votre projet Arduino, mieux vaut créer
un nouveau fichier se terminant par . cpp pour y stocker la définition de la
classe. Vous verrez bientdt comment dans I’'exemple concret de la biblio-
theque-dé. Encore un peu de patience.

Une classe a besoin d’aide

Nous avons vu ce qu’une classe réalise et comment la créer en bonne et
due forme. Mais je ne vous ai pas encore dit que la classe avait besoin
d’un autre fichier trés important. Celui-ci est appelé fichier d’en-téte et
contient les déclarations (informations initiales ou préalables) pour la classe
a concevoir. Si vous créez des variables membres ou des méthodes en
C++, vous devez impérativement les faire connaitre aupres du compila-
teur avant de les utiliser. Cest chose faite en définissant les variables et les

Partie Il. Les montages

prototypes de fonction ou de méthode. Le fichier en question renferme
également les consignes relatives aux modificateurs d’acces public et pri-
vate. La construction formelle du fichier d’en-téte ressemble a celle de la
définition de classe, a ceci prés qu’il ne contient pas de formulation de
code. Autrement dit, seules les signatures des méthodes sont mentionnées.
Une signature se compose uniquement des informations initiales avec le
nom de la méthode, le type d’objet renvoyé et la liste des parametres. La
construction générale est la suivante :

class <Nom> {
public:
// Membre public
private:
// Membre privé

s

Le nom de la classe (ici <Nom>) commence généralement par une majuscule,
suivie de minuscules. La zone définissant le membre public vient apres le
mot-clé public suivi de deux-points. La zone définissant le membre privé
vient apres le mot-clé private, qui est suivi lui aussi de deux-points. Le
fichier d’en-téte recoit I'extension de nom .h.

Une classe devient un objet

Une fois créée par sa définition, une classe peut servir, comme lors de la
déclaration d’une variable, de nouveau type de donnée. Ce procédé est
appelé instanciation. Du point de vue du logiciel, la définition d’une classe
ne veut pas dire qu’on a créé réellement un objet. Elle n’est qu’une sorte
de modele ou plan de construction qu’on peut utiliser pour concevoir un
ou plusieurs objets.

Instanciation

Objet 3

Linstanciation se fait de la maniére suivante :

Nomclasse Nomobjet();

<« Figure 8-7
De laclasse a
l'objet

Montage 8. Comment créer une bibliotheque ?

169

170

Nous avons dit que I'instanciation d’un objet avait tout de la déclaration
de variable ordinaire. Mais vous noterez une paire de parentheses derriere
le nom que vous avez donné a l'objet. Est-ce une double faute de frappe ?
Strement pas. Cette parenthese double a naturellement son utilité. Une
partie de ce projet va lui étre consacrée, car elle est extrémement impor-
tante pour 'instanciation.

Initialiser un objet :
qu’est-ce qu’un constructeur ?

Une définition de classe contient en principe quelques variables membres
qui serviront apres P'instanciation. Pour qu’un objet puisse présenter un
état initial bien défini, il s’avere judicieux de I'initialiser en temps voulu.
Quel meilleur moment pour cette initialisation que directement lors de
Iinstanciation ? Aucun risque ainsi qu’elle soit oubliée et pose plus tard
probléme lors de 'exécution du sketch. Mais comment faire pour initialiser
un objet ? Le mieux est d’employer une méthode qui prend cette tache
en charge.

Nous devons donc indiquer lors de I'instanciation une méthode a laquelle
on donne certaines valeurs comme arguments. Mais comment savoir quelle
méthode prendre ? Il faut appeler une méthode et lui donner le cas échéant
quelques valeurs en passant. Mais quel nom lui donner ? La solution est a
la fois tres simple et géniale. La méthode pour initialiser un objet porte le
méme nom que la classe. Cette méthode étant tres spéciale, elle porte aussi
un nom a elle. On I'appelle constructeur. Comme son nom l'indique, elle
construit en quelque sorte 'objet. Mais puisqu’il n’est pas impérativement
nécessaire d’initialiser des le début un objet avec certaines valeurs, elle n’a
pas forcément de liste de parametres. Elle se comporte alors comme une
méthode a laquelle aucun parametre n’est donné et qui n’a que la paire
de parenthéses vide. Ceci répond a votre question concernant la paire
de parentheses que vous avez vue dans I'instanciation. Vous ne devez en
aucun cas 'omettre ou l'oublier.

Il me faut maintenant étre un peu plus concret pour vous en montrer la
syntaxe. Voici le contenu du fichier d’en-téte de notre bibliotheque-dé :

class Dice{
public:
Dice(); // Constructeur
//...
private:

/] ...

Partie Il. Les montages

Sous le modificateur d’acces public se trouve le constructeur qui porte le
méme nom que la classe. Il présente une paire de parenthéses vide, d’ou
son nom de constructeur standard.

Mais ne venons-nous pas de dire quon peut donner des arguments a un
constructeur tout comme a une méthode pour initialiser I'objet ? La paire
de parenthéses vide indique pourtant que le constructeur ne peut recevoir
aucune valeur. Comment est-ce possible ? Et autre question concernant
le type présumé d’objet retourné par une méthode : il n'a pas été indiqué
pour le constructeur. Pourquoi ?

Effectivement, le constructeur ne peut accueillir aucune valeur sous cette
forme. Cest une bonne introduction au prochain theme. Mais je vais
d’abord répondre a votre question sur le type d’objet renvoyé manquant.
Si une méthode renvoie une valeur a son appelant, le type de donnée en
question doit naturellement étre indiqué. Si aucun renvoi n’est prévu, le
mot-clé void est utilisé. Revenons maintenant a notre constructeur. Il est
appelé, non pas explicitement par une ligne d’instruction, mais implici-
tement par l'instanciation d’un objet. Cest pour cette raison que rien ne
peut étre retourné a un appelant et que le constructeur n’a pas méme le
type de renvoi void.

La surcharge

Ce que je vais vous dire la peut sembler déroutant a premiere vue : on peut
définir un constructeur et bien entendu également des méthodes plusieurs
fois avec le méme nom.

Effectivement, c'est un peu difficile a croire, car c'est contraire au principe
de clarté. Si par exemple une méthode apparait deux fois avec le méme
nom dans un sketch, comment le compilateur peut-il savoir laquelle des
deux est appelée ?

Mais il n’y a pas que le nom qui soit déterminant, il y a aussi la fameuse
signature dont je vous ai parlé plus haut ! Cexemple suivant montre deux
constructeurs acceptables qui portent le méme nom, mais dont les signa-
tures différent :

Dice();
Dice(int, int, int, int);

Le premier constructeur représente le constructeur standard et sa paire
de parentheses vide, qui ne peut accueillir aucun argument. Le deuxieme
porte une toute autre signature, car il peut recevoir quatre valeurs du
type int. Vous pouvez alors choisir entre deux variantes pour instancier
un objet Dice :

Montage 8. Comment créer une bibliotheque ?

171

172

Dice myDice();
ou:
Dice myDice(8, 9, 10, 11);

Le compilateur est assez intelligent pour savoir quel constructeur il doit
appeler.

La bibliotheque-dé

Toute cette introduction était nécessaire pour bien vous faire comprendre
la création d’une bibliothéque Arduino. Ce deuxiéme projet de dé va servir
de base pour constituer une bibliotheque. Il s’agit d’'une variante améliorée
avec commande des groupes de LED. Deux fichiers sont donc nécessaires
pour réaliser la bibliotheque.

Fichiers d'une bibliotheque

Déclaration Implémentation
Fichier (Mise en ceuvre)

d'en-téte .h Fichier de classe .cpp

Le fichier d’en-téte

Commencons par le fichier d’en-téte, qui ne contient que les informa-
tions de prototype et ne présente aucune information de code explicite.
Occupons-nous d’abord des membres de la classe qui sont nécessaires. Pour
piloter les groupes de LED, il faut quatre broches numériques commandées
par les variables membres:

® pinGroupA;
® pinGroupB;
® pinGroupC;
e pinGroupD.

Ces informations seront transmises au moment de I'instanciation au
constructeur, qui posséde quatre parametres du type int. Les variables
membres sont déclarées privées (private), car elles ne sont traitées qu’en
interne par une méthode appelée roll, qui n’a aucun argument et qui ne
retourne rien. La classe recoit le nom évocateur de Dice (dé).

Partie Il. Les montages

#ifndef Dice_h
#define Dice_h
#include <Arduino.h>

class Dice {
public:
Dice(int, int, int, int); // Constructeur
void roll(); // Méthode pour lancer le dé
private:
int GroupA; // Variable membre pour groupe de LED A
int GroupB; // Variable membre pour groupe de LED B
int GroupC; // Variable membre pour groupe de LED C
int GroupD; // Variable membre pour groupe de LED D
IH
#endif

Quelques informations supplémentaires méritant une explication ont été
ajoutées a la définition de la classe. La classe tout entiére a été enveloppée
dans la structure suivante :

#ifndef Dice_h
#define Dice_h

#endif

Des inclusions multiples étant possibles quand il y a du code imbriqué, un
moyen a été trouvé pour les empécher et éviter une double compilation.
Cette précaution a pour but de garantir une inclusion unique du fichier
d’en-téte. Les instructions #ifndef, #define et #endif sont des instructions
de prétraitement. #ifndef, qui introduit une compilation conditionnelle, est
la forme abrégée de if not defined qui signifie « si non défini ». Si le terme
Dice_h (nom du fichier d’en-téte avec un tiret bas) — appelé macro — n’a
pas encore été défini, faites-le maintenant et exécutez les instructions dans
le fichier d’en-téte. Si ce dernier était appelé une deuxiéme fois, la macro
serait placée sous le nom et cette partie de la compilation serait rejetée.

Avez-vous compris pourquoi le constructeur n’indique que le type de don-
née pour les parameétres et pourquoi le nom de la variable correspondante
est absent ? Cela tient au fait que nous n’avons besoin ici que des infor-
mations de prototype. Le code en question apparait plus tard avec une
extension .cpp dans le fichier de classe.

Le fichier de classe

La véritable mise en ceuvre du code est effectuée au moyen du fichier de
classe présentant I'extension .cpp :

Montage 8. Comment créer une bibliotheque ?

173

#include <Arduino.h>
#include "Dice.h"
#define WAITTIME 20

// Constructeur paramétré
Dice::Dice(int A, int B, int C, int D) {

GroupA = A;
GroupB = B;
GroupC = C;
GroupD = D;

pinMode(GroupA, OUTPUT);

pinMode(GroupB, OUTPUT);

pinMode(GroupC, OUTPUT);

pinMode(GroupD, OUTPUT);

}

// Méthode pour lancer le dé

void Dice::roll() {

int number = random(1, 7);
digitalWrite(GroupA, number%2!=@?HIGH:LOW);
digitalWrite(GroupB, number>1?HIGH:LOW);
digitalWrite(GroupC, number>3?HIGH:LOW);
digitalWrite(GroupD, number==6?HIGH:LOW);
delay(WAITTIME); // Ajouter une courte pause
}

Pour que la liaison vers le fichier d’en-téte précédemment créé soit pos-
sible, référence est faite a ce dernier au moyen de l'instruction include :

#include "Dice.h"

Son intégration intervient lors de la compilation. include est ici également
nécessaire pour pouvoir utiliser ce qu’on appelle les éléments de langage
Arduino. Passons maintenant au code, qui contient la mise en ceuvre pro-
prement dite. Commencons par le constructeur :

Dice::Dice(int A, int B, int C, int D) {

GroupA = A;
GroupB = B;
GroupC = C;
GroupD = D;

pinMode(GroupA, OUTPUT);
pinMode(GroupB, OUTPUT);
pinMode(GroupC, OUTPUT);
pinMode(GroupD, OUTPUT);
}

Vous remarquerez que la méthode roll est légérement différente de celle
du montage n° 10. Ici, aucune LED n’a été éteinte avant de commander
I’allumage des nouvelles.

Partie Il. Les montages

En effet, et ce n’est pas grave puisque les différents groupes de LED sont
commandés par 'opérateur conditionnel ? que vous rencontrerez dans le
montage n° 9. Cet opérateur retourne soit LOW soit HIGH quand la condition
a été évaluée, sibien que le groupe de LED correspondant a toujours le bon
niveau et n’a pas besoin d’étre remis auparavant sur LOW. Une autre chose
susceptible de vous étonner est le préfixe Dice: : qui précede aussi bien le
nom de la structure que la méthode roll. Il s’agit du nom de la classe, qui
permet au compilateur de savoir a quelle classe la définition de la méthode
appartient. Cette derniére est qualifiée par cette notation. Lobjet dé que
nous voulons créer devant commander quatre groupes de LED, il est pré-
férable de transmettre ces informations au moment de I'instanciation. Ce
serait bien entendu possible aussi apres la génération de I'objet, en utilisant
une méthode distincte que nous appellerions par exemple Init. Mais le
risque est grand que cette étape soit oubliée. Cest pourquoi le constructeur
a été inventé. Voyons maintenant le sketch qui utilise cette bibliotheque.

Création des fichiers nécessaires

Je vous propose de programmer les deux fichiers de la bibliotheque .h et
.cpp indépendamment de I’environnement de développement Arduino.
1l existe pour ce faire de nombreux éditeurs, par exemple Notepad++ ou
Programmers Notepad. Les deux fichiers sont stockés dans un répertoire
au nom évocateur, par exemple Dice, que vous copierez ensuite dans le
dossier des bibliotheques Arduino ensuite :

...\Arduino\libraries

Ce dossier contient les bibliotheques systeme. Vos bibliothéques person-
nelles seront placées dans le dossier :

C:\Users\<Username>\Documents\Arduino\libraries

Lenvironnement de développement Arduino est ensuite redémarré et la
programmation du sketch peut commencer.

» Arduino » Dice v ¢ Rechercher dans : Dice L
Nom = Modifié le Type Taille

:‘l keywords.txt 02/10/2017 10:54 Fichier TXT 1Ko

7 Dice.n 02/10/2017 10:54 Fichier H 1Ko

| Dice.cpp 02/10/2017 10:54 Fichier CPP 1Ko

Montage 8. Comment créer une bibliotheque ?

<« Figure 8-8

Les fichiers des
bibliotheques dans le
systeme de fichiers

175

Mise en surbrillance de la syntaxe
pour une nouvelle bibliotheque

Des types de données élémentaires (par exemple : int, float ou char) ou
d’autres mots-clés (par exemple : setup ou loop) sont signalés en couleurs
par I'environnement de développement. Il est possible, lors de la créa-
tion de ses propres bibliotheques, de faire connaitre a I'IDE des noms de
classes ou de méthodes, pour qu’ils apparaissent alors aussi en couleurs.
Un fichier nommé

keywords. txt

ayant obligatoirement une syntaxe spéciale doit étre créé pour que cela
fonctionne.

Commentaires

Des commentaires explicatifs sont introduits par le signe # (diese) :

Ceci est un commentaire

Types de données et classes (KEYWORD1)

Les types de données, mais aussi les noms de classes figurent en orange
et doivent étre définis en respectant la syntaxe suivante :

Nomclasse KEYWORD1

Meéthodes et fonctions (KEYWORDZ2)

Méthodes et fonctions apparaissent en marron et doivent étre définies en
respectant la syntaxe suivante :

Méthode KEYWORD2

Constantes (LITERALT)

Les constantes sont en bleu et sont créées comme suit :

Constante LITERAL1

Partie Il. Les montages

Voici maintenant le contenu du fichier keywords.txt de notre
bibliotheque-dé :

Utilisation de la bibliotheque

Le fait que la bibliothéque-dé se trouve dans le répertoire

C:\Users\<Username>\Documents\Arduino\libraries

vous permet de la retrouver dans la derniére entrée du menu.

%0 <« Figure 8-9
FEichier Egition Croquis| Outils Aide Importer la blbllOthéqUe—dé
Vérifier/Compiler Ctrl+R

Téléverser Ctrl+U
JB-TempWe Télé Ctrl+Maj+U

Exporter les binaires compilées Ctrl+Alt+S

avecun

Afficher le dossier des croquis Ctrl+K

Temboo

Inclure une bibliothéque '
1 Wire

Ajouter un fichier...

T R P O

|
| Recommended bibliothéques
1 Adafruit Circuit Playground

'\ Adafruit NeoPixel
.4 Adafruit Unified Sensor

- g
o w0 o

el
X SO

DHT sensor library

Contributed bibliothéques
AFMotor
CapacitiveSensor
DFMobile
DallasTemperature

o T
PRI TS

Dice

GSM

GoBLE
HCO5-master
IRremote
Metro
OneWire

Montage 8. Comment créer une bibliotheque ? 177

178

Le terme importer est quelque peu mal venu puisque absolument rien
n’est importé a ce moment précis. Seule la ligne suivante est ajoutée dans
votre fenétre de sketch :

#include <Dice.h>

La ligne include est impérative pour pouvoir accéder a la fonctionnalité
de la bibliotheque-dé. Comment le compilateur saurait-il sinon a quelle
bibliotheque il doit accéder ? Les différentes bibliotheques disponibles ne
sont pas incluses par 'opération du Saint-Esprit ! Passons maintenant a
Iinstanciation, qui éléve la définition de classe au statut d’objet réel. Lobjet
créé myDice est également appelé variable d’instance. Ce terme revient
souvent dans la littérature.

Dice myDice(8, 9, 10, 11);

Les valeurs transmises 8, 9, 10 et 11 figurent les broches numeériques aux-
quelles les groupes de LED sont reliés. Un objet dé a ainsi été initialisé de
maniere a pouvoir opérer en interne quand la méthode pour lancer le dé
est appelée. Les arguments sont transmis dans l'ordre indiqué.

Dice myDice(8, 9, 10, 11);

g

Dice::Dice(int A, int B, int C, int D) {
{

}

Ils sont stockés dans les variables locales A, B, C et D, qui sont a leur tour
transmises aux variables membres GroupA, GroupB, GroupC et GroupD. Vient
ensuite 'appel de la méthode a condition qu’un potentiel HIGH soit appli-
qué a 'entrée numérique, appel qui peut se faire par le bouton-poussoir
raccordeé.

void setup() {
pinMode(13, INPUT); // Pas obligatoire - oui, mais pourquoi !?
}

void loop() {
if(digitalRead(13) == HIGH)
myDice.roll();

On voit ici aussi que la mise en surbrillance de la syntaxe fonctionne puisque
le nom de classe et la méthode sont en couleurs. La méthode roll étant

Partie Il. Les montages

un membre de la définition de classe myDice, une liaison vers la classe doit
étre établie en cas d’appel de celle-ci. Un appel par

roll();

provoquerait ici une erreur. La relation est établie par 'opérateur point
inséré entre classe et méthode et faisant office de lien.

Opérateur point

myDice.roll();

N

Variable d’instance Méthode

Importation de bibliotheques

Il est aussi possible de gérer les bibliotheques autrement. Nous avons créé
un dossier nommé Dice pour la bibliotheque-dé a I'intérieur duquel nous
avons enregistreé les fichiers :

e dice.h
e dice.h
e keywords.txt

Puis nous avons copié ce dossier dans le répertoire

C:\Users\<Username>\Documents\Arduino\libraries

afin qu’il soit accessible a I’aide de la commande Sketch | Import Library
apres le redémarrage de 'IDE Arduino. Vous avez certainement remar-
qué qu’au sommet du menu figure une commande qui permet d’ajouter
d’autres bibliothéques :

<« Figure 8-10

Fichier Edition |Croquis| Outils Aide Ajouter une bibliotheque
Vérifier/Compiler Ctrl+R

Téléverser Ctrl+U

Skatch_octd Télé avec un prog| Ctrl+Maj+U A
#include Exp les binaires compilé Ctrl+Alt+S Gérer les bibliotheques
Dice myD: - —
void set Afficher le dossier des croquis Ctrl+K LAJouter la bibliothéque .ZIP...

_Inclure une bibliotheque Arduino bibliothéques

Ajouter un fichier... Bridge

}

1

2

3

4| pinMod L

5 b
&

7 void loop() { EEPROM

Montage 8. Comment créer une bibliotheque ?

180

En sélectionnant cette commande, vous avez la possibilité d’intégrer une
bibliotheque compressée, que vous aurez préalablement téléchargée sur
Internet, par exemple, dans I’environnement Arduino ou dans le systeme
de fichiers. Il n’est pas nécessaire de décompresser préalablement le fichier,
car 'IDE s’en charge automatiquement.

Vous trouverez plus d’informations sur 'importation de bibliothéques a
I’adresse suivante :

https://www.arduino.cc/en/Guide/Libraries

Qu’avez-vous appris ?

Je reconnais que les choses sont devenues un peu plus difficiles dans
ce projet, mais le jeu en vaut la chandelle. Vous en savez maintenant
plus sur le paradigme de programmation orientée objet.

Vous savez bien faire la différence entre une classe et un objet.

Dans la POO, méthode remplace fonction et variable membre remplace
variable.

Le constructeur est une méthode avec une tache particuliere. Il initia-
lise Pobjet de maniere a obtenir un état de départ bien défini.

Les différents modificateurs d’acces public ou private réglementent
I'acces aux membres de l'objet, private assurant 'encapsulation des
membres.

Vous connaissez les informations de code qu’un fichier d’en-téte ou
.cpp doit contenir.

Lobjet instancié a partir d’'une classe est également appelé variable
d’instance.

Un opérateur point, ajouté aprés le nom de la variable d’instance et
servant quasiment de lien entre les deux, est utilisé pour accéder aux
variables membres et aux méthodes.

Vous savez comment créer une bibliotheque Arduino et a quel endroit
copier celle-ci dans le systéme de fichiers pour pouvoir y accéder a
tout moment.

Vous avez enfin appris a configurer certaines méthodes en tant que
mots-clés avec un marquage couleur. Lenregistrement s’effectue a un
emplacement auquel se trouvent habituellement aussi les sketches,
mais a l'intérieur du dossier libraries.

Enfin, vous avez vu comment configurer certaines méthodes en tant
que mots-clés en couleur.

Partie Il. Les montages

Les feux de circulation

Dans le premier montage, nous avions vu comment faire clignoter une
seule LED. Maintenant, nous allons en allumer trois. Elles ne brilleront
pas toutes d’un coup, bien sir ! En fait, nous allons construire des feux
de circulation. La commande s’effectue par phases que nous étudierons
en détail. Ensuite, nous compléterons nos feux de circulation par des feux
pour piétons. Voyons d’abord la liste des composants.

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant

2 LED rouges

1 LED orange

2 LED vertes

orange/orange/marron

330Q

5 résistances de 330 Q

1 bouton-poussoir miniature

@ | \\\

marron/noir/orange
1 résistance de 10 kQ E— I I ﬂ
10 kQ

Montage

<« Tableau 9-1
Liste des composants

181

Figure 9-1»
Les différentes phases
de signalisation

Tableau 9-2
Phases avec durées
d'allumage

182

Phases de signalisation

Voyons d’abord les différentes phases de signalisation possibles :

Changement de phase

O NN

V.

V-

®

4
J
N\

00
90

4

L)

p
(&

Changement de phase

Les différentes phases sont parcourues de gauche a droite, le cycle repre-
nant ensuite au début. Chacune phase a une durée d’affichage définie pou-
vant étre ajustée individuellement. Voici un exemple de durées d’allumage.

1™ phase 2¢ phase 3¢ phase 4¢ phase
-) r D - N s N
O © o ©o
® O @ O
® 6 O o
\ 4 \ 4 \& £ & _
Durée:10s Durée:2s Durée:10s Durée:3s

Schema

Examinons le schéma de la page suivante.

Partie Il. Les montages

<« Figure 9-2

Schéma
=
HLED1
\J3
'
E |LED2
‘
—-—N—<330]
X7
GND
Chaque LED est commandée par une résistance série de 330 Q. Le calcul
d’une résistance série pour une LED ne vous pose plus de probleme.
7
Realisation du circuit
Lillustration suivante présente la réalisation du circuit sur une plaque
d’essais :
<« Figure 9-3

Réalisation du circuit

Les sorties numériques 5, 6 et 7 sont raccordées a I’aide de cavaliers flexibles
aux résistances série afin de commander les LED.

Montage 9. Les feux de circulation

183

Sketch Arduino

Voici le code du sketch pour commander les feux de circulation :

const int ledPinRed =7; // Broche 7 commande la LED rouge
const int ledPinOrange = 6; // Broche 6 commande la LED orange
const int ledPinGreen = 5; // Broche 5 commande la LED verte

#define DELAY1 10000 // Pause 1, 10 secondes
#define DELAY2 2000 // Pause 2, 2 secondes
#define DELAY3 3000 // Pause 3, 3 secondes

void setup() {
pinMode(ledPinRed, OUTPUT); // Broche comme sortie
pinMode(ledPinOrange, OUTPUT); // Broche comme sortie
pinMode(ledPinGreen, OUTPUT); // Broche comme sortie
}

void loop() {
digitalWrite(ledPinRed, HIGH); // Allumage LED rouge

delay(DELAY1); // Attendre 10 secondes
digitalWrite(ledPinOrange, HIGH); // Allumage LED orange
delay(DELAY2); // Attendre 2 secondes

digitalWrite(ledPinRed, LOW); // Extinction LED rouge
digitalWrite(ledPinOrange, LOW); // Extinction LED orange
digitalWrite(ledPinGreen, HIGH); // Allumage LED verte
delay(DELAY1); // Attendre 10 secondes
digitalWrite(ledPinGreen, LOW); // Extinction LED verte
digitalWrite(ledPinOrange, HIGH); // Allumage LED orange
delay(DELAY3); // Attendre 3 secondes
digitalWrite(ledPinOrange, LOW); // Extinction LED orange

Peut-étre avez-vous remarqué quelque chose d’inhabituel dans la défini-
tion des broches au début du sketch. J’ai déja présenté les avantages de ce
mode d’écriture lors du premier montage. Pourtant, il semble y avoir ici
trois formes d’écritures différentes. Voyons cela de plus pres. Supposons
que nous voulions définir la broche 13 au début du sketch. Nous pourrions
employer les formulations suivantes :

// Définition d'une variable (occupe de la RAM)

int ledPin = 13;

// Définition d’une constante (n’occupe pas de RAM)
const int ledPin = 13;

// Directive de prétraitement (n’occupe pas de RAM)
#define LEDPIN 13

Les différences résident dans les détails. Dans la premiére variante, une
variable du type de donnée Integer est définie, ce qui occupe de la place

Partie Il. Les montages

dans la mémoire vive. Quand les sketches sont assez courts, cela ne pose
pas trop de problemes. D’ailleurs, de nombreux exemples utilisent cette
possibilité. La seconde variante utilise aussi le mot-clé const, ce qui signifie
qu’une constante est définie. Contrairement a la méthode précédente, la
valeur ne peut alors pas étre modifiée. Il s’agit presque d’une variable de
type lecture seule qui n'occupe pas d’espace dans la mémoire vive. Cest
donc un bon choix pour économiser de la capacité de stockage. Dans le
dernier cas, il s’agit d’une directive de prétraitement qui ne doit pas se
terminer par un point-virgule. Cette directive remplace chaque occur-
rence de I'indicateur défini LEDPIN a 'intérieur du sketch par la séquence
de caracteres suivante 13 et elle n’utilise pas non plus de mémoire. Nous
pouvons donc en conclure que la deuxieme méthode employant le mot-clé
const est le meilleur choix.

Vous trouverez de plus amples informations aux adresses suivantes :
https://www.arduino.cc/en/Reference/int
https://www.arduino.cc/en/Reference/Const

https://www.arduino.cc/en/pmwiki.php?n=Reference/Define

Revue de code

Nous utilisons des constantes numériques ou symboliques pour pouvoir
modifier facilement certaines valeurs du sketch. Les modifications sont
effectuées de facon centralisée, ce qui présente I'avantage qu’elles sont
appliquées automatiquement au reste du code. Cette méthode réduit le
travail de saisie, tout en rendant le code plus lisible et en réduisant le risque
d’erreurs qui pourraient se glisser dans le code.

En fait, instruction #define n’est pas une véritable instruction, mais une
directive de prétraitement. Rappelez-vous la directive de prétraitement
#include, reconnaissable au point-virgule manquant en fin de ligne qui
caractérise normalement la fin d’'une instruction. Quand le compilateur
entreprend de traduire le code source, une partie spéciale de celui-ci appe-
lée préprocesseur suit les directives de prétraitement, qui sont toujours
introduites par le signe diese #. Vous croiserez encore d’autres directives
de ce type au cours de ce livre. La directive #define permet d’utiliser des
noms symboliques et des constantes. La syntaxe pour 'utiliser est celle du
haut de la page suivante.

Montage 9. Les feux de circulation

186

Figure 9-4 >
La directive #define

Directive Identifiant Valeur

{ | | | | \
(#define DELAY1 10000)

Cette ligne agit comme suit : partout ou le compilateur trouve I'identifiant
DELAY1 dans le code du sketch, il le remplace par la valeur 18eee. Vous pou-
vez vous servir de la directive #define partout ou vous souhaitez utiliser
des constantes dans le code. J’ai déja soulevé ce probleme auparavant :
pas de magic numbers !

Mais pourquoi n’avons-nous pas utilisé #define partout ou des broches ont
été définies ? Ce sont pourtant également des constantes qui ne varient
plus au cours du sketch.

Vous avez raison ! J’aurais pu le faire partout et certains sketches Arduino,
que vous trouverez sur Internet, emploient ce mode d’écriture. Au lieu de

int ledPinRed = 7;

on peut alors écrire :

#define ledPinRed 7

Le sketch agit comme avant et cela ne change rien que vous utilisiez la
premiere ou la seconde variante — mais il est important de vous en tenir
a celle choisie et de ne pas en changer au gré de votre humeur. Pour ma
part, ’emploie dans mon sketch la déclaration et I'initialisation de variables
quand il s’agit de broches, et la directive #define pour les constantes.
Revenons a notre sketch et voyons comment il fonctionne.

Pour que les feux de signalisation fonctionnent correctement, il faut non
seulement penser a allumer les diverses LED, mais aussi a les éteindre.
Le traitement s’effectue en continu, de haut en bas, a 'intérieur de la
fonction loop. Examinons les différentes phases avec leurs commandes
dans le sketch.

Partie Il. Les montages

digitalWrite(ledPinRed, HIGH); // Allumage LED rouge

delay(DELAY1); // Attendre 10 secondes
digitalwrite(ledPinOrange, HIGH); // Allumage LED orange
delay(DELAY2); // Attendre 2 secondes

digitalWrite(ledPinRed, LOW); // Extinction LED rouge
digitalwrite(ledPinOrange, LOW); // Extinction LED orange
digitalWrite(ledPinGreen, HIGH); // Allumage LED verte
delay(DELAY1); // Attendre 10 secondes
digitalwrite(ledPinGreen, LOW); // Extinction LED verte
L~ digitalWrite(ledPinOrange, HIGH); // Allumage LED orange
delay(DELAY3); // Attendre 3 secondes
Bdigitalwrite(ledPinOrange, LOW); // Extinction LED orange

A Figure 9-5
Commande des différentes
phases de signalisation

Au passage de la phase 1 a la phase 2, seule une LED orange vient s’ajouter
ala LED rouge. La rouge continue a briller. Mais au passage de la phase 2
ala phase 3, veillez a ce que les LED rouge et orange s’éteignent avant que
la LED verte ne s’allume. Ensuite, au passage de la phase 4 a la phase 1,
lorsque les phases recommencent au début, la LED orange doit s’éteindre.
Jetez un coup d’ceil au chronogramme pour voir comment les LED sont
allumées a tour de role pendant les différentes phases.

Rouge/ <« Figure 9-6

Rouge orange Vert Orange Rouge Chronogramme des feux

Rouge

Fr—— —

Orange | :

Vert E i : _

Montage 9. Les feux de circulation 187

188

Figure 9-7 >
Schéma

Variante utilisant le port B

Examinons une variante intéressante qui met en pratique les connaissances
que nous avons acquises sur lacommande directe du port a I'aide du registre
afin de manipuler directement les différentes broches. Nous utilisons de
nouveau le port B et nous modifions le circuit comme illustré :

>
BT
13_30| NLEEH
R
>
[330 | H—o
{ 330 |
=5 LED2
=
330 | N—o
L LED3
o
GND

Le code du sketch de commande est le suivant :

#define DELAY1 10000 // Pause 1, 10 secondes
#define DELAY2 2000 // Pause 2, 2 secondes
#define DELAY3 3000 // Pause 3, 3 secondes

void setup() {
DDRB = 0boe@eee111; // Broches 8, 9, 10 comme sortie
}

void loop() {
PORTB = @b000001808; // Mise de la broche 10 au niveau HIGH (rouge)

delay(DELAY1); // Attendre 10 secondes
PORTB = @b00@A0110; // Mise des 10,9 au niveau HIGH (rouge, orange)
delay(DELAY2); // Attendre 2 secondes
PORTB = 0booooRee1; // Mise de la broche 8 au niveau HIGH (vert)
delay(DELAY1); // Attendre 10 secondes
PORTB = @b00000018; // Mise de la broche 9 au niveau HIGH (orange)
delay(DELAY3); // Attendre 3 secondes

}

Les trois bits inférieurs sont chargés de commander les trois LED. [’avantage
de ce mode de programmation est évident : une seule commande PORTB
permet de modifier le niveau de plusieurs broches. Il n’est donc plus néces-
saire de s’assurer que les autres LED sont éteintes avant d’en allumer une
nouvelle.

Partie Il. Les montages

Des feux de circulation interactifs

Jusque-la, le sketch était relativement simple. Nous allons donc le modifier
légeérement. Imaginons maintenant des feux pour piétons installés sur un
troncon droit d’une route nationale. Il n’est pas utile que les phases pour
les automobilistes changent sans cesse si aucun piéton ne veut traver-
ser la voie de circulation. Comment les feux doivent-ils fonctionner avec
leurs phases ? Quel matériel supplémentaire faut-il et comment faire pour
étendre la logique ? Voici ce qu’il faut prendre en compte.

e Siaucun piéton ne se présente pour traverser la route, le feu reste vert
pour les automobilistes et rouge pour les piétons.

o Si un piéton appuie sur le bouton gérant les feux pour traverser en
toute sécurité, le feu passe a 'orange puis au rouge pour les automo-
bilistes. Le feu passe ensuite au vert pour les piétons. Apres un temps
prédéfini, le feu repasse au rouge pour les piétons, et le feu rouge
passe a 'orange puis au vert pour les automobilistes.

La situation de départ ressemble a ceci :

17 phase

Automobiliste Piéton Explications

Ces deux signaux lumineux restent allumés
jusqu’a ce qu'un piéton s'approche et appuie sur
le bouton gérant les feux. C'est alors seulement
que les changements de phase se déclenchent et
font en sorte que le feu passe au rouge pour les
automobilistes et au vert pour les piétons.

~

@

>

CL)

Examinons cela de plus pres.

2¢ phase

Automobiliste Piéton Explications

Le changement de phase est déclenché par
l'appui sur le bouton gérant les feux. Le feu
passe a l'orange pour les automobilistes, ce qui
signifie qu'il va passer au rouge sous peu.

Durée:3s

Montage 9. Les feux de circulation

189

190

Piéton Explications

Pour des raisons de sécurité, le feu est d’'abord
rouge pour les automobilistes et pour les
piétons. Cela permet aux automobilistes de
libérer le cas échéant le passage piéton.

Durée:1s

4° phase

Automobiliste Piéton Explications

Le feu passe au vert pour le piéton aprés un
court moment.

Durée:10s

5¢ phase

Automobiliste Piéton Explications

Le feu repasse au rouge pour les piétons.

Durée:1s

Partie Il. Les montages

6° phase

Automobiliste Piéton Explications

Le feu passe du rouge a l'orange pour les
automobilistes, ce qui les avertit que le feu va
bientdt passer au vert.

Durée:2s

Automobiliste Piéton Explications

Le feu repasse au vert pour les automobilistes et
au rouge pour les piétons. Cette derniére phase
est semblable a la premiére.

Durée : jusqu’au prochain appui sur le bouton

Schéma

Le schéma est un peu plus complexe.

<« Figure 9-8
Circuit des feux de
circulation interactifs

o_
1nog

o_o
1ossnod-uo

J

’_v@ Feux pour automobilistes

4
E!l
qm

Feux pour piétons

(0]
=
o

Montage 9. Les feux de circulation 191

192

Figure 9-9 >
Réalisation du circuit

Réalisation du circuit

Sur la plaque d’essais sont venues s’ajouter les deux LED supplémentaires
avec les résistances série, ainsi que le bouton-poussoir avec la résistance
pull-up :

Le sketch élargi est le suivant :

#define DELAYO 10000 // Pause @, 10 secondes

#define DELAY1 1000 // Pause 1, 1 seconde

#define DELAY2 2000 // Pause 2, 2 secondes

#define DELAY3 3000 // Pause 3, 3 secondes

int ledPinRedCar = 7; // La broche 7 commande la LED rouge
// (feux pour les automobilistes)

int ledPinOrangeCar = 6; // La broche 6 commande la LED orange

int ledPinGreenCar = 5; // La broche 5 commande la LED verte

int ledPinRedWalk = 3; // La broche 3 commande la LED rouge
// (feux pour les piétons)

int ledPinGreenWalk = 2; // La broche 2 commande la LED verte

int buttonPinLight = 8; // Bouton gérant les deux reliés a la broche 8

int buttonLightvalue = LOW; // Variable pour 1'état du bouton

// gérant les feux

void lightChange() {
digitalWrite(ledPinGreenCar, LOW);
digitalwrite(ledPinOrangeCar, HIGH); delay(DELAY3);
digitalWrite(ledPinOrangeCar, LOW);
digitalWrite(ledPinRedCar, HIGH); delay(DELAY1);
digitalwrite(ledPinRedWalk, LOW);
digitalWrite(ledPinGreenWalk, HIGH); delay(DELAY®);
digitalWrite(ledPinGreenWalk, LOW);
digitalwrite(ledPinRedWalk, HIGH); delay(DELAY1);
digitalWrite(ledPinOrangeCar, HIGH); delay(DELAY2);
digitalWrite(ledPinRedCar, LOW);

Partie Il. Les montages

digitalWrite(ledPinOrangeCar, LOW);
digitalWrite(ledPinGreenCar, HIGH);
}

void setup() {
pinMode(ledPinRedCar, OUTPUT); // Broche comme sortie
pinMode(ledPinOrangeCar, OUTPUT); // Broche comme sortie
pinMode(ledPinGreenCar, OUTPUT); // Broche comme sortie

pinMode(ledPinRedWalk, OUTPUT); // Broche comme sortie
pinMode(ledPinGreenWalk, OUTPUT); // Broche comme sortie
pinMode(buttonPinLight, INPUT); // Broche comme entrée

digitalwWrite(ledPinGreenCar, HIGH); // Valeurs de départ (vert
// pour automobilistes)
digitalWrite(ledPinRedWalk, HIGH); // Valeurs de départ (rouge
// pour piétons)
}

void loop() {
// Lire 1'état du bouton gérant les feux dans la variable
buttonLightValue = digitalRead(buttonPinLight);
// Si bouton pressé, fonction appelée
if(buttonLightValue == HIGH)
lightChange();
}

Le nombre de ports nécessaires est passé a 6, mais cela ne signifie pas
pour autant que les choses sont devenues plus difficiles. Vous devez seu-
lement soigner un peu plus le cablage et I’affectation des broches. Les
différentes broches sont programmeées comme entrées ou sorties, et la
valeur de démarrage LOW est attribuée a la variable buttonLightvalue au
sein de la fonction setup. Parce qu’aucun changement de phase ne survient
tant qu’on n’appuie pas sur le bouton, le circuit doit présenter un état de
départ bien défini. Aussi les feux pour automobilistes et piétons sont-ils
initialisés par les deux lignes :

digitalWrite(ledPinGreenCar, HIGH);
digitalWrite(ledPinRedWalk, HIGH);

Au sein de la fonction loop, I’état du bouton-poussoir est constamment
interrogé par la fonction digitalRead et le résultat est affecté a la variable
buttonLightValue. I’évaluation intervient immédiatement dans le test de
la structure de controle if :

if(buttonLightvalue == HIGH)
lightChange();

En cas de niveau HIGH, on passe directement a la fonction lightChange, qui
déclenche alors les changements de phase.

Montage 9. Les feux de circulation

193

194

Figure 9-10 >
Appel de la fonction
lightChange

Figure 9-11 »
Appel et retour

Et que se passe-t-il si nous appuyons une deuxieme fois sur le bou-
ton-poussoir ? Le déroulement s’en trouve-t-il d’'une maniére ou d’une
autre perturbé ?

Cette question vient a point nommé. Récapitulons le déroulement du
sketch. Corganigramme suivant devrait répondre a la question.

Bouton-

" Oui
poussoir

lightChange

Comme vous pouvez le voir, 'état du bouton-poussoir est constamment
interrogé et évalué en début de traitement dans la fonction loop. Ce sont
les seules étapes de traitement dans cette fonction. Elle n’a donc rien
d’autre a faire que d’observer I’état du bouton-poussoir et de bifurquer
dans la fonction lightChange quand le niveau passe de LOW a HIGH. Une fois
la fonction appelée, les divers changements de phase sont lancés et les
phases sont maintenues par différents appels de la fonction delay. Nous
venons alors tout juste quitter la fonction loop. Un nouvel appui sur le
bouton-poussoir ne serait donc pas enregistré par la logique, car la fonction
digitalRead n’est plus constamment appelée. Il ne le serait qu’aprés avoir
quitté la fonction lightChange.

void leop ()
{

// L’état du bouton-poussoir est affecté dans la variable
buttonLightValue = digitalRead(buttonPinLight);
//51 le bouton-poussoir est enfoncé, la fonction est appelée

if (buttonLightValue==HIGH) ¢
lightChange(); Appel de fonction

void lightChange()
{

Retour }

Partie Il. Les montages

Avant de passer au schéma, voici encore un chronogramme montrant les
différentes durées d’allumage I'une par rapport a l'autre. La situation de
départ nous montre que le feu est vert pour les automobilistes et rouge pour
les piétons. Un piéton ayant I'intention de traverser la route a un endroit
supposé plus sir appuie sur le bouton gérant les feux, ce qui amorce les
changements de phase.

Bouton-

poussoir
Auto rougeJ i
Auto orange ﬁ r =
Auto vert l— i— i
Bouton-poussoir " & s

Piéton vert I | -

Autre sketch élargi

Je vais maintenant modifier encore un peu le sketch gérant les feux de cir-
culation, afin que vous fassiez travailler davantage votre matiere grise. Dans
la programmation du circuit pour feux de circulation, j’ai toujours oublié
d’éteindre I'une ou I'autre LED lors d’un changement de phase avant d’al-
lumer la suivante lors du premier essai, ce qui m’a géné. J’ai donc imaginé
de configurer plus simplement I’allumage et I’extinction des LED. Certes,
cela demande un peu de préparation, mais peut s’avérer utile pour vos
montages a venir. Mais avant de commencer, je dois d’abord vous parler un
peu des bits et des octets. Le circuit ne change pas. Cordinateur et la carte
Arduino stockent toutes les données au niveau le plus bas de la mémoire
sous forme de bits et d’octets (8 bits). J’ai déja abordé ce theme dans le
montage n° 7 sur 'extension de port numérique. En voici les grandes lignes.

Puissances 27 x »x x p x pn
Valeur 1286 64 32 16 8 4 1

o ()W DOODOE

de bits

Montage 9. Les feux de circulation

<« Figure 9-12
Chronogramme des feux
interactifs

<« Figure 9-13
Combinaison binaire
pour le nombre entier 157

195

196

Figure 9-14
Quel bit pour quelle LED ?

Tableau 9-3
Nombres décimaux
pour commander les LED

Le nombre qui s’écrit en binaire 10011101 s’écrit en décimal :
122040 %20+ 122+ 1x25+1x24+0x2%+0x2°+1x2°=157

1l suffit maintenant que certains bits de cet octet servent a commander
les différentes LED de nos feux de circulation pour pouvoir allumer ou
éteindre toutes les LED au moyen d’une seule valeur exprimée en décimal.
On pourrait faire encore plus clair :

128 64 32 16 8 1

aonoanoo)l

Ne sont pas nécessaires

A 4

¥+ 000

On voit que 5 bits de cet octet suffisent a commander les feux. Mais com-
ment fait-on au juste ? J’ai reporté dans le tableau 9-3 les nombres déci-
maux correspondants, que j’ai déterminés a partir des différentes phases.

Piéton Automobiliste

LED Verte Rouge Verte Orange Rouge Nombre
décimal

Poids 26=16 2°=8 22=4 2'=2 20=1

Phase 1 0 1 1 0 0 12

Phase2 0 1 0 1 0 10

Phase3 0 1 0 0 1 9

Phase4 1 0 0 0 1 17

Phase5 0 1 0 0 1 9

Phaseé6 0 1 0 1 1 11

Reste a trouver, a partir des nombres décimaux correspondants, quel bit
commande une LED particuliére. Cest possible avec 'opérateur ET bit
a bit & Le tableau suivant montre que le résultat n’est 1 que si les deux
opérandes ont 1 pour valeur.

Partie Il. Les montages

Opérande 1 Opérande 2 Opération ET

1 0 0
0 0 0
0 1 0

1 1 1

Voici un exemple : vérifions que la LED rouge des feux pour piétons s’allume
pendant la phase 1 de notre commande pour feux de circulation.

Piéton Automobiliste

LED Verte Rouge Verte Orange Rouge Nombre
décimal

Poids 24=16 22=8 22=4 2'=2 20=1

Phase 1 0 1 1 0 0 12

Opérande O 1 0 0 0 8

Résultat 0 1 0 0 0 8

Le deuxieme opérande avec la valeur décimale 8 sert en quelque sorte de
filtre. 1l vérifie, seulement dans la position du bit de poids 23, qu’un 1 se
trouve bien dans le premier opérande. Cest le cas dans notre exemple
et le résultat est 8. Le tableau suivant donne les nombres décimaux pour
lesquels des opérations ET bit a bit doivent étre effectuées avec les valeurs
provenant des différentes phases pour déterminer I’état voulu de la LED.

LED Valeur du 2¢ opérande
LED rouge (automobiliste) 1

LED orange (automobiliste) 2

LED verte (automobiliste) 4

LED rouge (piéton) 8

LED verte (piéton) 16

Nous nous servons de 'opérateur conditionnel ? pour la vérification. Il s’agit
d’une forme d’évaluation spéciale d’une expression. La syntaxe générale
est la suivante.

(Condition?Instructionl:Instruction2)

<« Tableau 9-4
Opération ET bit a bit

<« Tableau 9-5
Contréle de
correspondance du bit

<« Tableau 9-6
Valeurs pour déterminer
leshitsaloual

<« Figure 9-15
Opérateur conditionnel ?

197

Montage 9. Les feux de circulation

198

Quand l'exécution du programme arrive a cette ligne, la condition est
d’abord évaluée. Si le résultat est vrai, Instructionl est exécutée, sinon c’est
Instruction2 quil’est. Pour commander toutes les LED avec cette structure,
les lignes de code suivantes doivent étre écrites, le nombre décimal pour
commander les LED étant mémorisé dans la variable lightvalue.

digitalWrite(ledPinRedCar, (lightValue&1) == 1?HIGH:LOW);
digitalWrite(ledPinOrangeCar, (lightValue&2) == 2?HIGH:LOW);
digitalWrite(ledPinGreenCar, (lightValue&4) == 4?HIGH:LOW);
digitalWrite(ledPinRedWalk, (lightValue&8) == 8?HIGH:LOW);
digitalWrite(ledPinGreenWalk, (lightValue&16)==16?HIGH:LOW);

Ces 5 lignes de code permettent de commander I’état (allumé ou éteint)
des 5 LED.

Vous vous demandez peut-étre comment on obtient les différentes durées
d’allumage des diverses phases de signalisation, car on ne voit pas I'ins-
truction delay qui sert a définir les pauses.

Effectivement, aussi ces lignes de code sont-elles insérées dans une fonc-
tion a part et complétées par lightvalue et une deuxieme valeur pour la
fonction delay. Cela donne :

void putLEDs(int lightvalue, int pause) {
digitalWrite(ledPinRedCar, (lightValue&1) == 1?HIGH:LOW);
digitalwrite(ledPinOrangeCar, (lightvalue&2) == 2?HIGH:LOW);
digitalWrite(ledPinGreenCar, (lightValue&4) == 4?HIGH:LOW);
digitalWrite(ledPinRedWalk, (lightValue&8) == 8?HIGH:LOW);
digitalWrite(ledPinGreenWalk, (lightValue&16)==16?HIGH:LOW);
delay(pause);

Pour commander les différentes phases de signalisation, il ne vous reste
plus qu’a appeler cette fonction avec les valeurs correspondantes qui
figurent dans le tableau 9-3. Les appels sont alors les suivants :

void lightChange() {
putLEDs (10, 2000);
putLEDs(9, 1000);
pUtLEDs(17, 10008);
putLEDs (9, 1000);
putLEDs (11, 2008);
putLEDs(12, ©);

On voit que la fonction putLEDs est appelée dans la fonction lightChange.
Regardons maintenant les choses de plus pres a I'aide d’'un exemple. La
fonction présentant plusieurs parametres, il est certainement utile de savoir
dans quel ordre ils sont transmis lors de I'appel.

Partie Il. Les montages

putLEDs (10, 2000):

\

¥oid putLEDs(int lightValue, int pause)

/1 ...
}

Lordre de transmission des arguments 10 et 2080 aux parametres de la
fonction putLEDs est exactement celui dans lequel vous les avez écrits entre
parentheses. Les parameétres de la fonction sont définis par les variables
locales lightvalue et pause, dans lesquelles les valeurs transmises sont
copiées.

ATTENTION A L'ORDRE DES ARGUMENTS

Respectezimpérativement l'ordre des arguments lors de 'appel de la fonction.
Cela ne ferait pas planter le sketch, mais le circuit ne réagirait pas comme
prévu. Il faut donc que :

« le nombre des arguments coincide avec celui des parameétres ;

- les types de données des arguments transmis correspondent a ceux des
parametres ;

« l'ordre soit respecté lors de l'appel.

Nous avons employé encore une fois 'expression « variable locale ». Mais
avez-vous bien saisi la différence entre variable locale et variable globale ?

La différence est toute simple. Les variables globales sont déclarées et ini-
tialisées en début de sketch et sont visibles partout, méme a I'intérieur des
fonctions, pendant le fonctionnement. La ligne de code suivante montre
une variable globale de notre sketch :

int ledPinRedCar = 7; // Broche 7 commande la LED rouge (feux pour
// les automobilistes)
/...

Celle-ci est utilisée plus tard dans la fonction setup. Elle y est donc visible
et vous pouvez y accéder.

void setup() {
pinMode(ledPinRedCar, OUTPUT); // Broche comme sortie
3

Les variables locales sont déclarées ou initialisées dans des fonctions ou,
par exemple, dans une boucle for. Elles ont une durée de vie limitée et ne
sont visibles que dans la fonction ou le bloc d’exécution. « Durée de vie »
signifie qu’une zone spéciale est mise a la disposition des variables locales
lorsque la fonction est appelée dans la mémoire. Une fois la fonction quit-

Montage 9. Les feux de circulation

199

tée, ces variables ne sont plus utiles et la mémoire est libérée. Une variable
locale n’est jamais visible hormis dans la fonction ou elle a été déclarée et
elle ne peut pas non plus étre utilisée depuis I'extérieur.

Mais qu’en est-il des valeurs définies avec #define au début du sketch ? Quel
comportement ont-elles ?

Vous pouvez aussi les considérer comme des définitions globales qui sont
visibles et accessibles partout dans le sketch. Maintenant que vous connais-
sez la directive #define, je peux vous dire que des constantes telles que HIGH,
LOW, INPUT ou OUTPUT — et de nombreuses autres encore — ont été également
définies par ces directives.

Dans le répertoire suivant :

.. .\Arduino\hardware\arduino\avr\cores\arduino

vous trouverez, entre autres, un fichier nommeé Arduino.h. Ce fichier de
’EDI d’Arduino contient beaucoup de définitions importantes, notamment
celles dont je viens de parler. En voici un court extrait :

36 f#define HIGH 0x1
37 #define LOW 0x0

39 $define INPUT 0x0
40 $#define OUTPUT Ox1

41

42 #define true 0x1

43 f#define false 0x0

44

45 $define 'PI 3.1415926535897932384626433832795

46 #define HALF PI 1.57079632679489661923132163916398

47 #define TWO_PI 6.283185307179586476925286766559

48 #define DEG _TO RAD 0.017453292519943295769236907684886
49 #define RAD TO DEG 57.295779513082320876798154814105
50

51 f#define SERIAL 0x0

52 #define DISPLAY 0Ox1

53

54 $#define LSBFIRST 0
55 #define MSBFIRST 1

Cela ne vous rappelle rien ? Vous en saurez bient6t davantage sur ce qu’est
un fichier d’en-téte. Contentez-vous pour I'instant de savoir qu’il est intégré
par le compilateur dans le projet et que toutes les définitions qu’il contient
sont globales et disponibles dans le sketch.

Partie Il. Les montages

Problemes courants

Si les LED ne s’allument pas les unes apres les autres, débranchez le port
USB de la carte pour plus de sécurité et vérifiez ce qui suit.

Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

Pas de court-circuit éventuel ?

Les différentes LED sont-elles correctement branchées ? La polarité
est-elle correcte ?

Les résistances ont-elles bien les bonnes valeurs ?
Le code du sketch est-il correct ?

Le bouton-poussoir est-il correctement cablé ? Vérifiez encore une fois
les contacts en question avec un testeur de continuité.

Qu’avez-vous appris ?

Montage 9. Les feux de circulation

Vous avez découvert comment évaluer le niveau d’une sortie numé-
rique a I'aide de la fonction digitalRead.

Vous avez réalisé un circuit pour feux de circulation a la fois simple,
car il lance automatiquement les différents changements de phase
indépendamment des influences externes, mais aussi interactif car il
réagit avec un capteur (ici, un bouton-poussoir) a des impulsions de
'extérieur et déclenchant alors seulement les changements de phase.

Utiliser la directive de prétraitement #define ne devrait plus vous
poser de problémes. Elle est employée la plupart du temps la ou des
constantes sont définies. Le compilateur remplace partout dans le code
le nom de P'identifiant par expression correspondante.

Lopérateur conditionnel ? peut étre employé pour retourner diffé-
rentes valeurs en fonction de I’évaluation d’une expression. Le mode
d’écriture est vraiment compact et n’est pas toujours immédiatement
compréhensible.

Vous avez appris a transmettre plusieurs valeurs a une fonction, et
vous savez en détail a quoi il faut faire attention.

Vous connaissez la différence entre variable locale et variable globale,
et vous savez ce que visibilité et durée de vie signifient dans ce cas.

201

202

Figure 9-16 »

Circuit pour feux de
circulation avec feux pour
piétons

Cadeau!

Je vous propose ici une carte a construire facilement, qui vous servira a
réaliser le circuit pour feux de circulation avec feux pour piétons.

Partie Il. Les montages

Montage

Le de électronique 1 0

En microélectronique, il existe de multiples applications de jeux de dés ou
de plateaux connus dont 'adaptation ne manquera pas de vous divertir. La
construction d’un circuit et la programmation d’un dé sont de beaux projets
qui nous permettront d’aborder différentes problématiques. Et méme si
cela parait assez simple, vous devrez néanmoins éviter de tomber dans
quelques piéges qui seront autant d’occasions d’apprentissage.

Vous apprendrez notamment a utiliser des tableaux bidimensionnels.
Vous utiliserez le moniteur série non seulement pour saisir le contenu de
variables, mais aussi pour rechercher des erreurs dans le code. Enfin, je
vous expliquerai comment calculer la résistance lorsque deux LED sont
branchées I'une derriére I'autre.

Qu’est-ce qu’un dé électronique ?

- Bien que les derniers montages vous aient donné
e ‘o .
— quelques bases pour programmer la carte Arduino,

\

\ vous pensez stirement étre encore loin du compte...
K] o Aussi allons-nous appliquer, approfondir et élargir nos
“N e connaissances en étudiant quelques circuits intéres-

sants. La construction d’un dé électronique est tou-
jours plaisante. Il y a quelques années de cela, quand les microprocesseurs
n’existaient pas ou étaient hors de prix, on utilisait plusieurs circuits inté-
grés. Vous trouverez pour ce faire de nombreuses instructions de bricolage
sur Internet.

Notre but est ici de commander le dé électronique avec la seule carte
Arduino. Tout le monde a déja joué aux dés, que ce soit au 421, au 5000
ou au Yams. Aussi notre prochain circuit sera celui d’'un dé électronique.

203

204

Figure 10-1»
Numérotation des
points du dé

Tableau 10-1 »
Quelles LED s'allument
pour quel nombre ?

Il se compose d’une unité d’affichage avec sept LED et un bouton-poussoir
pour lancer le dé. Voici d’abord la disposition des LED qui est celle des
points d’un véritable dé. Les points portent tous un numéro pour mieux
se repérer au moment de commander les LED. Le numéro 1 se trouve en
haut a gauche, la numérotation se poursuivant vers le bas puis vers la droite
jusqu’au numeéro 7 qui se trouve en bas a droite.

© O
6 00

© o0

Méme si un dé ne comporte habituellement que six faces, nous avons
néanmoins besoin de sept LED pour pouvoir représenter les six résultats
pouvant étre produits par un dé. Bien qu’il soit possible de représenter le
quatre avec les quatre LED des coins, par exemple, nous avons aussi besoin
de la LED au milieu du circuit pour le un, le trois et le cing.

Notre construction doit comporter un bouton-poussoir qui lance le dé.
Lorsqu’on appuie dessus, toutes les LED clignotent irrégulierement et
quand on le relache, I’affichage s’arréte sur une certaine combinaison de
LED, laquelle représente le nombre obtenu. Les différentes combinaisons
de points sont répertoriées dans le tableau ci-dessous.

Dé Nombre LED
1 2 3 4 5 6 7
e o
e e 1 v
O

e e
@

® (N)
N
<
<\

[N]
e
w
<
<
<

() @
® ()

() @

o

<\

<

‘

{\

<

Partie Il. Les montages

Il est certes tout a fait possible de construire le circuit sur votre plaque
d’essais, mais ce n’est pas toujours simple compte tenu de la symétrie
des LED. Dans un second montage, nous construirons le circuit sur une
carte spéciale appelée shield, que nous insérerons au-dessus de la carte
Arduino. Cest la maniere la plus propre et la plus pratique de fabriquer
un dé électronique durable. Mais utilisons d’abord la plaque d’essais. Quel
matériel nous faut-il ?

PROTOTYPAGE

Nous réalisons tout d'abord le circuit sur la plaque d'essais en enfichant les
LED, les résistances et le bouton-poussoir, ainsi que les cables, uniquement
sur la plaque. Cela nous permet de vérifier que le circuit fonctionne. Si tout va
bien, nous pouvons ensuite souder le circuit sur une platine pour lui donner
une forme durable. Le fait de tester un circuit sur une plaque d'essais se
nomme le prototypage.

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant <« Tableau 10-2
Liste des composants
7 LED rouges /
orange/orange/marron
7 résistances de 330 O —————— I I l
330Q
marron/noir/orange
1 résistance de 10 kQ — I I I
10 kQ

1 bouton-poussoir miniature

Schema

Le schéma montre les 7 LED du dé avec leur résistance série de 330 Q et
le bouton-poussoir avec sa résistance pull-down.

Montage 10. Le dé électronique 205

Figure 10-2 » Lancement du dé

Carte Arduino commandant ° D—I
chacune des LED du dé —] gg‘
: [330]
@ LED dude 5
-H | H_‘
x x
rowdiiey
> >
o |Lpel
~7
GND & &6 & & & ¢ R el
GND
’
Realisation du circuit
La figure suivante montre la construction du circuit sur une seule plaque,
mais il a fallu « jongler » un peu pour y arriver. Ceci dit, il devrait trés bien
fonctionner.
Figure 10-3 >

Réalisation du dé
électronique sur une plague
d'essais

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

206 Partie Il. Les montages

Code du sketch

Voici le code du sketch pour commander le dé électronique :

#define WAITTIME 20
int pips[6][7] = {{e, @, @, 1, 0, 0, 0}, // Nombre sorti 1

{1, 0, 0, 0, 0, @, 1}, // Nombre sorti 2
{1, 0, 0, 1, 0, 0, 1}, // Nombre sorti 3
{1, 0,1, 0, 1,0, 1}, // Nombre sorti 4
{1, 0, 1,1, 1, 0, 1}, // Nombre sorti 5
{1, 1, 1, o, 1, 1, 1}}; // Nombre sorti 6

int pin[] = {2, 3, 4, 5, 6, 7, 8};
int pinoffset = 2; // Premiére LED sur broche 2
int buttonPin = 13; // Bouton-poussoir sur broche 13

void displayPips(int value) {
for(int i =0; i <7; i++)
digitalWrite(i + pinOffset, (pips[value - 1][i] == 1)?HIGH:LOW);
delay(WAITTIME); // Ajouter une courte pause
3

void setup() {
for(int i =0; i <7; i++)
pinMode(pin[i], OUTPUT);
pinMode(buttonPin, INPUT);
}

void loop() {
if(digitalRead(buttonPin) == HIGH)
displayPips(random(1, 7)); // Générer un nombre aléatoire entre 1 et 6

}

Examinons la signification de ce sketch.

Revue de code

La programmation est déja plus compliquée et nous n’avons pas seulement
affaire cette fois a un tableau unidimensionnel comme dans le montage n° 6
sur le séquenceur de lumiere. Un tableau bidimensionnel est ici nécessaire
pour mémoriser les numéros des LED qui doivent s’allumer en fonction
du nombre obtenu. Rappelons-nous encore une fois, par 'intermédiaire
de la figure suivante, comment un tableau unidimensionnel fonctionne et
comment nous pouvons y accéder.

<« Figure 10-4

Index 01 2 3 4 5 6 Tableau unidimensionnel

ot 7 1 8 9 [10]11]12]13

Montage 10. Le dé électronique 207

208

Figure 10-5
Tableau bidimensionnel

La déclaration et linitialisation du tableau sont assurées par la ligne
suivante :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Le tableau contient ici sept éléments. Un tableau unidimensionnel est
reconnaissable a sa paire de crochets derriere le nom de variable. On
accéde a un élément particulier en indiquant I'index entre les crochets.
Vous écrivez donc ce qui suit pour accéder au 4° élément :

ledPin[3]

N’oubliez pas que I’on compte a partir de 0 !

Comme la premiere LED de notre montage ne se trouve pas sur la broche 0,
j’ai utilisé la variable pinoffset qui contient une valeur de décalage pour
définir la position de départ pour une boucle for afin de commander la
premiére LED et toutes les autres.

Un tableau bidimensionnel possede au sens figuré une dimension spatiale
de plus, passant ainsi quasiment d’une droite unidimensionnelle a une
surface.

Colonnes (LED)
Index\ 01 2 3

N
8800 -

13000
+3000000
0000000

Il se comporte de la méme maniére que pour trouver une piéce sur un
jeu d’échecs. On la localise plus facilement grace a des coordonnées : par
exemple Dame sur D1, D indiquant la colonne et 1 la rangée. Le tableau
présenté ici dispose de 6 x 7 = 42 éléments. Déclaration et initialisation
se font comme d’habitude. Seule la paire de crochets étant rajoutée pour
la nouvelle dimension.

Lignes (nombre)
N
[
)
[

Partie Il. Les montages

int pips[6][7] = {{e, @, @, 1, @, 0, B}, // Nombre sorti 1
{0, 0,1,0,0,0,1}, // Nombre sorti 2
{0,0,1,1,0,0, 1}, // Nombre sorti 3
{1, 0, 1, 0, 1, 0, 1}, // Nombre sorti 4
{1, 0, 1,1, 1,0, 1}, // Nombre sorti 5
{1, 1, 1, 0, 1, 1, 1}}; // Nombre sorti 6

La premiere valeur [6] entre crochets indique le nombre de lignes, le
deuxiéme [7] le nombre de colonnes. La double paire de crochets permet
aussi d’accéder a un élément :

pips[ligne][colonne]

Vous pouvez ainsi procéder ligne par ligne et lire les valeurs de LED cor-
respondantes pour y accéder. La figure suivante montre I'affectation des
différentes valeurs.

<« Figure 10-6
Affectation des valeurs
des colonnes du tableau
aux LED correspondantes

Peut-étre trouvez-vous bizarre que le graphique commence par 0 et finisse
par 5 a la place de 6, alors qu’on ne peut pas faire 0 avec un dé. La réponse
est simple. Ce ne sont pas les points du dé qui sont énumérés, mais I'index
du tableau. Rappelez-vous que I'index commence toujours a 0 et présente

Montage 10. Le dé électronique

209

donc un décalage numeérique de -1 par rapport aux points du dé. Voici
maintenant un petit sketch qui affiche les contenus du tableau bidimen-
sionnel sur le moniteur série :

int pips[6][7] = {{e, @, @0, 1, 0, @, 0}, // Nombre sorti 1
{1, 0,0, 0,0, 0, 1}, // Nombre sorti 2
{1, 0, 0, 1, 0, 8, 1}, // Nombre sorti 3
{1, 0,1,0,1,0, 1}, // Nombre sorti 4
{1, 0,1, 1,1, 0, 1}, // Nombre sorti 5
{1,1,1,0,1,1,1}}; // Nombre sorti 6

void setup() {
Serial.begin(9600);
for(int row = @; row < 6; row++){
for(int col = @; col < 7; col++)
Serial.print(pips[row][col]);
Serial.println();
3
}

void loop() { /* ... */ }

1l s’agit ici de deux boucles for imbriquées. La boucle extérieure, qui
contient la variable de contrdle row (ligne), commence a compter a partir
de sa valeur de départ e. Vient ensuite la boucle intérieure, qui commence
elle aussi par la valeur @ de sa variable de controle col (colonne). La boucle
intérieure doit cependant avoir fini de traiter toutes ses valeurs pour que
la boucle extérieure incrémente la sienne.

IMBRICATION DE BOUCLES

Dans le cas de boucles imbriquées ['une dans lautre, le traitement se fait de
lintérieur vers l'extérieur. Autrement dit, la boucle intérieure doit avoir exécuté
tous ses passages avant que la boucle extérieure ne compte un de plus et
que la boucle intérieure ne poursuive avec ses passages. Le cycle continue
jusqu’a ce que toutes les boucles aient été traitées.

210 Partie Il. Les montages

La figure 10-7 présente le contenu du tableau affiché sur le moniteur série.

COMS (Arduino/Genuino Una) -
\ [emorer ||
0001000 A
1000001
1001001
1010101
1011101
1110111

g
[¥] Défilement automatique \Nouvelleigne vJ |96-00baud vj [Effacer la sortie |

Comparez ce résultat a I'initialisation du tableau : ils coincident. Passons
maintenant a I'analyse du code proprement dite. La fonction setup a encore
pour tache d’initialiser les différentes broches :

void setup() {
for(int i =0; i <7; i++)
pinMode(pin[i], OUTPUT);
pinMode(buttonPin, INPUT);
3

Les broches pour commander les LED, broches programmeées comme
OUTPUT dans la fonction setup, sont également regroupées dans un tableau.
Il n’y a qu’au bouton-poussoir, qui est relié a une entrée numérique, qu’une
variable normale est affectée. La tache principale est encore exécutée par
la fonction loop :

void displayPips(int value) {
for(int i =9; i <7; i++)
digitalwrite(i + pinOffset, (pips[value - 1][i] == 1)?HIGH:LOW);
delay(WAITTIME);
3

void loop() {
if(digitalRead(buttonPin) == HIGH)
displayPips(random(1, 7)); // Générer un nombre aléatoire
// entre 1 et 6

Quand le bouton-poussoir est enfoncé, la fonction displayPips est appelée.
Un chiffre aléatoire compris entre 1 et 6 lui est transmis comme argument.
Voyons maintenant de plus prés le mode d’exploitation de la fonction.

Montage 10. Le dé électronique

<« Figure 10-7

Contenu du tableau affiché

ligne par ligne sur le
moniteur série

21

212

Figure 10-8 »

Sélection de [‘élément

du tableau pertinent pour
un nombre préalablement
sorti

1l s’agit essentiellement d’une boucle for, qui commande les différentes
LED correspondant au chiffre transmis. Supposons qu’un 4 soit sorti : la
fonction recoit cette valeur comme argument. La boucle for commence
son travail. Elle commande les broches et détermine le niveau HIGH/LOW
nécessaire pour la LED en question :

for(int i = 0; i < 7; i++)
digitalWrite (+ pinOffset, (pips[value - 1][i] == 1)?HIGH:IOW);
| |1 |

Broche de la LED Niveau HIGH/LOW

La variable pinoffset a pour valeur 2 et établit que la premiere broche a
traiter se trouve a cette place. La premiere broche, portant le numéro 9,
est RX et la deuxiéme, portant le numéro 1, est TX. Ces deux broches sont
en principe a éviter. La boucle for commencant par la valeur , la valeur
de pinoffset lui est rajoutée. Mais revenons a notre exemple, dans lequel
un 4 est sorti. La boucle for traite la 4¢ ligne du tableau pour déterminer
les niveaux HIGH/LOW nécessaires. Mais cette valeur doit étre diminuée de
1 du fait que 'on commence par la valeur d’index e.

4-1 {{0, 0, 0, 1, 0, 0, 0}, //Nombre sorti 1
{&, 0, 0, 0, 0, 0, 1}, //Nombre sorti 2
{1, o, o, 1, 0, 0, 1}, //Nombre sorti 3
{1, 0, 1, 0, 1, 0, 1}, //Nombre sorti 4
{1, 0, 1, 1, 1, 0, 1}, //Nombre sorti 5
{1, 1, 1, 0, 1, 1, 1}}; //Nombre sorti 6

Index

La ligne sélectionnée dans le tableau comporte les valeurs 1, 0, 1, 0, 1, O,
1 qui sont traitées une a une par la boucle for. Ceci est amorcé par I'ex-
pression suivante :

(pips[Vvalue - 1][i] == 1)?HIGH:LOW)

Celle-ci vérifie que les valeurs sont bien 1 ou . Le niveau HIGH est appliqué
si C’est 1 et le niveau LOW si c’est @. Les LED correspondant au nombre sorti
sont ainsi activées ou désactivées. Tant que le bouton-poussoir est main-
tenu enfoncé, un nouveau nombre est déterminé et les LED clignotent
toutes tres vite I'une derriére I'autre. Une fois le bouton-poussoir relaché,
le dernier nombre reste affiché. La constante WAITTIME permet de régler
la vitesse a laquelle les nombres changent quand le bouton-poussoir est
enfoncé, soit ici 20 ms.

Vous vous souvenez du tableau unidimensionnel ? Nous avons vu qu’il est
inutile d’écrire la dimension du tableau entre les crochets si celui-ci est
initialisé aussitot dans la méme ligne. Vous vous dites alors peut-étre qu’en

Partie Il. Les montages

utilisant un tableau bidimensionnel, le compilateur déduirait des valeurs
transmises les dimensions que doit avoir le tableau.

I’idée n’est pas mauvaise mais vous obtiendriez une erreur. En effet, si vous
omettez toutes les indications sur la taille du tableau et écrivez

int pips[][] = {{e, @, @, 1, @, @, 0}, // Nombre sorti 1
{1, 0, 0, 0, 0, 0, 1}, // Nombre sorti 2
{1, @, 0, 1, 8, @, 1}, // Nombre sorti 3
{1, 0,1, 0,1, 0,1}, // Nombre sorti 4
{1, 0,1, 1, 1, 0, 1}, // Nombre sorti 5
{1,1,1,0,1, 1, 1}}; // Nombre sorti 6

le compilateur renacle, comme vous le constatez. Le message d’erreur dit,
pour résumer, que dans le cas d’un tableau multidimensionnel, toutes les
limites, hormis la premiéere, doivent étre indiquées. Vous pouvez donc
écrire la ligne suivante :

int pips[1[7] = ...

Le compilateur acceptera ce code.

Que pouvons-nous encore améliorer ?

1l est presque toujours possible d’améliorer ou de simplifier les choses. Il
vous suffit de prendre un peu de recul et de considérer le projet dans son
ensemble. Ne vous creusez pas trop la téte. Les idées viennent souvent
quand on est occupé a autre chose. Revenons a notre dé. Si vous regardez
les différents points d’'un dé pour différentes valeurs, vous remarquerez
peut-étre quelque chose. Retournez pour ce faire au tableau « Quelle LED
s’allume pour quel nombre ? » Question : les huit LED s’allument-elles
toutes indépendamment les unes des autres ? Ou se peut-il que certaines
forment un groupe ? Question idiote, non ? Cest le cas, bien évidemment :
la figure suivante montre les différents groupes.

Groupe A Groupe B Groupe C Groupe D <« Figure 10-9
Groupes de LED sur le dé
(5) (5) (1) @b (5) électronique
0| 0060|6606 (4)
(73 0|6 ©0

LED 4 LED 1#7 LED3+5 LED2+6

Pris séparément, le groupe A et le groupe B sont utilisables, ce qui est
moins le cas pour les groupes C et D. Quoi qu’il en soit, les configurations
souhaitées sont générées par un groupe ou une combinaison de plusieurs

Montage 10. Le dé électronique

213

214

Tableau 10-3 »
Points du dé
et groupes de LED

groupes. Voyons maintenant lequel ou lesquels des groupes est ou sont
concerné(s) par quels points du dé :

Groupe A

Groupe B

Groupe C

Groupe D

Ainsi, nous pouvons controler les LED avec 4 lignes de commandes au
lieu de 7.

Nous devons interconnecter deux LED dans les groupes B, C, et D. Dans le
montage n° 3, nous avions calculé la résistance série pour une LED rouge.
Relisez-le si besoin. Si plusieurs LED doivent étre commandées, il faut les
brancher en série. Il y a environ 2 V aux bornes d’une seule LED rouge,
autrement dit la résistance série doit faire chuter 3 V. Deux LED étant ici
branchées l'une derriére I'autre, il est possible de déterminer ce qui suit
pour la chute de tension aux bornes de la résistance série R, :

Urv = Uotate = Urep1 = Urpp2 = +5 V-2V -2V =1V

1V doit donc étre « absorbé » par la résistance série R, pour que 2 V sub-
sistent aux bornes de chaque LED. Pour ce qui est du courant, qui circule
de la méme facon dans tous les composants (rappelez-vous comment le
courant se comporte dans un montage en série), je le fixe a 10 mA (10
mA = 0,01 A). On obtient donc les valeurs suivantes dans la formule pour
calculer la résistance série :

Ry = Yiotatle ~YLEDI + 1ED2 _5V -4V

I ~ 0,01 A

=100 Q

Partie Il. Les montages

Le circuit ressemble a ceci :

GND +5V
Itotale:10mA
4 %4
|
[1 ! | I
4—4—
. LED1 | LED2 ! R |
' - - ' < '
+ Uep=2v Uiep=2v Urv=1v!
14]
Utotale=+5V

ATTENTION AU SENS DES LED !

<« Figure 10-10
Deux LED avec une
résistance série

Veillez a ce que les deux LED soient dans le méme sens, sinon pas d'allumage.
L'anode de la LED 1 est reliée a la cathode de la LED 2.

Ici aussi, j’ai vérifié le calcul de maniere pratique pour m’assurer que tout
est également en ordre.

o A

A
LED 1 LED 2 Rv

Le courant de 7,84 mA est absolument correct et encore inférieur a la pres-
cription de 10 mA maxi. Deux LED ayant naturellement besoin du double
de tension d’alimentation par rapport a une seule, la résistance série doit
étre plus faible pour que la luminosité des deux LED, soit la méme que
celle d’'une seule LED. Vous pouvez bien str utiliser la méme résistance
de 330 Q pour tous les groupes A a D, ce qui signifie toutefois en théorie
que la luminosité du groupe A sera plus forte avec une seule LED que le
reste des groupes.

Passons maintenant a la programmation. Par quoi commencer ? Je vous
suggere de revenir au tableau 10-3 et de voir s’il s’en dégage une systéma-
tique établissant quel groupe de LED doit étre commandé, a quel moment
et pour quelles configurations de points du dé. Procédez étape par étape

<« Figure 10-11

Mesure du courant sur le
circuit de commande avec
deux LED

et une nouvelle résistance

Montage 10. Le dé électronique

215

216

et observez un groupe apreés I'autre. Vous pouvez les traiter complétement
a part 'un de l'autre, car la logique de commande se charge ensuite de
les rassembler pour un affichage en commun des véritables points du
dé. Je vous montre encore une fois de maniére simplifiée le groupe A du
tableau 10-3.

N 2 3 4 5 6

Encore un indice : qu’est-ce que les nombres 1, 3 et 5 ont en commun ?
Ce sont tous des nombres impairs !

Formulation pour commander le groupe A
Commander le groupe A si le nombre aléatoire déterminé est impair.

Passons maintenant au groupe B. Voici ’extrait correspondant du
tableau 10-3:

0~

Groupe B v v v v v

Coroupes |

Que constatez-vous ici ? Tous les nombres sont concernés sauf le 1.

Mais a quoi pourrait bien ressembler une formulation que le microcontro-
leur comprendrait sans probleme ? Une description quelque peu maladroite
donnerait ceci : commander le groupe B si le nombre est 2 ou 3 ou 4 ou
5 ou 6. Cherchez la encore le point commun et vous pourrez raccourcir
fortement la formulation.

Formulation pour commander le groupe B

Commander le groupe B si le nombre aléatoire déterminé est supérieur a 1.

Voyons maintenant le groupe C. Tous les nombres supérieurs a 3 sont
concerneés.

1 2 3

o0

0~
ol
o~

Formulation pour commander le groupe C

Commander le groupe C sile nombre aléatoire déterminé est supérieur a 3.

Passons pour finir au groupe D.

Partie Il. Les montages

P 2 3 4 5 6
| Groupe C |

Groupe C v

Formulation pour commander le groupe D
Commander le groupe D si le nombre aléatoire déterminé est égal a 6.

Passons maintenant a la programmation. Vous verrez que cette solution
est beaucoup plus simple que l'utilisation d’un tableau. Mais il faut suivre
mentalement quelques pistes jusqu’au bout avant de s’apercevoir que 4
broches au lieu de 7 sont nécessaires pour commander les LED. Cela per-
met cependant d’aborder cette thématique par le coté ludique. Voici le
code du sketch pour commander le dé électronique avec moins de lignes
de commande :

#define WAITTIME 20

int GroupA = 8; // LED 4

int GroupB = 9; // LED 1 + 7

int GroupC = 10; // LED 3 + 5

int GroupD = 11; // LED 2 + 6

int buttonPin = 13; // Bouton-poussoir sur broche 13

void displayPips(int value) {
// Eteindre tous les groupes
digitalWrite(GroupA, LOW);
digitalWrite(GroupB, LOW);
digitalWrite(GroupC, LOW);
digitalWrite(GroupD, LOW);
// Commande de tous les groupes
if(value%2 != @) // La valeur est-elle impaire ?
digitalWrite(GroupA, HIGH);
if(value > 1)
digitalWrite(GroupB, HIGH);
if(value > 3)
digitalWrite(GroupC, HIGH);
if(value == 6)
digitalWrite(GroupD, HIGH);
delay(WAITTIME); // Ajouter une courte pause
3

void setup() {
pinMode(GroupA, OUTPUT);
pinMode(GroupB, OUTPUT);
pinMode(GroupC, OUTPUT);
pinMode(GroupD, OUTPUT);
}

void loop() {
if(digitalRead(buttonPin) == HIGH)
displayPips(random(1, 7)); // Générer un nombre entre 1 et 6
}

Montage 10. Le dé électronique

217

Figure 10-12 ¥

Carte Arduino commandant
les 7 LED du dé par groupe

de LED

Peut-étre pensez-vous que nous avons oublié quelque chose ! En effet,
nous avons programme les broches pour les groupes A a D comme sortie,
mais nous n’avons pas défini le bouton-poussoir comme entrée.

Effectivement, je n’ai pas programmeé cette entrée sur la broche 13 comme
entrée. Vous avez raison sur ce point. Mais je n’ai pas non plus oublié
puisque toutes les broches numériques sont définies comme entrée de
maniere standard et n’ont donc pas besoin d’étre explicitement program-
mées en cas d’utilisation appropriée. Vous pouvez bien entendu le faire
partout dans votre sketch, car cela aide certainement a comprendre.

Examinons la ligne qui détermine si la valeur est impaire. Lopérateur %
(opérateur modulo) permet de calculer le reste d’une division. Sile nombre
est divisible par 2, il s’agit d’'un nombre pair, le reste de la division étant
dans ce cas toujours égal a 0. La ligne

if(value%2 !'= 0)

me permet cependant de demander si le reste est différent de @ pour ainsi
commander le groupe A.

Encore une remarque avant d’en venir au circuit : cela ne change pas grand-
chose si, au lieu de la résistance série de 100 Q calculée pour les groupes B
a D, vous utilisez ici les anciennes résistances de 330 Q. La luminosité
semble étre la méme, mais ce n’est qu’approximatif.

La figure suivante montre qu’il faut moins de résistances série pour les
LED que dans le montage précédent.

Lancementdu dé

e

218

O

L i\ o LED du dé
ol 3o
b

4 Commande : broche 8
1 + 7 Comnmande : broche 9
3
2

5 Commande : broche 10
6 Commande : broche 11

@
4
(=

Partie Il. Les montages

Problemes courants

Si les LED ne se mettent pas a clignoter apres avoir appuyé sur le bou-
ton-poussoir ou si les points du dé qui s’affichent sont bizarres, voire
incohérents, débranchez le port USB de la carte pour plus de sécurité et
vérifiez ce qui suit.

o Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?
e Pas de court-circuit éventuel ?

e Les différentes LED sont-elles correctement branchées ? La polarité
est-elle correcte ?

e Les résistances ont-elles les bonnes valeurs ?
e Le code du sketch est-il correct ?

e Lebouton-poussoir est-il correctement cablé ? Vérifiez encore une fois
les contacts en question avec un testeur de continuité.

Montage du dé électronique
sur une platine

1l est possible de créer soi-méme ses platines afin de les utiliser ensuite
comme extensions de la carte Arduino. Je vais vous présenter la solution
que j’ai imaginée pour le dé électronique.

Qu’en pensez-vous ? C’est une jolie extension dont la réalisation et la mise
en ceuvre m'ont bien amusé. Plein d’idées me sont venues au cours du
montage ! Ca donne envie d’aller encore plus loin ! Vous aussi, si vous le
souhaitez, vous pouvez réaliser ce circuit imprimé comme un vrai profes-

<« Figure 10-13
Dé électronique
sur une platine

Montage 10. Le dé électronique

219

sionnel. La figure 10-14 montre la platine, ou shield, terminée, mais encore
sans ses composants.

Figure 10-14 »
Dé électronique sur une
platine aprés la production

Cest une véritable platine qui ressemble déja beaucoup a un shield, avec
tous ses marquages et ses trous forés. Il ne me reste plus qu’a y fixer les
composants afin de voir ce que ca donne.

Figure 10-15 »>
Circuit imprimé
du dé électronique

Je suis tres fier du résultat !

220 Partie ll. Les montages

Exercice complémentaire

Lobjet de cet exercice est déja un peu plus délicat. Vous vous souvenez
stirement du registre a décalage 74HC595 avec ses 8 sorties. Essayez de
réaliser un circuit ou de programmer un sketch qui commande un dé élec-
tronique au moyen du registre a décalage. Combien de broches numériques
économisez-vous avec cette variante ? Est-ce un avantage par rapport a la
réalisation avec des groupes de LED ?

Qu’avez-vous appris ?

e Vous avez appris dans ce montage comment déclarer et initialiser un
tableau bidimensionnel et comment accéder aux différents éléments
de ce tableau.

o Vous savez comment afficher des contenus de variables dans le moni-
teur série pour vérifier 'exactitude de ces valeurs. Vous pouvez ainsi
rechercher une erreur et analyser le code en cas de comportement
incorrect. Vous devez cependant étre sir que le circuit est correcte-
ment cablé, sinon vous chercherez dans le code source une erreur qui,
en réalité, se situe au niveau du matériel. Cela vous évitera de perdre
du temps et vous épargnera peut-étre méme une crise de nerfs.

e Vous avez appris comment calculer une résistance série pour deux
LED montées en série, de maniére a ce que la luminosité demeure
pratiquement inchangée.

Montage 10. Le dé électronique

221

Montage

Des detecteurs 1 1
de lumiere

Dans ce montage, nous allons connecter un capteur a la carte Arduino afin
de recevoir une valeur mesurée qui sera ensuite analysée. Nous sommes
soumis a d’innombrables influences extérieures auxquelles nous ne pou-
vons pas nous soustraire, comme

e la température
e la luminosité

I’humidité de I’air

e la pression atmosphérique
o le champ magnétique

pour n’en citer que quelques-unes.

Maintenant que l'on sait prélever une valeur mesurée, il n’y a plus
qu’un pas a franchir pour influencer le courant en fonction de la gran-
deur mesurée. Le moyen le plus simple pour y parvenir est d’utiliser
une résistance. Ce n’est évidemment pas une résistance fixe, comme
nous en avons utilisé jusqu’ici, mais une résistance variable. Si seule
la mesure de la luminosité nous intéresse, c’est trés facile a réaliser au
movyen d’une photorésistance, également nommée résistance photo-
sensible (en anglais, Light Dependent Resistor (LDR). Il s’agit d’'un semi-
conducteur, dont la résistance dépend de la lumiere. Plus la quantité de
lumiere atteignant la LDR est élevée, plus la résistance est faible. Notre
circuit doit commander dix LED en fonction de la luminosité. Plus la lumi-
nosité est élevée, plus le nombre de LED allumées est important. Le circuit
ressemble a celui du séquenceur de lumiere, a ceci pres que les différentes
LED ne sont pas commandées 'une apres ’autre par une boucle, mais
par une logique qui évalue la luminosité sur la résistance photosensible.

223

224

Figure 11-1»
Courbe caractéristique
d'une LDR

Figure 11-2 »
Une LDR et son symbole

La résistance variable

La résistance fixe n’a désormais plus aucun secret pour vous. Mais, dans
ce montage, nous allons procéder autrement. Il existe une résistance dont
la valeur varie en fonction de la luminosité ambiante, comme je I'ai déja
évoqué. Cest la LDR. Sa courbe caractéristique traduit son comportement
en fonction de la variation de son éclairement.

€

L

G

vh

<

8

oL

(7]

'@

)

)

°

S

2

© — >
> Eclairement (lux)

Plus la lumiére incidente est forte, plus la résistance de la LDR est faible.
Sur la figure suivante, vous pouvez voir une LDR et son symbole. Clest ce
symbole qui est utilisé pour représenter une LDR dans un schéma.

= Vi

\
\

\

\

[

La plage de résistance de la LDR dépend du matériau employé et présente
approximativement une résistance dans l'obscurité comprise entre 1 et
10M. Une intensité d’éclairement de 1 000 lux (Ix) environ engendre une
résistance comprise entre 75 et 300 Q. Le lux est I'unité de mesure de
I’éclairement. Voyons d’abord la liste des composants.

Composants nécessaires

Ce montage ne nécessite pas grand-chose et il peut méme se passer de
composants supplémentaires. En effet, la carte Arduino comporte une LED

Partie Il. Les montages

qui est désignée par la lettre L. Toutefois, aimerais compléter ce montage
par quelques composants que nous réutiliserons pour d’autres montages
— et que vous utiliserez aussi pour vos projets personnels.

Composant <« Tableau 11-1
Liste des composants
7 LED jaunes
orange/orange/marron
10 résistances de 330 0 — I l I
330Q
marron/noir/orange
1 résistance de 10 kQ e I I I
10 kQ
1LDR

Schema

La seule inconnue éventuelle de ce schéma est le diviseur de tension, mais
nous y reviendrons tres vite.

&I <« Figure 11-3
{330 K'LEDW Ei,rcuit _delme_sure de
energlie lumineuse
[=2an 1
L20] {?JLEDQ 0

s
|

= LED8

» [LED7

Dwﬂﬂ
59

 'LED6

LED5

RS >
330 m—.
{ i |
7y {ILED4
330 |
Iﬂl '>|LED3 r
R3 2
330 |
'%‘ \l<|LED2
7330 |
Lo Ples—1
oKD

Montage 11. Des détecteurs de lumiére

226

Figure 11-4 >

La réalisation du circuit
sur une petite plaque
de prototypage

Realisation du circuit

La réalisation du circuit vous demandera un peu de travail, car vous devez
connecter dix LED, ainsi que leurs résistances série.

‘.k
@
®
@
o]
- @
>
L
i

Sketch Arduino

Voici le code du sketch :

int pin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; // Tableau des broches
int analogPin = A@; // Broche de 1’entrée analogique

// Fonction pour commander les LED
void controlLEDs(int value){
int bargraphValue = map(value, @, 1023, 0, 9);
for(int i = @; i < 10; i++)
digitalWrite(pin[i], (bargraphvalue >= i)?HIGH:LOW);
}

void setup() {
for(int i = @; i < 10; i++)
pinMode(pin[i], OUTPUT); // Toutes les broches comme sorties
}

void loop() {
controlLEDs (analogRead(analogPin));
}

Partie Il. Les montages

UTILISATION D’ALIAS

A la place de nombres entiers pour les entrées analogiques, vous pouvez
aussi utiliser les alias A, A1, A2, A3, A4 et A5. Le code est sans doute un peu
plus parlant.

Revue de code

Pour simplifier la configuration et la commande des LED au moyen des
broches numériques, nous utiliserons un tableau qui ici se nomme pin.
Le tableau est déclaré et initialisé dans la premiere ligne, les valeurs étant
placées entre deux accolades. Toutefois, comme la carte Arduino ne peut
travailler en interne qu’avec des valeurs binaires, cela impose de convertir
les valeurs analogiques d’une quelconque facon. Cette tache est réalisée par
un convertisseur numérique/analogique, (ou convertisseur A/D). La carte
Arduino dispose d’un convertisseur A/D a six entrées qui sont numérotées
de A0 a A5. Lillustration ci-dessous présente le connecteur comportant
les entrées analogiques.

Chacune de ces entrées peut supporter des tensions comprises entre 0
et 5V, la tension existante étant convertie en un nombre entier compris
entre 0 et 1023.

Vous trouverez de plus amples informations sur les entrées analogiques
aux adresses suivantes :

https://www.arduino.cc/en/Tutorial/AnaloginputPins

https://www.arduino.cc/en/Reference/AnalogRead

Pour ce montage, nous utiliserons uniquement entrée AQ. Cette configu-
ration est stockée dans la variable analogPin. La fonction setup programme
toutes les broches numériques comme sorties en se référant au tableau.
La commande est effectuée a I’aide d’une fonction qui a été programmée
dans ce but. Elle se nomme controlLEDs et est exécutée en continu dans
la fonction loop. La valeur analogique mesurée A0 est transmise comme
argument. Intéressons-nous maintenant a fonction programmeée :

Montage 11. Des détecteurs de lumiére

<« Figure 11-5
Connecteur
a entrées analogiques

228

Figure 11-6 >
Conversionde 9 a3

void controlLEDs(int value){
int bargraphValue = map(value, @, 1023, 0, 9);
for(int i = @; i < 10; i++)
digitalwrite(pin[i], (bargraphvalue >= i)?HIGH:LOW);

—

Elle possede un parametre qui stocke la valeur mesurée sur I’entrée analo-
gique. Ce code me donne l'occasion d’introduire une nouvelle instruction
tres intéressante qui permet de transposer un domaine de valeur dans un
autre domaine. J’ai déja précisé que la tension mesurée était convertie en
nombre entier compris entre 0 et 1023. Avec I'instruction ou la fonction
map, il est trés facile de convertir le domaine des valeurs d’entrée, qui s’étend
de 0 31023, en un domaine de valeurs de sortie allant de 0 a 9.

Valeur
Instruction d’en.trée Entrée Sortie
1 A L ¢

\ r

f 1 f 1

(map (value, MIN, MAX, MIN, MAX))

Vous trouverez de plus amples informations sur I'instruction map a I'adresse
suivante :

https://www.arduino.cc/en/Reference/Map
La figure suivante illustre le processus, les domaines d’entrée et de sortie

ayant été réduits pour plus de clarté. Au lieu de convertir 1024 en 10, j’ai
converti 9 en 3.

2

Y
o
[

8

V/ \/ V

Lareprésentation d’'un grand domaine de valeurs par un domaine plus petit
nécessite une conversion qui entraine obligatoirement une diminution de
la résolution. Les valeurs d’entrées sont représentées comme suit :

e Valeurl de 1a 3: représentée par 1

Partie Il. Les montages

e Valeurl de 4 a 6 : représentée par 2
e Valeurl de 7 a9 : représentée par 3

Les dix LED sont raccordées aux sorties numériques 2 a 11. Prenons un
circuit de base qui comporte deux résistances. La disposition suivante
correspond a celle d’'un diviseur de tension. Nous en avons déja vu une
similaire pour le calcul de la résistance série d’une diode.

+5V O

U1]R1

U ¢ o)
u2| (R2 U2
Y ;
GND

Comme son nom l'indique, un diviseur de tension divise une tension en
un certain nombre de parties. Sur le coté gauche, la tension d’origine U est
fournie a deux résistances RI et R2 qui sont montées en série, c’est-a-dire
I'une derriere I'autre. La mesure de tension de sortie U2 se trouve sur le coté
droit et elle est paralléle a la résistance R2. Ce circuit comporte un nouveau
symbole pour la masse, qui est désignée par les lettres GND (Ground). 1l
se situe sur le bord inférieur du circuit. Les tensions et les résistances sont
liées par la relation de proportionnalité suivante :

tension totale résistance totale

tension partielle ~ résistance partielle

Si nous appliquons cette formule a notre circuit, nous obtenons :
U Ry + R,
U, R

Montage 11. Des détecteurs de lumiére

<« Figure 11-7
Diviseur de tension
avec deux résistances fixes

229

230

Figure 11-8 >
Diviseur de tension
avec une LDR

et une résistance fixe

Pour calculer la tension de sortie, il faut simplement isoler U2 de cette
équation :
R,
U,=U - —2—
z R, + R,

Si nous remplacons maintenant 'une des deux résistances fixes par une
résistance variable, que nous utiliserons comme photorésistance pour les
besoins de notre montage, nous obtenons alors le circuit suivant avec le
diviseur de tension modifié :

— @

U1 "//LDR

‘U
u2| |R2 u2

J o7
T

C

'

'

1
s 2 N e o o S

(o]

Rangée de LED Rangée de LED
GND

Sila tension la plus élevée se trouve aux bornes de la plus grande résistance,
la tension la plus élevée doit se trouver a I'entrée analogique quand la LDR
s’assombrit ? Servez-vous du schéma précédent. A droite du circuit, j’ai
représenté les rapports de tension. La longueur de la fleche correspond
a la valeur de tension. Si le ciel est couvert, la résistance ou plutoét la ten-
sion est élevée sur la LDR. Mais si le soleil brille, résistance et tension sont
faibles. Comme le diviseur de tension est alimenté sous 5V, cela signifie
qu’il ne reste que la différence de tension aux bornes de la résistance R2.
Cette tension est mesurée entre I’entrée analogique et la masse. Voici, pour
mémoire, le raccordement de la photorésistance sur le circuit :

Partie Il. Les montages

Entrée analogique

MDoR | 10K |
L LDR | 1(;K
+5V GND

Nous avons affaire a un diviseur de tension.

Devenons communicatifs

Il est certes intéressant a mes yeux d’observer le cycle des LED sous dif-
férentes conditions de lumiere, mais le déroulement chronologique reste
difficile a voir sur une longue période. Aussi voudrais-je vous présenter ici
un projet qui vous plaira sirement, puisqu’il est agréable a regarder. Le
langage de programmation Processing s’impose quand il s’agit de générer
des graphiques.

Vous trouverez I’environnement de développement pour le langage de
programmation Processing sur le lien suivant :

https://processing.org/

Le coté pratique de la chose est que, tout comme pour Arduino, il suffit de
décompresser le fichier téléchargé dans un répertoire. Aucune installation
n’est a faire. Ce qui prendrait un temps fou avec des langages de program-
mation tels que C++ ou C# sera plus vite fait et sera moins fastidieux avec
Processing.

Je vous montre d’emblée le résultat dans la fenétre graphique de Processing
pour que vous sachiez a quoi vous attendre.

Montage 11. Des détecteurs de lumiére

231

232

Figure 11-9 »>

Courbe des valeurs de
['énergie lumineuse dans
la fenétre graphique de
Processing

Les valeurs affichées sont actualisées en permanence, la courbe évoluant
de droite a gauche dans la fenétre. Les nouvelles valeurs apparaissent a
droite et les anciennes valeurs disparaissent a gauche de la fenétre.

Mais comment deux langages de programmation différents font pour
échanger des données ? Une base commune leur permettant de se com-
prendre doit étre définie. Linterface série vous dit sirement déja quelque
chose. Tout langage de programmation ou presque a dans son vocabu-
laire des instructions pour envoyer ou recevoir par cette interface. Notre
exemple montre un émetteur et un récepteur. La communication est uni-
directionnelle, autrement dit se fait dans un seul sens. Certes, I'interface
est capable de communiquer presque simultanément dans les deux sens,
mais nous nous contenterons d’un seul.

Emetteur

Arduino

Série

Tout ce que votre carte Arduino doit faire, c’est enregistrer les valeurs
mesurées et envoyer les données via 'interface série. Plus vite a dire qu’a
faire ?! Non, pas du tout, car la plupart du travail de calcul se fait du coté de
Processing. Voyons d’abord du coté de I'’émetteur ce qu'Arduino doit faire.

Partie Il. Les montages

Arduino l’émetteur

Coté matériel, il ne vous faut que le diviseur de tension avec sa LDR et
sa résistance de 10K fixe, connecté a I’entrée analogique broche @, pour
envoyer les valeurs de luminosité a I'interface série. Le sketch est le suivant :

void setup() {
Serial.begin(96@0); // Initialise le port série

}

void loop() {
Serial.println(analogRead(@)); // Transmet la valeur au port série
delay(10); // Courte pause (trés important !!!)

Voyons maintenant ce que ce bout de code donne. Dans la fonction setup,
Iinterface série est préparée pour la transmission. Vous avez eu vos pre-
miers contacts avec la programmation orientée objet lors de la création
de votre propre bibliotheque dans le montage n° 8. Linterface série est
considérée comme étant un objet logiciel nommé Serial. Vous disposez
de quelques méthodes, que nous entendons maintenant utiliser.

Opérateur point

Serial .begin(9600);

/N

Objet Méthode

La méthode pour initialiser I'interface a pour nom begin et recoit une valeur
qui détermine la vitesse de la transmission. Il s’agit dans notre cas de 9600.
Lunité de mesure est ici le baud, le nombre indiquant la cadence. 1baud
signifie 1 changement d’état par seconde.

La deuxieme méthode que nous utiliserons se nomme println. Elle envoie
la valeur qui lui a été transmise a I'interface série. Il s’agit de la valeur mesu-
rée sur la broche analogique @ dans notre bout de sketch. Linterrogation
de la broche analogique et la transmission a I'interface ont lieu continuel-
lement dans la fonction loop.

TAUX DE TRANSFERT

Pour que la communication entre émetteur et récepteur puisse se faire, le
réglage du taux de transfert doit étre le méme sur les deux stations.

Montage 11. Des détecteurs de lumiére

234

_ Figure 11-10
Edition des données
dans le moniteur série

Vous pouvez suivre la transmission des valeurs déterminées en temps
réel, de préférence en ouvrant le moniteur série de 'environnement de
développement.

[¥] Déflement automatique [Pasdefindelione v | |9600baud v | | Eﬂ'aoeflasm:ﬁel

Cela fonctionne évidemment aussi avec n’importe quel autre programme
de terminal ayant acces a l'interface série. Pensez ici aussi a régler le taux
de transfert tout en bas a droite de la fenétre.

Processing le récepteur

Venons en maintenant au programme en question, chargé principalement
de représenter graphiquement les valeurs recues. Le code est assez consé-
quent, mais voici quand méme une courte description pour que vous ne
soyez pas perdu.

import processing.serial.*;

Serial mySerialPort;
int xPos = 1;

int serialvalue;
int[] yPos;

void setup() {
size(400, 300);
println(Serial.list());
mySerialPort = new Serial(this, Serial.list()[@], 9669);
mySerialPort.bufferuntil('\n");
// Définir la couleur d'arrieére-plan
background(@);
yPos = new int[width];
}

void draw() {
background(e);

Partie Il. Les montages

stroke(255, 255, @, 120);

for(int i=0; i < width; i+=5@)
line(i, @, i, height);

for(int i=0; i < height; i+=50)
line(@, i, width, i);

stroke(255, @, 0);
strokeWeight(1);
int yPosPrev = @, xPosPrev = 0;
println(serialvalue);
// Décaler les valeurs du tableau vers la gauche
for(int x = 1; x < width; x++)
yPos[x-1] = yPos[x];
// Joindre les nouvelles coordonnées de la souris
// a 1'extrémité droite du tableau
yPos[width - 1] = serialvalue;
// Affichage du tableau
for(int x = @; x < width; x++){

if(x >0)
line(xPosPrev, yPosPrev, x, yPos[x]);
xPosPrev = x; // Stockage de la derniére position x

yPosPrev = yPos[x]; // Stockage de la derniere position y

}

void serialEvent(Serial mySerialPort) {

String portStream = mySerialPort.readString();

float data = float(portStream);

serialvalue = height - (int)map(data, @, 1023, @, height);
}

Processing comprend également deux fonctions principales, qui res-
semblent a celles d’Arduino.

<« Figure 11-11
Correspondance entre
deux fonctions principales

Arduino

La fonction setup est appelée une seule fois elle aussi en début de sketch
et sert a initialiser des variables. La fonction draw est une boucle sans
fin semblable a la fonction loop dans Arduino, qui doit son nom au fait
quelle sert a dessiner (en anglais, drawing) les éléments graphiques dans
la fenétre d’édition. Pour pouvoir traiter I'interface série dans Processing,
vous devez écrire la ligne :

import processing.serial.*;

Montage 11. Des détecteurs de lumiére

235

236

Figure 11-12 >
Affichage des ports COM
disponibles

qui permet d’importer un paquet en langage Java. Eh oui, Processing est un
langage basé sur Java, contrairement a Arduino qui, lui, utilise C ou C++.
Mais ces langages ont une syntaxe tres similaire, si bien que la programma-
tion dans Processing ne semblera pas compliquée a ceux qui connaissent
bien C ou C++. Si vous écrivez la ligne :

println(Serial.list());

Processing vous donne une liste de toutes les interfaces série disponibles.
Laffichage dans la fenétre de messagerie ressemble alors a ceci.

Fichier _Modifier Sketch Dépanner Outils Aide

sketch_171003a

import processing.serial.x;

el println(Serial.list());

COM3 COM7

E® Console A Ereurs

Elle indique que deux ports sériels sont disponibles. Arduino utilisant le
premier port COM3 correspondant a la premiere entrée de la liste [0], cet
index est reporté dans la ligne ci-apres :

mySerialPort = new Serial(this, Serial.list()[e], 96ee);

Si, sur votre ordinateur, le port série utilisé n’est pas le premier de la liste, il
faut alors remplacer dans la ligne précédente Serial.list()[@] par "COMn",
ou n est le numéro du port série effectivement utilisé par Arduino. Un
nouvel objet sériel est ainsi généré, et instancié avec le mot-clé new dans
Processing. La valeur 9600 apparait une fois de plus, elle doit correspondre
a celle qui est dans le sketch Arduino. Tous les éléments graphiques tels
que trame de fond et courbe sont alors dessinés dans la fonction draw. Les
valeurs Arduino transmises s’accumulent dans la fonction serialEvent et

Partie Il. Les montages

sont stockées dans la variable serialvalue. Cette variable sert a dessiner
la courbe dans la fonction draw.

UTILISATION D’UN MONITEUR SERIE

Sivous avez ouvert un programme de terminal, par exemple un moniteur série,
pour visualiser les valeurs envoyées par Arduino, vous aurez des problemes
si vous démarrez en méme temps l'affichage graphique des valeurs dans
Processing. Le port COM concerné est en effet exclusivement utilisé par le
programme de terminal, interdisant tout acces supplémentaire par un autre
programme. Fermez par conséquent le moniteur série avant de démarrer
Processing pour évaluer les données.

Problemes courants

Si les différentes LED ne réagissent pas aux modifications des conditions
lumineuses ou si aucun changement du tracé de la courbe n’est a observer
par la suite dans la fenétre d’édition, il peut y avoir plusieurs raisons.

e Vos fiches de raccordement sur la plaque d’essais correspondent-elles
vraiment au circuit ?

e Pas de court-circuit éventuel ?
e Les résistances ont-elles bien les bonnes valeurs ?
e Toutes les LED sont-elles correctement polarisées ?

e Veérifiez encore une fois I’exactitude du code du sketch coté Arduino
et coté Processing.

e Ouvrez le moniteur série dans 'IDE Arduino pour vous assurer que
des valeurs différentes sont transmises a I'interface série, lorsque les
conditions lumineuses varient. Dans le code de Processing, vous pou-
vez ajouter la ligne println(serialvalue) de maniére a ce que les
valeurs transmises (pour peu qu’elles le soient) s’affichent également
dans la fenétre de messagerie.

o Vérifiez que l'interface série utilisée n’est pas bloquée par un autre
processus et que seul Processing y accéde.

Exercice complémentaire

Créez un sketch Arduino faisant clignoter régulierement toutes les LED
concernées quand par exemple un certain seuil de flux lumineux est franchi,
pour vous avertir qu’un état critique est maintenant atteint et qu’une creme
solaire avec indice de protection 75+ doit étre utilisée.

Montage 11. Des détecteurs de lumiére

237

238

Qu’avez-vous appris ?

e Vous savez comment interroger une entrée analogique a laquelle est
reliée une résistance photosensible (LDR) avec I'instruction analogRead.

e Un diviseur de tension sert a diviser la tension appliquée a ses bornes
dans un rapport déterminé. Nous avons utilisé cette propriété pour
amener a l'entrée analogique une tension fonction de lintensité
lumineuse.

e Vous savez comment échanger des données entre deux programmes
au moyen de I'interface série. lémetteur est ici la carte Arduino et le
récepteur un sketch Processing reproduisant visuellement les données
recues sous forme de courbe.

Partie Il. Les montages

Montage

| afficheur 1 2

sept segments

Pour visualiser des états logiques (vrai ou faux) ou des données (14, 2.5,
"Hello User") sous une forme quelconque, il nous faut commander les
LED dans un premier temps et revenir au moniteur série dans un deu-
xieme temps. Il existe en électronique d’autres éléments d’affichage que les
LED, I'afficheur sept segments étant 'un d’eux. Comme son nom l'indique,
cet afficheur se compose de sept segments qui, disposés d’une certaine
maniére, peuvent représenter des chiffres et, dans une moindre mesure,
des signes.

Qu’est-ce qu’un afficheur sept segments ?

La figure 12-1 présente un tel afficheur de maniére schématisée.

a <« Figure 12-1

a0 Afficheur 7 segments

f
g b
(E—

e C

oD
d

On voit que chaque segment est pourvu d’une petite lettre. L'ordre
n’est pas primordial, mais la forme montrée ici s’est imposée et a été
adoptée pratiquement partout. Aussi I'utiliserons-nous également tou-
jours sous cette forme. Si maintenant nous commandons les différents

239

240

Tableau 12-1 »
Commande
des sept segments

segments avec habileté, nous pouvons afficher des chiffres allant de 0 a
9. On peut aussi afficher des lettres, nous y reviendrons plus tard. Votre
quotidien est stirement rempli de ces afficheurs sept segments sans que
vous '’y ayez jamais prété attention. Faites un tour en ville et vous verrez a
quel point ils sont courants. Voici d’ailleurs une petite liste des possibilités
d’utilisation :

e Paffichage des prix dans les stations-service (toujours en hausse
hélas!) ;

I’affichage de I’heure sur certains batiments ;

I’affichage de la température ;
e les montres digitales ;

e les tensiometres meédicaux ;

e les thermomeétres numériques.

Le tableau 12-1 indique une fois pour toutes, en vue de la programmation,
quels sont les segments a allumer pour chacun des chiffres.

Afficheur a b c d e f g
=

.D' 1 1 1 1 1 1 0

)
f==—=>%
o
o

[
g)

i
-—

o

o

[
"

Partie Il. Les montages

Afficheur a b c d e f g

Le chiffre 1 dans ce tableau ne signifie pas forcément niveau HIGH, mais c’est
la commande de I’allumage du segment concerné. Celle-ci peut se faire soit
avec le niveau HIGH que nous connaissons (+5 V résistance série incluse),
soit avec un niveau LOW (0 V). Vous voulez peut-étre savoir maintenant en
fonction de quoi on choisit une commande. Cela dépend en fait du type
de lafficheur sept segments. Deux approches sont possibles :

e la cathode commune;
e Ianode commune.

En cas de cathode commune, toutes les cathodes des diverses LED de
Iafficheur sept segments sont réunies en interne et reliées a la masse a
extérieur. Les différents segments sont commandés par des résistances
série diiment raccordées au niveau HIGH. Notre exemple porte cependant
sur un afficheur sept segments avec anode commune. Ici, C’est exactement
le contraire : toutes les anodes des diverses LED sont reliées entre elles en
interne et raccordées au niveau LOW a 'extérieur. Les segments sont com-
mandés par des résistances série correctement dimensionnées, en passant
par les différentes cathodes des LED qui sont accessibles a 'extérieur.

Montage 12. L'afficheur sept segments

242

Figure 12-2 »
Afficheur 7 segments
avec anode commune

Figure 12-3 »
Commande de ['afficheur
sept segments

de type SA 39-11 GE

Afficheur sept segments
(anode commune)

W a

:

b

+5Vo

%Z%’%’:!’Z{%:%

W DP

—o DP

!

Sur la figure suivante, vous pouvez voir que toutes les anodes de I'afficheur
sept segments sont reliées a la tension d’alimentation +5 V. Les cathodes
sont reliées par la suite aux sorties numériques de votre carte Arduino
et pourvues des différents niveaux de tension conformes au tableau de
commande. Nous utilisons pour notre essai un afficheur sept segments
avec anode commune de type SA4 39-11 GE. La figure suivante illustre le
brochage de cet afficheur.

Broche 3
l ! i~ ! ! 1 — kD]
A LA LA £A LA LA LA & 20 fﬂ ﬂ - mp
g f e d| DP c b a | = —]

g
4] eg ﬁc 7
e — "

Broche 1 2 4 5 6 T 9 10

Le graphique de gauche montre les broches utilisées de I'afficheur sept
segments, et le graphique de droite le brochage du type utilisé. DP est la
forme abrégée de Decimal Point (point décimal).

Partie Il. Les montages

Composants nécessaires

Ce montage nécessite les composants suivants.

<« Tableau 12-2
Liste des composants

Composant

1 afficheur sept segments
(par exemple de type SA 39-11 GE
avec anode commune)

orange/orange/marron
7 résistances de 330 () — I I I
330Q

Schema

Le circuit ressemble a celui du séquenceur de lumiére. Toutefois, les dif-
férentes sorties numériques ne sont évidemment pas commandées suc-
cessivement, mais dans une combinaison précise, puisqu’elles doivent
composer un chiffre particulier :

Afficheur sept segments

A Figure 12-4
Carte Arduino commandant
lafficheur 7 segments

Realisation du circuit

La réalisation du circuit montre les sept résistances sur le bord supérieur
et lafficheur 7 segments sur le bord inférieur de la plaque d’essais.

Montage 12. L'afficheur sept segments 243

Figure 12-5 »
Réalisation du circuit
de lafficheur 7 segments

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino

Pour faciliter la commande des sept segments, le sketch fait ici aussi appel
a un tableau.

int segments[10][7] = {{1, 1, 1, 1, 1, 1, @0}, //©
{0,1,1,0,0,0,0}, //1
{1,1,0,1,1,0, 1}, //2
{1,1,1,1,0,0, 1}, //3
{0,1,1,0,0,1, 1}, // 4
{1,0,1,1,0,1,1}, //5
{1,0,1,1,1,1,1}, //6
{1,1,1,0,0,0,0}, //7
{1,1,1,1,1,1,1}, //8
{1,1,1,1,0,1,1}}; //9

int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup() {
for(int i =0; i <7; i++)
pinMode(pinArray[i], OUTPUT);
}

void loop() {

Partie Il. Les montages

for(int i =09; i <10; i++) {
for(int j =0; j <7; j++)
digitalWrite(pinArray[j], (segments[i][j]==1)?LOW:HIGH);
delay(1000); // Pause de 1 seconde
}
}

Revue de code

Un tableau bidimensionnel s’impose d’emblée pour stocker les informa-
tions sur les segments a allumer pour chaque chiffre de @ a 9. Ces valeurs
sont définies dans la variable globale segments en début de sketch :

int segments[10][7] = {{...},
{3
Le tableau comprend 10 x 7 cases mémoire, le contenu de chacune pouvant

étre obtenu par les coordonnées :

segments[x][y]

La coordonnée x sert pour tous les chiffres de 8 a 9 (soit 10 cases mémoire),
et la coordonnée y pour tous les segments de a a g (soit 7 cases mémoire).
On détermine par exemple les segments a allumer du chiffre 3 en écrivant
la ligne :

segments[3][y]

les résultats pour la variable y allant de @ a 6 étant obtenus par une boucle
for. Les données des segments sont alors celles de la figure suivante.

a
)
f 'b
J 1,1,1,1,0,0, 1
)

GB/

-
d

Pour plus de clarté, j’ai uniquement dessiné les fleches des segments a
allumer.

Montage 12. L'afficheur sept segments

245

246

Peut-étre vous demandez-vous pourquoi il y a un 1 la ou il devrait y avoir
une mise a la masse dans le tableau des segments, alors que nous avons
dit que ce type d’afficheur sept segments disposait d’'une anode commune.

En fait, j’ai dit qu’un 1 ne voulait pas forcément dire niveau HIGH, mais sim-
plement que le segment en question devait étre allumé. Dans le cas d’'un
afficheur sept segments a cathode commune, on commande I’allumage du
segment souhaité avec le niveau HIGH, tandis que dans le cas d’un afficheur
sept segments a anode commune, on le commande avec le niveau LOW. On
écrit ainsi la ligne suivante :

digitalWrite(pinArray[j], (segments[i][j]==1)?LOW:HIGH);

Si'information est un 1, LOW est alors transmis comme argument a la fonc-
tion digitalWrite. Sinon, c’est HIGH. Le segment correspondant s’allume
si C’est LOW, et se voit géré de maniere a rester éteint si c’est HIGH. Notre
sketch affiche tous les chiffres de @ a 9 au rythme d’une seconde. Le code
suivant est utilisé pour ce faire :

for(int i =9; i <10; i++) {
for(int j =0; j <7; j++)
digitalWrite(pinArray[j], (segments[i][j]==1)?LOW:HIGH);
delay(1000); // Pause de 1 seconde
3

La boucle extérieure avec la variable de controle i sélectionne dans le
tableau le chiffre a afficher tandis que la boucle intérieure avec la variable
j sélectionne les segments a allumer.

Sketch amélioré

Les divers segments d’un chiffre étaient commandés jusqu’ici au moyen
d’un tableau bidimensionnel, la premiere dimension servant a sélectionner
le chiffre désiré, et la deuxieme les différents segments. Le sketch suivant va
nous permettre de tout faire avec un tableau unidimensionnel. Comment ?
Cest simple puisque bits et octets n’ont déja plus de secret pour vous.
Linformation de segment doit maintenant tenir dans une seule valeur.
Quel type de donnée s’impose ici ? Nous avons affaire a un afficheur sept
segments, et a un point décimal que nous laisserons de coté pour I'instant.
Cela fait donc 7 bits, qui tiennent idéalement dans un seul octet de 8 bits.
Chaque bit est simplement affecté a un segment et tous les segments
nécessaires peuvent étre commandés avec un seul octet. J’en profite pour
vous montrer comment initialiser directement une variable par le biais
d’une combinaison de bits :

Partie Il. Les montages

void setup() {
Serial.begin(9600);
byte a = B10001011; // Déclarer + initialiser la variable
Serial.println(a, BIN); // Afficher en tant que valeur binaire
Serial.println(a, HEX); // Afficher en tant que valeur hexadécimale
Serial.println(a, DEC); // Afficher en tant que valeur décimale

}

void loop(){ /* vide */ }

La ligne décisive est bien sir la suivante :

byte a = B10001011;

Ce qui est remarquable pour ne pas dire génial la-dedans, c’est le fait que le
preéfixe B permet de représenter une combinaison de bits qui sera affectée
alavariable située a gauche du signe =. Cela simplifie les choses quand par
exemple vous connaissez une combinaison de bits et souhaitez la sauve-
garder. Il vous faudrait sinon convertir la valeur binaire en valeur décimale
avant de sauvegarder. Cette étape intermédiaire n’est ici plus nécessaire.

Peut-étre vous interrogez-vous sur le type de donnée byte qui est bien un
nombre entier. Or type de donnée et nombres entiers sont bien composés
de chiffres allant de 0 a 9. Alors pourquoi maintenant peut-on commencer
par la lettre B et la faire suivre d’une combinaison de bits ? Ou s’agit-il
d’une chaine de caracteéres ?

Effectivement, le type de donnée byte est un type de nombre entier. Vous
avez raison sur ce point. La ou vous avez tort, c’est sur le fait qu’il pourrait
s’agir d’une chaine de caracteres. Celle-ci serait alors entre guillemets. Il
s’agit en fait de tout autre chose. Aucune idée ? Je ne dirai qu’'un mot :
#define. Cavous dit quelque chose ? Voyez plutot. Il existe dans les tréfonds
d’Arduino un fichier nommeé binary. h qui se trouve dans le répertoire . . .\
Arduino\hardware\arduino\avr\cores\arduino. Voici un court extrait de ce
fichier, dont les nombreuses lignes n’ont pas toutes besoin d’étre montrées.

Montage 12. L'afficheur sept segments

247

248

Figure 12-6 »
Message d'erreur
intentionnelle

20 H#ifndef Binary h
21 #define Binary h
22
23 #define BO O
s #define BOO O

3 #define BOOO O

L #define BOOOO O

#define BOOOOO O
#define BOOODOO O
#define BOOOO0OOOO O
#define BO0O00O0O00O O
#define B1 1
#define BO1 1
#define BOO1 1
#define BODO1 1
#define BOOOO1 1
#define BO0O0O0O1 1
$define BOOOOOO1 1
$define BOOO0O0OO1 1

o I Ve - TS |

[Y L ™ - S ¥ S B

LI LT % Y AL O TR T S R L R R O B

m <1

Ce fichier contient toutes les combinaisons de bits possibles pour les valeurs
de 0 a 255, qui y sont définies en tant que constantes symboliques. Je me
suis permis de retirer la ligne pour la valeur 139 (déconseillé, a moins de
restaurer ensuite I’état initial !) pour voir comment le compilateur réagit.
Voyez plutot :

sketch_oct02a §

void setup() { ~
Serial.begin(9600);
byte a = B10001011; // Déclarer + initialiser la variable
Serial.println(a, BIN); // Imprimer en tant que valeur binaire

W o

5| Serial.println(a, HEX); // Imprimer en tant que valeur hexadécimale
§ DEC); // Imprimer en tant que valeur décimale

70}

9 lvoid loop(){ /* vide */ }

10

‘B10001011"'was aredin this scope

Asduino/Genuine Uno sur

Partie Il. Les montages

Le message d’erreur indique que le nom B10001011 n’a pas été trouvé. Il me
faut encore vous expliquer les lignes suivantes avant d’en revenir au projet :

Serial.println(a, BIN); // Afficher en tant que valeur binaire
Serial.println(a, HEX); // Afficher en tant que valeur hexadécimale
Serial.println(a, DEC); // Afficher en tant que valeur décimale

La fonction println peut accueillir, en plus de la valeur a afficher, un autre
argument qui peut étre indiqué séparé par une virgule. Je vous ai mis ici
les trois plus importants. Vous en trouverez d’autres sur la page de réfé-
rence des instructions Arduino sur Internet. Des explications figurent sous
forme de commentaires derriere les lignes d’instructions. L’affichage dans
le moniteur série est alors la suivante :

10001011
8B
139

Passons maintenant a lacommande de I’afficheur sept segments au moyen
du tableau bidimensionnel. Voici auparavant le sketch complet que nous
allons analyser :

byte segments[10]= {B@1111110, // @
Boo110000, // 1
B01101101, // 2
Be1111001, // 3
BO9110011, // 4
Bo1011011, // 5
B01011111, // 6
Bo1110000, // 7
B01111111, // 8
Bo1111011}; // 9

int pinArray[] = {2, 3, 4, 5, 6, 7, 8};

void setup() {
for(int i = @; i <7; i++)
pinMode(pinArray[i], OUTPUT);
}

void loop() {
for(int i = @; i < 1@; i++) { // Commande du chiffre
for(int j =6; j >=0; j--){ // Interrogation des bits pour les segments
digitalWrite(pinArray[6 - j], bitRead(segments[i], j) ==
1?LOW:HIGH);
}
delay(500); // Attendre une demi-seconde
}
}

Montage 12. L'afficheur sept segments

249

Sur la figure 12-7, on voit trés bien quel bit est en charge de quel segment
au sein de l'octet.

Figure 12-7 > Puissances 27 2% 2% 2¢ 2% 22 2! 2°
Un octet gere les segments
de lafficheur (ici par Valeurs 128 64 32 16

exemple pour le chiffre 4). Combinaison de bits . n n n n u n n

Ayant seulement sept segments a commander et ne tenant pas compte
du point décimal, j’ai constamment donné au MSB (rappelez-vous : MSB
= bit le plus significatif) la valeur @ pour tous les éléments du tableau.
Tout se joue bien entendu encore - et comment en serait-il autrement - a
Iintérieur de la fonction loop. Jetons-y un coup d’ceil :

void loop() {
for(int i =0; i <10; i++) { // Commande du chiffre
for(int j =6; j >=0; j--){ // Interrogation des bits pour les segments
digitalWrite(pinArray[6 - j], bitRead(segments[i], j) == 1?LOW:HIGH);
}
delay(500); // Attendre une demi-seconde

}
3

Laboucle extérieure for avec la variable de contréle i commande encore
les divers chiffres de 0 a 9. C’était déja le cas dans la premiere solution.
Le code est ensuite différent. La boucle intérieure for avec la variable de
controle j est chargée de choisir le bit dans le chiffre sélectionné. Je com-
mence du c6té gauche par la position 6, qui est en charge du segment a.
Le tableau des broches gérant cependant la broche 8 pour le segment g a
la position 6 de I'index, la commande doit se faire en sens inverse. Ony
parvient en soustrayant le nombre 6 puisque j’ai gardé tel quel le tableau
des broches du premier exemple :

pinArray[6 - j]

250 Partie Il. Les montages

Voici maintenant a une fonction intéressante, permettant de lire un bit
déterminé dans un octet. Elle porte le nom bitRead.

Arguments

Instruction Valeur Position du bit
l l
{ T
(bitRead (139, 3);)

Cet exemple donne le bit de la position 3 pour la valeur décimale 139
(binaire : 10001011). Le comptage commence pour I'index @ au LSB (bit le
moins significatif) du coté droit. La valeur renvoyée serait par conséquent
un 1. La ligne :

digitalWrite(pinArray[6 - j], bitRead(segments[i], j) == 1?LOW:HIGH);

permet de vérifier que la lecture du bit sélectionné renvoie bien un 1. Si c’est
le cas, la broche sélectionnée est commandée avec le niveau LOW, autrement
dit le segment s’allume. N’oubliez pas : anode commune ! Sauriez-vous
expliquer la différence entre les deux solutions ?

Dans la premiére version avec le tableau bidimensionnel, le chiffre a affi-
cher est sélectionné par la premiere dimension tandis que les segments
a commander le sont par la deuxiéme. Cette information se trouve dans
les différents éléments du tableau. Dans la deuxiéme version, le chiffre a
afficher est également sectionné par la premiére dimension. S’agissant d’'un
tableau unidimensionnel, elle est cependant la seule dimension. Seulement,
I'information pour commander les segments est contenue dans les diverses
valeurs de l'octet. Ce qui était fait auparavant par la deuxiéme dimension
est maintenant fait par les bits d’un octet.

Problemes courants

Si I'affichage ne correspond pas aux chiffres 1a 9 ou si des combinaisons
incohérentes s’affichent, vérifiez les choses suivantes.

o Vos fiches de raccordement sur la plaque correspondent-elles vraiment
au circuit ?

e Pas de court-circuit éventuel ?

<« Figure 12-8
Instruction bitRead

Montage 12. L'afficheur sept segments

251

e Le code du sketch est-il correct ?

e Sides caractéres incohérents s’affichent, il se peut que vous ayez inter-
verti des lignes de commande. Vérifiez le cablage avec le schéma ou
la fiche technique de l'afficheur sept segments.

e Le tableau des segments est-il initialisé avec les bonnes valeurs ?

Exercice complémentaire

Elargissez la programmation du sketch de telle sorte que certaines lettres
puissent s’afficher a coté des chiffres 0 a 9. Ce n’est certes pas possible pour
tout I'alphabet, donc a vous de trouver lesquelles pourraient convenir. La
figure suivante vous fournit quelques exemples pour commencer.

NININEN
oogo

Notez qu’il existe un nombre infini de déclinaisons d’afficheurs sept seg-
ments. Laffichage peut étre de différentes couleurs, telles que :

® jaune;

e rouge;

e vert;

e rouge tres clair.

e Il faut bien entendu s’assurer du type de connexion avant d’acheter :
e Panode commune ;

e la cathode commune.

Elles ont des tailles différentes. En voici deux proposées par le fournisseur
Kingbright :

e type S4-39 : hauteur des chiffres = 0,39" = 9,9 mm ;
e type SA4-56 : hauteur des chiffres = 0,56" = 14,2 mm.

Partie Il. Les montages

Qu’avez-vous appris ?

Montage 12. L'afficheur sept segments

Dans ce montage, les principes de la commande d’un afficheur sept
segments vous sont expliqués.

Linitialisation d’un tableau vous permet de définir les différents seg-
ments de I’affichage pour pouvoir les commander a votre aise par la
suite.

Le fichier d’en-téte binary.h contient un grand nombre de constantes
symboliques que vous pouvez utiliser dans votre sketch.

Vous savez comment convertir un nombre a afficher dans une autre
base numérique en ajoutant un deuxieme argument (BIN, HEX ou DEC)
a la méthode println.

La fonction bitRead vous permet de lire I’état de certains bits d’un
nombre.

253

La temperature

Dans le montage n° 12, nous avions vu comment commander des afficheurs
sept segments. Cette fois, nous irons encore plus loin. Vous avez certaine-
ment déja vu ces thermometres numériques qui affichent également I'heure
devant une pharmacie, par exemple. Nous allons voir ici comment afficher la
température ambiante a I'aide d’un afficheur sept segments. Mais avant cela,
nous devons revoir quelques notions fondamentales.

Chaud ou froid ?

Nous vivons dans un monde ou plutot dans un environnement composé de
matieres diverses. Ces derniéres peuvent en principe présenter trois états dits
d’agrégation en physique. Un tel état d’agrégation peut étre solide, liquide
ou gazeux et dépend souvent d’une grandeur physique appelée température.
Mais que signifie la température et comment se fait-elle sentir ou plutot com-
ment peut-on la mesurer ? Toute matiére est composée d’infimes particules
appelées atomes. Ceux-ci sont composés d’un nuage d’électrons (charge :
négative) et d’'un noyau formé de protons (charge positive) et de neutrons
(charge : nulle). Ce ne sont pas la les plus petites particules, mais elles suffiront
a expliquer au moyen de notre exemple ce qu’est la température.

K;)&J
J/«JxJ/
3 J

Montage

13

<« Figure 13-1
Le mouvement des atomes

255

256

Figure 13-2 »
Résistance NTC

Ces infimes particules sont en perpétuel mouvement, errant apparemment
sans but et dans des directions différentes. La température est donc un
moyen de mesurer cette agitation thermique des atomes ou des molécules
(assemblage de plusieurs atomes). Plus ils se déplacent rapidement, plus la
probabilité est grande qu’ils entrent en collision. Cest alors que ’énergie
cinétique se transforme en énergie calorifique. Lagitation thermique est
donc un moyen de mesurer la température d’'une matiere.

Comment peut-on mesurer la température ?

On utilise des capteurs, qui convertissent la température mesurée en
diverses valeurs de résistance ou de tension. Dans le cas le plus simple, on
utilise des résistances NTC ou PTC. Elles manquent cependant de précision,
et leur courbe caractéristique n’est pas forcément linéaire. De quel type de
résistance s’agit-il et comment se comportent-elles en cas de fluctuation
de la température ?

La résistance NTC

NTC signifie Negative Temperature Coefficient ou résistance a coefficient de
température négatif. La résistance diminue avec la hausse de la température
et conduit mieux le courant.

Sa forme ressemble a celle d’'un condensateur céramique, ce qui peut par-
fois donner lieu a des confusions. Une inscription, par exemple 4K7, laisse
pourtant présumer de la valeur de résistance, et "'appellation « Thermistor
NTC 4K7 » permet de I'identifier formellement. Le symbole est le suivant :

Partie Il. Les montages

e

0 7

Vous pouvez voir deux fleches a co6té du symbole de la résistance. La pre-
miere, a gauche, désigne la température et la deuxieme, a droite, corres-
pond a la résistance. Quand la température augmente, comme le signale la
fleche pointée vers le haut, la résistance diminue, ce qui est indiqué par la
fleche pointée vers le bas. Une NTC se reconnait a sa courbe caractéristique.

>

Résistance

10K+

o L cz>
20°C Température (°C)

On remarque qu’il s’agit bel et bien d’une courbe et non d’une droite, ce
qui est important pour la précision de la mesure de la température. La
principale caractéristique de cette résistance est sa valeur de référence, R, ,
qui est annoncée a une température ambiante de 20 °C. Sur la courbe, j’ai
opté pour une valeur fictive de 10K.

La résistance PTC

La résistance de la thermistance PTC varie inversement a celle d’une ther-
mistance NTC. PTC signifie Positive Temperature Coefficient. La conduc-
tance d’une PTC diminue (et la résistance augmente) en fonction de la
température. Le symbole est le suivant :

st

0/

Le sens des fleches permet la aussi d’identifier le type de thermistance. Une
hausse de la température entraine une hausse de la résistance. La courbe
caractéristique d’une PTC est 'inverse de celle de la NTC, avec quelques

<« Figure 13-3
Symbole de la résistance
NTC

<« Figure 13-4
Courbe caractéristique
d’une thermistance NTC

<« Figure 13-5
Symbole de la PTC
(thermistance PTC)

Montage 13. La température

particularités supplémentaires. En effet, elle peut avoir un minimum dans
la région des basses températures et un maximum dans celle des tempé-
ratures élevées.

Figure 13-6 > € A
Courbe caractéristique -§
dunePTC o
=
B
o
N9
o
0 - >
Température (°C)
Le tableau suivant résume le comportement des deux types de résistances
sensibles a la température (NTC et PTC).
Tableau 13-1 » Type Température Résistance Courant
Comportement des NTC NTC N N N
et PTC selon la M p)
tempréature
PTC T T N3
N3 N T
’ . .
Le capteur de precision LM35
Nous avons vu que les courbes caractéristiques des deux thermistances
n’étaient pas linéaires. Aussi voudrais-je vous présenter un capteur de tem-
pérature qui fait fort bien les choses en produisant une tension de sortie
linéaire proportionnelle a la température. Il a pour nom LM35 et présente
trois pattes de raccordement. Deux d’entre elles servent a I'alimentation,
la troisieme de sortie.
Figure 13-7 »>
Capteur de température
M35 en boftier plastique i
T0-92, avec son brachage

Il

4

+5V Masse
Sortie

Partie Il. Les montages

On pourrait croire que ce composant s’apparente a un transistor ordinaire
mais les apparences sont trompeuses. Ce n’est pas parce qu’il ressemble a
un transistor que c’en est un. En cas de doute, consultez sa dénomination
qui indique bien qu’il s’agit d’un capteur de température.

Ce capteur convertit la température mesurée en une valeur de tension
analogique qui est proportionnelle a la température. Cela s’appelle un
comportement de tension proportionnel a la température. Le capteur a une
sensibilité de 10 mV/°C et une gamme de température comprise entre 0
et 100 °C. La formule pour calculer la température en fonction de la valeur
mesurée a 'entrée analogique est la suivante :

5.0 - 100.0 - analoglalue
1024.0

Température [°C] =

Les valeurs de la formule se justifient ainsi :
e 5.0 :tension de référence Arduino de 5V ;
e 100.0 : valeur maximale mesurable par le capteur de température ;
e 1024 : résolution de I'entrée analogique.

Avant d’envoyer la valeur mesurée a I'afficheur sept segments, il parait
intéressant de représenter graphiquement I’évolution de la courbe de tem-
pérature dans Processing. Voila ce que cela donne :

© Mesure_de_temperature - &

La température s’affiche sous la forme d’une valeur de température et sous
celle d’une courbe graphique en fonction du temps.

<« Figure 13-8
Courbe de température
dans Processing

Montage 13. La température

259

Composants nécessaires

Ce montage nécessite les composants suivants.

Tableau 13-2 p Composant
Liste des composants

1 capteur de température LM35

2 registres a décalage 74HC595

2 afficheurs sept segments (par
exemple de type
SA 39-11 GE avec anode commune)

orange/orange/marron

14 résistances de 330 0 _— I I I
330Q

marron/noir/orange
1 résistance de 10K — I l I
10 kQ

1 bouton-poussoir miniature

Schema

Voici le schéma d’interrogation de la valeur de température a I’aide de la
thermistance LM35 :

Figure 13-9 >
Schéma de mesure
de la température

260 Partie Il. Les montages

Realisation du circuit

Le circuit contient le capteur de température LM35 qui a été raccordé a
un petit connecteur tripolaire afin de pouvoir raccorder facilement un
cable de rallonge.

Capteur de température LM35 <« Figure 13-10
Réalisation du circuit de
mesure de la température
avec le LM35

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino

Le sketch suivant lit la valeur sur I’entrée analogique A0 et stocke plu-
sieurs valeurs mesurées dont la valeur moyenne est ensuite transmise a
Iinterface série.

#define LM35 A@ // Connexion a la sortie du LM35
#define DELAY 10 // Valeur de la pause
const int cycles = 20; // Nombre de mesures

void setup() {
Serial.begin(9600);
}

void loop() {
float resultTemp = 0.0;
for(int i = @; i < cycles; i++) {
int analogValue = analogRead(LM35);
float temperature = (5.0 * 100.8 * analogValue) / 1024;
resultTemp += temperature; // Addition des valeurs mesurées

delay(DELAY); // Courte pause
}
resultTemp /= cycles; // Calcul de la moyenne
Serial.println(resultTemp); // Envoi a 1'interface série
}

Montage 13. La température

262

Examinons la signification de ce sketch.

Revue de code

La valeur déterminée par le capteur de température LM35 est calculée
avec la formule ci-apres :

float temperature = (5.0 * 100.8 * analogValue) / 1024;

et moyennée a 'aide d’une boucle for. Les valeurs mesurées y sont addi-
tionnées, puis la moyenne est calculée. Cette derniére est enfin transmise
a linterface série :

Serial.println(resultTemp);

Son traitement par Processing commence immédiatement.

Revue de code Processing

import processing.serial.*;
Serial mySerialPort;

float realTemperature;

int temperature, xPos;
int[] yPos;

PFont font;

void setup() {
size(321, 250); smooth();
println(Serial.list());
mySerialPort = new Serial(this, Serial.list()[@], 9600);
mySerialPort.bufferuntil('\n");
yPos = new int[width];
for(int i = @; i < width; i++)
yPos[i] = 250;
font = createFont("Courier New", 40, false);
textFont(font, 40); textAlign(RIGHT);

}

void draw() {
background(@, @, 255, 100);
strokelleight(2); stroke(255, @, 0);
fill(10@, 108, 100); rect(18, 108, width - 20, 130);
strokeWeight(1); stroke(@, 255, 0);
int yPosPrev = @, xPosPrev = @;
// Décaler les valeurs du tableau vers la gauche
for(int x = 1; x < width; x++)
yPos[x-1] = yPos[x];
// Ajout des nouvelles coordonnées de la souris
// a 1'extrémité droite du tableau

Partie Il. Les montages

yPos[width-1] = temperature;
// Affichage du tableau
for(int x = 10; x < width - 10 ; x++)
point(x, yPos[x]);
fill(255);
text(realTemperature + " °C", 250, 30); // Celsius
delay(100);
}

void serialEvent(Serial mySerialPort) {
String portStream = mySerialPort.readString();
float data = float(portStream);
realTemperature = data;
temperature = height - (int)map(data, ©, 10e, @, 130) - 25;
println(realTemperature);

Nous en arrivons bient6t a 'objectif de ce montage qui est la réalisation
d’une mesure de la température et ’affichage de la valeur sur les deux
afficheurs a sept segments. Mais avant cela, j’aimerais revenir sur une
possibilité intéressante de I'IDE Arduino.

Affichage de valeurs analogiques
sur 'IDE Arduino

Vous avez vu comment représenter I’évolution des valeurs mesurées a I'aide
de Processing, ce qui permet de rendre la variation des températures plus
lisible. Toutefois, 'IDE Arduino dispose d’une fonctionnalité qui permet
de présenter tres facilement cette évolution. Il s’agit du Serial Plotter ou
Traceur série. Chargez le premier sketch de ce montage sur votre carte
Arduino, puis sélectionnez la commande Outils | Traceur série.

Formatage automatique Ctrl+T
Archiver le croquis

analogread Réparer encodage & recharger

18 /+ Moniteur série Ctrl+Maj+M

f Bl s | Traceur série Ctrl+Maj+L l

4 Type de carte: "Arduino/Genuino Uno" »

S |// Fenction se 5 o : % S

6Bl void setup() { Port: “COM3 (Arduino/Genuine Uno)

7 0 " S
// Initialis Programmateur: "AVRISP mkll

9 Serial.begin| Graver la séquence d'initialisation

n N

La fenétre qui apparait représente I’évolution de la valeur de température
dans le temps.

Montage 13. La température

263

Figure 13-11»
Traceur série

Schéma élargi

Voici le schéma pour I'interrogation de la valeur de température a I'aide
de la thermistance LM35 et I'affichage sur les afficheurs sept segments :

Résistance pull-up

Résistance pull-up 2 Registre a décalage 1

D €
<l
D o
LE
D

S6SOHYL

Bouton de réinitialisation
] =

Figure 13-12 A
Schéma de mesure

de la température et
daffichage sur les
afficheurs sept segments

264 Partie ll. Les montages

Réalisation du circuit étendu

Le circuit contient le capteur de température LM35 qui a été raccordé a
deux afficheurs sept segments.

<« Figure 13-13
Réalisation du circuit de
mesure de la température
avec le LM35

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino

Le sketch suivant lit la valeur sur I’entrée analogique A0 et stocke plu-
sieurs valeurs mesurées dont la valeur moyenne est ensuite transmise a
I'interface série.

#define LM35 A@ // Broche LM35

byte segments[10]= {B@1000000, // 0
Bo1111001, // 1
B00100100, // 2
B0P110000, // 3
BO0011001, // 4
Bo0010010, // 5
BOOORO10, // 6
BoO1111000, // 7
BO0O00CRD, // 8
B00010000}; // 9

int shiftPin = 8; // SH_CP
int storagePin = 9; // ST_CP
int dataPin = 10; // DS

Montage 13. La température 265

266

// Fonction de transmission des informations

void sendBytes(int value) {
digitalWrite(storagePin, LOW);
shiftout(dataPin, shiftPin, MSBFIRST, value >> 8);
shiftout(dataPin, shiftPin, MSBFIRST, value & 255);
digitalWrite(storagePin, HIGH);

}

void displayValue(int value) {
byte tens = int(value / 10); // Calculer le chiffre des dizaines
byte units = value - tens * 10; // Calculer le chiffre des unités
sendBytes(segments[tens] << 8 | segments[units]); // Dizaines et unités

}

void setup() {
Serial.begin(9600);
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, OUTPUT);

}

void loop() {
int analogValue = analogRead(LM35);
int temperature = (5.0 * 100.0 * analogValue) / 1024;
displayvalue(temperature); // Afficher la valeur
Serial.println(temperature); // Envoi a 1'interface série
delay(500); // Courte pause

}

Examinons la signification de ce sketch.

Revue de code

Je m’ai pas grand-chose a ajouter, car vous connaissez déja les bases. Comme
les afficheurs sept segments affichent uniquement des nombres entiers,
nous avons défini la valeur de température comme étant de type int, ce
qui signifie qu’un nombre décimal doit étre converti en nombre entier.
J’ai choisi pour simplifier de ne pas calculer la moyenne des températures.

Peut-étre avez vous remarqué que les modes d’écriture varient considé-
rablement sur Internet et dans les exemples de sketches d’interrogation
d’une entrée analogique. A certains endroits, 'entrée analogique @ sera
uniquement désignée par le chiffre @ et a d’autres par Ae. Quelle est la
différence ?

En principe, il n’y a pas de différence. La forme d’écriture A®, qui est un
alias, a été permise, car elle est plus claire puisque I'on saitimmédiatement
que l'on a affaire a une broche analogique.

Partie Il. Les montages

Vous trouverez de plus amples informations a I'adresse suivante :

https://www.arduino.cc/en/Tutorial/AnaloginputPins

Problemes courants

o Si lafficheur sept segments affiche des chiffres qui ne paraissent pas
cohérents, vérifiez les valeurs transmises dans le moniteur série.

Qu’avez-vous appris ?

e Vous avez vu la différence et les spécificités des thermistances NTC
et PTC.

e Vous avez utilisé un capteur LM35 afin de mesurer la température.

e Nous avons d’abord affiché les valeurs dans Processing, puis a I'aide
de deux afficheurs sept segments.

e Vous avez représenté une courbe des valeurs de température mesu-
rées a I'aide du Traceur série de I'IDE Arduino de la méme facon que
dans Processing.

Montage 13. La température

267

Le clavier numerique

Jusqu’a présent, comme entrée numérique, nous avons utilisé un ou plu-
sieurs boutons-poussoirs miniatures qui étaient disposés de maniére assez
arbitraire sur la plaque d’essais. Dans ce montage, nous allons réunir plu-
sieurs boutons sur un shield Arduino afin de fabriquer un dispositif d’entrée
confortable. Nous en profiterons également pour voir comment fabriquer
son propre shield.

Qu’est-ce qu’un clavier numérique ?

Vous connaissez déja le bouton-poussoir, dont nous avons parlé au cours
de certains montages. Mais ici, plusieurs boutons-poussoirs (touches) sont
réunis en une matrice — donc disposés en lignes et colonnes — de maniere
a proposer les chiffres 0 4 9 et deux touches spéciales telles que * et #. A
quoi cela sert-il ? Eh bien, vous utilisez ce jeu de touches tous les jours,
entre autres pour téléphoner.

Montage

14

<« Figure 14-1
Clavier de téléphone

269

270

Figure 14-2 »

Clavier numérique

afilm 4 x 4316 touches
et clavier numérique
afilm4 x 3312 touches

Il s’agit d’une matrice de 4 x 3 touches (4 lignes et 3 colonnes). Cette matrice
est également appelée keypad (clavier numérique) et peut étre achetée
préte a Pemploi en différentes variantes. La figure 14-2 montre deux cla-
viers numeriques da fulm. Celui de gauche posséde méme quelques touches
supplémentaires A a D, qui peuvent s’avérer tres utiles si les 12 touches du
clavier numérique de droite ne suffisent pas pour votre projet.

Mais comment brancher par exemple le clavier numérique a film 4 x 4 sur
votre Arduino sans rencontrer des probléemes de broches ? On pourrait
bien str raccorder les 16 touches d’un c6té au +5 V et les 16 prises corres-
pondantes aux entrées numeériques.

Vous pourriez bien siir procéder ainsi et cela fonctionnerait s’il n’y avait pas
les limites physiques de la carte Arduino Uno. Une solution consisterait a
utiliser la carte Arduino Mega, dont le nombre d’interfaces est bien élevé.
Mais soyons ingénieux ; il existe une bibliotheque pour claviers numériques
préte a I'emploi sur le site Internet Arduino, aussi allons-nous tout faire
par nous-mémes. Nous utiliserons le clavier numérique 4 x 3 que nous
aurons fabriqué de nos propres mains. Voici la liste du matériel nécessaire.

Partie Il. Les montages

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant

12 boutons-poussoirs miniatures

1 jeu de connecteurs femelles
empilables

« 2 connecteurs a 8 broches
« 1 connecteur a é broches

« 1 connecteur a 10 broches

%

W\

1 carte de dimensions 10 x 10 ou mieux
16 x 10 (vous pourrez alors en faire
deux shields). La découpe du shield est
déja indiquée, et je reviendrai bientdt
sur cette derniére.

Réflexions préliminaires

Nous venons de voir que notre clavier numérique 4 x 4 nécessitait 16 lignes
pour interroger toutes les touches. Un clavier numérique 4 x 3 n’aurait
quant a lui besoin que de 12 lignes. Mais ce serait encore beaucoup trop a
mon avis. Une solution astucieuse existe, dont I'idée de base a déja servi
pour commander les deux afficheurs sept segments. Vous vous deman-
dez siirement ce que des afficheurs sept segments ont a voir avec ces
touches. Le mot commun est multiplexage. 11 signifie que certains signaux
sont regroupés et envoyés par un moyen de transmission pour minimiser
Iutilisation des lignes et en tirer profit le plus possible. Sur les afficheurs
sept segments, les lignes de commande de deux segments sont montées
en paralléle et utilisées pour commander les deux. Sept ou huit lignes par
segment sont ainsi économisées. La solution trouvée pour interroger les
différentes touches d’un clavier numérique est relativement simple. Voici
le cablage des 12 touches.

<« Tableau 14-1
Liste des composants

Montage 14. Le clavier numérique

271

Figure 14-3 >
Cablage des 12 touches
d'un clavier numérique

Lx3

Figure 14-4 »
La touche 5 est enfoncée

(les lignes en gras montrent

272

le passage du courant).

Colonnes
o
Vo Yo Vo e
2 Y
Vo 1o Ve

3

0

Imaginez une grille composée de 4 x 3 fils métalliques posés 'un sur 'autre
sans pour autant se toucher. Voila a quoi ressemble ce graphique. On voit
que les 4 fils horizontaux, en bleu, forment des lignes numérotées de 0
a 3. Au-dessus, les trois fils verticaux en rouge forment a peu de distance
des colonnes numérotées de 0 a 2. Chaque intersection présente des petits
contacts reliant, quand on appuie sur la touche, la ligne et la colonne en
question pour former un troncon de circuit électrique. Regardez bien la
figure 14-4, ou la touche numéro 5 est enfoncée.

Colonnes

0
07@ 07@ 07@
“7@ 07@ “7@ 2Lignes
¥ ¥ V) 1

07@ :/@ 07@

3

0

Le courant peut alors passer de la ligne 2 via I'intersection numéro 5 dans
la colonne 1 et y étre détecté. Plus tard, nous utiliserons les résistances
pull-up internes du microcontroleur, ce qui nous épargnera un raccorde-
ment externe avec des résistances séparées. La commande se fait aussi
avec un niveau LOW. Nous y reviendrons.

Partie Il. Les montages

Mais si une tension est appliquée simultanément a toutes les lignes, la
touche 2 au-dessus peut tout aussi bien étre pressée et nous enregistre-
rions une impulsion correspondante sur la colonne 1. Comment faire la
différence ?

Disons grossiérement que nous envoyons tour a tour un signal par les
lignes 0 a 3 et interrogeons ensuite également tour a tour le niveau sur
les colonnes 0 a 2. Le déroulement est alors le suivant, la commande se
faisant avec un niveau LOW, comme je I’ai déja mentionné :

e Niveau LOW sur le fil de la rangée 0

— Interrogation du niveau sur la colonne 0
— Interrogation du niveau sur la colonne 1
— Interrogation du niveau sur la colonne 2

e Niveau LOW sur le fil de la rangée 1

— Interrogation du niveau sur la colonne 0
- Interrogation du niveau sur la colonne 1

— Interrogation du niveau sur la colonne 2

Cette interrogation est bien str si rapide que suffisamment de passages ont
lieu en une seule seconde pour que pas un appui de touche ne soit omis.
Le shield a été cablé a demeure avec les numéros de broches des entrées
et sorties indiqués sur la figure 14-5.

<« Figure 14-5
Colonnes Cablage des différentes
Broc-he 8B o.che 7 Br(iche 6 lignes et colonnes avec les
"7® “7® “7® Broche 5 broches numériques
° ° ° Broche 4
o/~ o o/
@ @ @ Lignes
® ® ° Broche 3
L YZoNK Y/~ Y.
@ ®
Broche 2

07@ 07@ 07@

Montage 14. Le clavier numérique 273

274

Figure 14-6 »
Circuit de commande
du clavier numérique

Pimentons ici un peu les choses et créons notre propre bibliotheque qui
servira plus tard a d’autres montages. Elle offre une certaine fonctionnalité
de base et pourra bien entendu étre modifiée ou élargie si besoin est. Le
sketch principal demande continuellement au shield quelle touche a été
pressée. Le résultat est affiché dans le moniteur série pour visualisation.
Pour vérifier le bon fonctionnement de la bibliotheque, fixons-nous les
spécifications suivantes :

e si vous n’appuyez sur aucune touche, aucun caractere n’est affiché
dans le moniteur série ;

e si vous n’appuyez que brievement sur une touche, le chiffre ou le
caractere s’affiche dans le moniteur ;

si vous appuyez sur une touche un long moment, qui peut étre préalable-
ment défini en conséquence, le chiffre ou le caractere s’affiche plusieurs
fois 'un derriére I'autre jusqu’a ce que la touche soit relachée. Examinons
le schéma avant de nous lancer dans la programmation.

Schéema

Nous utilisons uniquement les sept connexions du clavier numérique vers
la carte Arduino.

20 1:L 0¢

Clavier numérique

)
X J

N
N J

Partie Il. Les montages

Realisation du circuit

Voici comment le shield du clavier numérique est branché sur la carte
Arduino :

<« Figure 14-7
Réalisation du circuit

de commande du clavier
numérique

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino

La programmation se divise en un sketch principal et une bibliotheque.

Sketch principal avec revue de code

#include "MyKeyPad.h"

int rowArray[]={2, 3, 4, 5}; // Initialiser le tableau avec les numéros
// de broche des lignes

int colArray[] = {6, 7, 8}; // Initialiser le tableau avec les
// numéros de broche des colonnes

MyKeyPad myOwnKeyPad(rowArray, colArray); // Instanciation d’un objet

void setup() {
Serial.begin(9600); // Préparer la sortie série
myOwnKeyPad. setDebounceTime(500); // Régler le temps du rebond a 500 ms

}

void loop() {
char myKey = myownKeyPad.readKey(); // Lecture de la touche pressée

if(myKey != KEY_NOT_PRESSED) // Une touche quelconque a-t-elle
// été pressée ?
Serial.println(myKey); // Affichage du caractére de la
// touche

Montage 14. Le clavier numérique

276

Tout comme vous ’avez appris dans le montage n° 8 « Comment créer une
bibliotheque ? », la premiere ligne permet d’inclure le fichier d’en téte per-
mettant d’utiliser la bibliothéque. Nous verrons bient6t ce qu’il contient.
Déclarons pour commencer deux tableaux, que nous initialisons avec les
numéros des broches de connexion aux lignes et aux colonnes du clavier
numérique. Cela offre une plus grande flexibilité et permet d’adapter les
réalisations différentes. La ligne

MyKeyPad myOwnKeyPad(rowArray, colArray);

génere l'instance myownkKeyPad de la classe MyKeyPad qui est définie dans la
bibliothéque, et transmet les deux tableaux au constructeur de la classe. Ces
informations lui sont nécessaires pour commencer a évaluer sur laquelle
des 12 touches on a appuyé. Le temps de rebond est déterminé par la
ligne suivante :

myOwnKeyPad . setDebounceTime(500) ;

La méthode setDebounceTime avec Iargument 500 est ainsi appelée.
Linstance est ensuite continuellement interrogée au sein de la fonction
loop, la question posée étant : « Indique-moi la touche qui est actuelle-
ment pressée sur le clavier numérique ! » Pour y arriver, il faut écrire la
ligne suivante :

char myKey = myOwnKeyPad.readKey();

Elle affecte le résultat de la requéte a la variable mykey du type char. On
peut maintenant réagir en conséquence. Il le faut, car la méthode renvoie
toujours une valeur, qu’une touche ait été pressée ou non. Mais vous sou-
haitez sGrement voir a I’écran si une touche a été enfoncée. Aussi la valeur
KEY_NOT_PRESSED est-elle renvoyée quand aucune touche n’est pressée.

if(myKey != KEY_NOT_PRESSED)
Serial.println(myKey);

n’envoie donc le caractere correspondant a la touche au moniteur série
que si une touche est véritablement appuyée.

Il se peut que vous vous demandiez ce qu’il y a derriere KEY_NOT_PRESSED.
Question pertinente, car j’en serais venu de toute facon a parler du fichier
d’en-téte. De nombreuses constantes symboliques y sont définies. Parmi
ces constantes se cache le caractere -, qui est toujours envoyé lorsqu’au-
cune touche n’est pressée. Je lui ai donné ce nom évocateur pour que le
code soit plus lisible.

Partie Il. Les montages

Fichier d’en-téte avec revue de code

Le fichier d’en-téte sert, comme nous I'avons déja expliqué, a faire connaitre
les variables et les méthodes nécessaires a la définition de la classe en
question. Voyons maintenant ce qu’on y trouve :

#ifndef MYKEYPAD_H
#define MYKEYPAD_H
#include <Arduino.h>
#define KEY_NOT_PRESSED '-' // Nécessaire si aucune touche n'est pressée
#define KEY_1 "1’
#define KEY_2 '2'
#define KEY_3 '3’
#define KEY_4 '4'
#define KEY 5 'S5’
#define KEY_6 '6'
#define KEY_7 '7'
#define KEY_8 '8’
#define KEY_9 '9’
#define KEY_ 0 '0'
#define KEY_STAR '*'
#define KEY_HASH '#'

class MyKeyPad {
public:
MyKeyPad(int rowArray[], int colArray[]); // Constructeur paramétré
void setDebounceTime(unsigned int debounceTime); // Réglage du temps
// de rebond
char readkey(); // Détermine la touche
// pressée sur le clavier numérique

private:
unsigned int debounceTime; // Variable locale pour temps de rebond
long lastvalue; // Derniere valeur de la fonction millis
int row[4]; // Tableau pour les lignes
int col[3]; // Tableau pour les colonnes
Y
#endif

La partie supérieure est consacrée aux constantes symboliques et aux carac-
téres correspondants. Vient ensuite la définition formelle de la classe sans
formulation du code qui, comme chacun sait, se trouve dans le fichier . cpp.

Mais que veut dire unsigned int dans la déclaration des variables ? Le type
de donnée int vous est déja familier. Son domaine s’étend des valeurs néga-
tives aux valeurs positives. Le mot-clé unsigned placé devant indique que
la variable est déclarée sans signe, autrement dit son domaine de valeurs
double puisque les valeurs négatives sont supprimeées. Ce type de donnée
nécessite également (comme int) deux octets pour que les valeurs posi-
tives soient toutes représentées. Le domaine de valeurs va de 0 a 65 535.

Montage 14. Le clavier numérique

277

Fichier ccp avec revue de code
Voici maintenant un peu de code « fait maison » :

#include "MyKeyPad.h"
// Constructeur paramétré
MyKeyPad: :MyKeyPad(int rowArray[], int colArray[]) {
// Copier le tableau des broches
for(int r = ©; r < 4; r++)
row[r] = rowArray[r];
for(int ¢ = 9; c < 3; c++)
col[c] = colArray[c];
// Programmation des broches numériques
for(int r = 9; r < 4; r++)
pinMode(row[xr], OUTPUT);
for(int c = @; c < 3; c++)
pinMode(col[c], INPUT_PULLUP);
// Définition initiale de debounceTime a 300 ms
debounceTime = 300;

}

// Méthode pour régler le temps de rebond
void MyKeyPad: :setDebounceTime(unsigned int time) {
debounceTime = time;

}

// Méthode pour déterminer la touche appuyée sur le clavier numérique
char MyKeyPad: :readKey() {
char key = KEY_NOT_PRESSED;
for(int r = @; r < 4; r++) {
digitalWrite(row[r], LOW);
for(int ¢ =09; c < 3; c++) {
if((digitalRead(col[c]) == LOW)&&(millis() - lastvalue) >=
= debounceTime) {
if((c==2)&&(r==3)) key = KEY_1;
if((c==1)8&(r==3)) key = KEY_2;
if((c==0)88&(r==3)) key = KEY_3;
if((c==2)&&(r==2)) key = KEY_4;
if((c==1)88&(r==2)) key = KEY_5;
if((c==0)88&(r==2)) key = KEY_6;
if((c==2)&&(r==1)) key = KEY_7;
if((c==1)88&(r==1)) key = KEY_8;
if((c==0)&8&(r==1)) key = KEY_9;
if((c==2)88&(r==0)) key = KEY_STAR; // *
if((c==1)88&(r==0)) key = KEY_0;
if((c==0)8&(r==0)) key = KEY_HASH; // #
lastValue = millis();
}
}
digitalWrite(row[r], HIGH); // Restauration du niveau initial
}
return key;

}

Partie Il. Les montages

Voyons d’abord le constructeur. Il sert a initialiser I'objet a créer et a lui don-
ner des valeurs initiales définies. Un constructeur doit permettre d’initiali-
ser, autant que possible complétement, I'instance, de telle sorte qu’aucun
appel de méthode ne soit plus en principe nécessaire pour l'initialisation.
Elles ne sont plus utilisées que pour corriger certains parametres qui, le
cas échéant, doivent, ou peuvent, étre modifiés en cours de sketch. Le
constructeur n’est appelé qu’une seule fois et de maniére implicite lors de
I'instanciation, et apres cela plus jamais dans la vie de I'objet. Dans notre
exemple, les tableaux des lignes et des colonnes lui sont communiqués
lors de I'appel, de maniere a pouvoir étre transmis ensuite aux tableaux
locaux au moyen de deux boucles for :

// Copie des tableaux de broches

for(int £ = @; r < 4; r++)
row[r] = rowArray[r];

for(int ¢ = 9; c < 3; c++)
col[c] = colArray[c];

Les broches numériques sont ensuite initialisées et leurs sens de transfert
sont définis :

// Programmation des broches numériques
for(int r = ©; r < 4; r++)

pinMode(row[r], OUTPUT);
for(int ¢ = 9; c < 3; c++)

pinMode(col[c], INPUT_PULLUP);
// Définition initiale de debounceTime a 300 ms
debounceTime = 300;

Nous avons vu qu’un objet devait toujours étre complétement instancié au
moyen d’un constructeur. Mais ici nous lui transmettons uniquement les
tableaux de broches pour les lignes et les colonnes. Un autre parametre
important est néanmoins le temps de rebond. Celui-ci n’est pourtant pas
transmis a 'objet par le constructeur. Nous avons pour ce faire une méthode
propre. Cela ne contredit-il pas ce qui vient d’étre dit ?

Oui et non ! I est vrai que le constructeur ne connait pas le temps de
rebond. Mais regardez sa dernieére ligne. Le tempsy est réglé sur 300 ms. Il
s’agit pratiquement d’une initialisation cablée en dur, comme on dit si bien
dans les milieux de la programmation. Si la valeur ne vous dit rien, vous
pouvez toujours I’adapter a vos besoins, tout comme je I’ai fait d’ailleurs
pour la méthode setDebounceTime. La valeur de 300 (ms) m’a semblé ici
convenir. J’aurais évidemment pu la définir directement, mais je voulais
vous montrer cette possibilité. La tache en question est accomplie par
la méthode readkey, qui est appelée sans cesse dans la boucle loop pour
pouvoir réagir immédiatement a un appui sur une touche. Au début de

Montage 14. Le clavier numérique

279

280

'appel de la méthode, la ligne suivante fait en sorte que la variable key soit
immeédiatement pourvue d’une valeur initiale :

char key = KEY_NOT_PRESSED;

Allez voir dans le fichier d’en-téte de quelle valeur il s’agit. Si aucune touche
n’est en effet pressée, c’est précisément ce signe qui est réexpédié comme
résultat. Vient ensuite I’appel des deux boucles for imbriquées 'une dans
Iautre. La premiere ligne du clavier numérique est mise au niveau LOW par :

digitalWwrite(row[r], LOW);

Les niveaux de toutes les colonnes sont ensuite testés.

for(int r =9; r < 4; r++) {
digitalWrite(row[z], LOW);
for(int ¢ = 0@; c < 3; c++) {
if((digitalRead(col[c]) == LOW)&&(millis() - lastValue) >=
= debounceTime) {

if((c==2)88&(r==3)) key = KEY_1;
if((c==1)&8&(r==3)) key = KEY_2;
if((c==0)88&(r==3)) key = KEY_3;
if((c==2)88&(r==2)) key = KEY_4;
if((c==1)&8&(r==2)) key = KEY_5;
if((c==0)88&(r==2)) key = KEY_6;
if((c==2)88&(r==1)) key = KEY_7;
if((c==1)&8&(r==1)) key = KEY_8;
if((c==0)88&(r==1)) key = KEY_9;
if((c==2)88&(r==0)) key = KEY_STAR; // *
if((c==1)&8&(r==0)) key = KEY_0;

if((c==0)88&(r==0)) key =
lastvalue = millis();

KEY_HASH; // #

Si une colonne présente également un niveau LOW et si en plus le temps de
rebond a été pris en compte, alors la premiere condition if est remplie
et toutes les conditions if subséquentes sont évaluées. Si une condition
est vérifiée pour le compteur de lignes r et le compteur de colonnes c, la
variable key est initialisée avec la valeur initiale correspondante et renvoyée
alappelant, en fin de méthode, par I'instruction return. Une fois la boucle
intérieure terminée, les lignes qui viennent d’étre mises au niveau LOW
doivent étre remises dans leur état initial, qui est le niveau HIGH.

Partie Il. Les montages

digitalWrite(zrow[r], HIGH); // Restauration du niveau initial

Si I’état Lo était conservé, une interrogation ciblée d’une certaine ligne
ne serait alors plus possible. Toutes les lignes auraient un niveau LOW une
fois la boucle extérieure terminée, ce qui mettrait toute la logique d’inter-
rogation sens dessus dessous.

La fonction millis renvoie le nombre de millisecondes écoulées depuis le
début du sketch. La derniére valeur est pour ainsi dire stockée temporaire-
ment dans la variable lastVvalue, une fois la boucle intérieure terminée. Si
la boucle est de nouveau appelée, la différence entre la valeur actuelle en
millisecondes et la valeur précédente est calculée. Ce n’est que si elle est
supérieure au temps de rebond défini que la condition est jugée vérifiée. Elle
se trouve cependant liée avec I'expression qui la précede par un & logique.

if((digitalRead(col[c]) == HIGH)&&(millis() - lastvalue) >=
= debounceTime)...

Ce n’est que si les deux conditions délivrent le résultat logique vrai a
Iinstruction if que la ligne se poursuit avec I'accolade. Cette structure
permet d’obtenir une interruption temporelle, qui se produit aussi toute
seule dans certains sketches.

Realisation du shield

< Figure 14-8
Réalisation du clavier
numérigue avec son
propre shield

La construction du shield n’est pas mal du tout, n’est-ce pas ? Je vous avais
dit au début que je vous montrerais comment faire une carte a la bonne
taille. La carte présentée dans le tableau 14-1 comporte un marquage cor-
respondant a la taille définitive du shield.

Montage 14. Le clavier numérique

282

Figure 14-9 >

Taille du shield basée
sur les écarts entre les
trous

Figure 14-10 >
Taille du shield basée
sur les écarts entre
les trous

Ligne de

W\ découpe

20 trous

25 trous

Broches analogiques

Broches numériques

Ligne de découpe

On voit sur 'image les positions exactes des connecteurs femelles et des
touches. 1l suffit de compter les trous sur la carte et de positionner ensuite
les composants. Ne commencez a souder que quand vous avez tout placé
sur la carte. Vous évitez ainsi les positionnements incorrects, et les erreurs
vous sautent tout de suite aux yeux. Si vous soudez les composants aussitot
apres les avoir placés, il se peut que vous vous aperceviez plus tard que vous
avez commis une erreur, et que vous ayez tout a dessouder.

La figure 14-10 illustre 'envers de la carte une fois tous les composants
soudés et tous les fils raccordés.

vy
.=
=i
=2
o
(<%}
=
e =
13 S
wi =%
b5 f =
s S
5 <«
e 8
2
2’ g
=
IS <%
=3 =

1

Touches Connexions des colonnes

Partie Il. Les montages

Les fils verts établissent les liaisons vers les lignes, et les fils jaunes vers les
colonnes. Les fils rouges sont les connexions intermédiaires des colonnes,
qui passent au-dessus des fils horizontaux. Ce shield permet de fabriquer
des claviers spéciaux a partir de modéles adaptés a vos besoins personnels,
comme celui illustré sur la figure suivante.

<« Figure 14-11

Le robot motorisé mBot
avec sa commande

par pavé numérique

Que diriez-vous de construire un robot motorisé tel que celui-la dans un
prochain montage ? Le clavier a film est tres facile a fabriquer avec une
plastifieuse. Cela présente aussi I'avantage de le protéger contre les doigts
gras. Ce clavier numérique fourni avec trois connexions est extrémement
simple d’emploi. Mais, tréve de digressions, pour l'instant, nous allons
nous consacrer a la construction d’un shield personnel puisque c’est le
sujet de ce montage.

Montage 14. Le clavier numérique 283

284

Figure 14-12 »
Proto Shield d'Adafruit

Figure 14-13
Carte de circuit imprimé
perforée

Construction d’un shield Arduino

Le shield Arduino le plus simple disponible dans le commerce est a mon
avis le Proto Shield, qui est illustré ci-dessous.

Ily a suffisamment de place sur la face supérieure du Proto Shield pour une
petite plaque d’essais afin d’y réaliser de petits circuits. Le shield d’Adafruit
(Arduino Kit vR3) illustré n’est pas fourni avec une plaque d’essais, mais
vous pouvez y remédier moyennant une somme modique. Voici 'adresse
Internet du fabricant du Proto Shield :

https://www.adafruit.com/products/2077

Si je vous dis que la conception de la carte Arduino n’est pas parfaite, vous
aurez sans doute du mal a me croire. Pourtant, c’est vrai. Commencons par
la carte de circuit imprimé perforée, vendue dans différents formats. La
mienne mesure 100 mm x 100 mm et ressemble a celle illustrée ci-dessous.

Avant Arriére

La carte se compose d’un support isolant, par exemple en bakélite ou en
résine époxy, et d’'une couche de cuivre conductrice. Comme son nom

Partie Il. Les montages

Iindique, la carte de circuit imprimé perforée présente une multitude de
trous régulierement espacés, bordés d’une couche de cuivre circulaire. Le
fil de raccordement d’un composant est enfilé du recto vers le verso de la
carte et fixé par soudure a la couche de cuivre.

<« Figure 14-14
Vue partielle grossie
d'une carte de circuit
imprimé perforée

Cette vue grossie montre la distance entre les trous, qui est en régle géné-
rale de 2,54 mm. Et c’est la que les choses commencent a se compliquer.
Si tout va bien c6té carte de circuit imprimé perforée, cette norme n’est
en revanche pas respectée du tout coté carte Arduino, et je ne sais pas
pourquoi les développeurs 'ont voulue différente.

Les dimensions de la carte de circuit imprimé perforée sont alors les sui-
vantes :

o largeur: 64 mm ;
e hauteur : 53 mm.

Maintenant un peu de calcul pour comprendre les éloignements des dif-
férents trous les uns des autres : les deux rangées du haut pour Analog In
et Power, de 6 trous chacune, ne posent aucun probléme, car elles sont
séparées par un trou libre, autrement dit I'écart est de 2 x 2,54 mm = 5,08
mm. Cela ne pose pas de probleme pour la carte de circuit imprimé per-
forée. Passons aux rangées du bas pour Digital I/0. Pour une raison que
j’ignore, ’écart entre ces deux rangées, 3,81 mm environ, n’est méme pas
un multiple de 2,54 mm, mais est inférieur a deux fois 2,54 mm (soit 5,08
mm). Il n’est donc pas possible en P’état d’utiliser les connecteurs femelles
et leurs broches sous cette forme. On voit cependant sur le shield fini que
je les ai quand méme soudés dans les trous de la carte de circuit imprimé.

Montage 14. Le clavier numérique

Figure 14-15

Vue de dessus du shield PEREE®
de prototypage Analog In

48,26 mm

Digital 110 Digital I/0

Vous remarquerez que pour adapter le shield fabriqué aux connecteurs de
la carte Arduino, il faut tordre les broches ! Ici, il faut déformer un peu les
broches du connecteur femelle de droite. On voit, sur la figure suivante,
ces broches tordues vers la gauche.

Figure 14-16 »> ot
Broches des connecteurs
femelles numériques

Les deux figures suivantes « Avant » et « Apres » permettent de mieux
comprendre ce qu’il faut faire.

286 Partie Il. Les montages

Digital 1/0 Digital 1/0
8 broches 10 broches

2,54 mm 5,08 mm

Digital 1/0 Digital 1/0
8 broches 10 broches

2,54mm

Les broches sont tordues vers la gauche au moyen de la petite pince.

Procédez avec soin et ne tordez pas les broches dans tous les sens, car
elles peuvent finir pas casser. Ne craignez rien ! Je Iai fait moi-méme et
ce n’est pas sorcier. La déformation des broches se fait en deux étapes.
On tord d’abord la broche vers la gauche, puis on descend légerement
la pince et on tord a nouveau la broche vers la droite. On obtient ainsi
une orientation verticale qui est juste un peu décalée vers la gauche. La
broche doit alors se trouver au-dessus d’un trou du connecteur femelle.
Procédez de préférence de gauche a droite, en commencant par celle du
bout. Lorsque le shield est prét, vous pouvez souder le bouton-poussoir
miniature et les connexions.

<« Figure 14-17

Avec cet écart

de 2 x 2,54 mm=5,08 mm
entre les broches, le shield
ne va pas sur la carte
Arduino.

<« Figure 14-18

Les braches ayant été
tordues en conséquence, le
shield va désormais sur la
carte Arduino.

<« Figure 14-19
Petite pince universelle

Montage 14. Le clavier numérique

287

288

Exercice complémentaire

La bibliothéque KeyPad fait pour le moment partie du sketch que vous avez
créé. Je pense que ce serait une bonne idée de la copier quelque part, a
Iattention de tous les autres sketches qui pourraient en avoir besoin. Si
vous ne savez plus ou, relisez le montage n° 10 du dé électronique, au cours
duquel vous aviez créé votre premiere bibliothéque. Vous y trouverez les
informations nécessaires. Il faut pour ce faire rajouter le fichier keyword.
txt dans votre bibliothéque. Entrez-y les mots-clés nécessaires, qui sont
indiqués en couleurs dans 'IDE Arduino.

Problemes courants

La réalisation de ce shield nécessitant beaucoup de soudure, les erreurs
peuvent étre d’autant plus nombreuses.

e Vérifiez que les fils sont bien raccordés aux bonnes broches.

e Pas de court-circuit éventuel ? Le mieux est de prendre une loupe et
de vérifier chaque soudure. Un court-circuit de la taille d’'un cheveu
n’est souvent pas visible a I'ceil nu.

e Avez-vous correctement relié les différentes touches entre elles, de
maniéere a ce qu’elles forment des lignes et des colonnes ? Servez-
vous du schéma.

Qu’avez-vous appris ?

e Vous avez vu qu’on peut fabriquer soi-méme un clavier numérique
avec des composants tres simples et peu onéreux. Pour ceux qui ont
la patience nécessaire et qui ont envie de faire par eux-mémes au
lieu de toujours se servir des composants tout préts vendus dans les
magasins, ceci a pu étre un bon début et leur a permis de montrer ou
plutot d’entretenir leur créativité.

e Le soudage qui, il y a des décennies, était excessivement pratiqué
dans les premiers bricolages électroniques, n’est selon moi plus a la
mode aujourd’hui. Mais jespére du moins que 'odeur d’étain fondu
et de plastique bralé vous aura charmé, comme elle a su le faire dans
ma jeunesse.

e Nous avons créé ensemble notre propre classe, qui peut servir a inter-
roger la matrice de touches. Vous avez certainement tiré parti des
principes de la POO, qui vous avaient été expliqués auparavant.

e Vous avez fabriqué votre propre shield de clavier numérique.

Partie Il. Les montages

Montage

Un afficheur 1 5
alphanumerique

Pour afficher des informations avec une carte Arduino, on ne peut pas
toujours se contenter d’une ou plusieurs LED. Méme si cela présente cer-
tains avantages, il n’est pas possible de produire des messages nuancés.
Nous allons donc nous intéresser a d’autres afficheurs compatibles avec
la carte Arduino.

Qu’est-ce qu’un afficheur LCD ?

Que serait un microcontroleur sans son afficheur pour correspondre avec
le monde extérieur sans passer par l'ordinateur ou le moniteur série ?
Bien siir, on a déja vu comment, par exemple, utiliser des afficheurs sept
segments pour représenter des chiffres. S’il s’agit de représenter plusieurs
chiffres ou des lettres ou encore des caracteres spéciaux tels que * #, %..., les
limites du possible sont vite atteintes. On utilise dans ces cas-1a un afficheur
a cristaux liquides ou LCD (Liquid Cristal Display) sous sa forme abrégée.
Ces afficheurs contiennent des cristaux liquides capables de modifier leur
orientation en fonction d’une tension appliquée, et de jouer ainsi plus ou
moins sur I'incidence de la lumiere. De tels éléments d’affichage utilisent
en général des motifs composés de points (Dot-Matrix) pour représenter a
peu preés tous les signes (chiffres, lettres ou caracteres spéciaux). Leur taille
et leur équipement varient. Dans I'environnement Arduino, un afficheur
LCD avec pilote HD44780 est relativement souvent utilisé. Ce pilote, qui
s’est imposé comme le quasi standard, est souvent adapté par beaucoup
d’autres fabricants. La figure 15-1 montre un afficheur de ce type.

289

290

Figure 15-1»
Afficheur LCD

Tableau 15-1 »
Liste des composants

1l existe pour cet élément une bibliotheque livrée avec 'IDE Arduino. Vous
pouvez bien entendu raccorder n’importe quel afficheur ou presque, a
condition de trouver une bibliotheque appropriée ou de la créer vous-
méme. Nous utilisons pour notre montage P'afficheur ci-dessus, a 2 lignes
de 16 caractéres chacune.

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant

HD44780

1 LCDisplay HD44780 + barrette a 16
broches

1 trimmer de 10K ou 20K

Remarques sur ['utilisation de [’afficheur LCD

Si vous achetez un afficheur LCD tout neuf, il se peut que seuls des trous
de connexion soient présents sur le circuit imprimé, comme vous pouvez
le voir sur 'image ci-dessus. Vous pouvez alors, soit équiper de fils les
contacts nécessaires et vous en servir plus tard pour le circuit sur la plaque
d’essais, soit — et C’est le mieux — vous procurer une barrette a broches,
comme vous pouvez le voir également sur I'image en haut de la page
suivante. Des barrettes sont par exemple proposées avec une rangée de
40 broches et un pas de 2,54 mm. Coupez-les a une longueur de 15 bro-
ches en les pliant délicatement a I'endroit souhaité. Allez-y doucement,
car elles ont tendance a casser 1a ou on ne veut pas. Enfilez ensuite les
broches de la barrette depuis le bas dans les trous et soudez-les sur la face
supérieure.

Partie Il. Les montages

2. Souder depuis le haut

TL Enfiler depuis le bas dans les trous

Vous pouvez ainsi brancher sans probleme le module sur votre plaque
d’essais.

Principes intéressants

Avant d’utiliser Pafficheur LCD, voici quelques principes importants et
intéressants a connaitre. Comment un afficheur de ce type fonctionne-t-il ?
Nous avons déja vu que les différents caracteres étaient composés a partir
d’une matrice de points (Dot-Matrix). Dot signifie point et se trouve étre
le plus petit élément représentable dans cette matrice. Tout caractere est
construit avec une matrice de points 5 x 8.

<« Figure 15-2
La matrice de points 5 x 8
de l'afficheur LCD

Un emploi judicieux des différents points permet de générer les caracteres
les plus divers. La figure suivante montre le mot Arduino et les différents
points a partir desquels les lettres sont composées.

CEmmC 00000 Coooe 00000 Comod 00000 00000 <« Figure 15-3

man Sussnsfissss Sessssfisssssisssnsfnssnn . .
ECOON EOEED CEECE B0 OEEC0 EOEED OEEEC Le mot Arduino composé
e ww f ww N men Gew wsll | Ew § wew 3 partir des différents points
EEEEE B0 OO EOOCON OOmC0 BOOOe §COOe P P
EOOm W EOOOE ECOEE OO0 OO0 ECOO

EOOOm W CEEES S e N EEE

00000 L 00000 D0000 00000 00000 00000

Montage 15. Un afficheur alphanumérique 291

292

Figure 15-4
Branchements du module
d'affichage

La commande de lafficheur est parallele, autrement dit tous les bits de
données sont envoyés en méme temps au controleur. Il existe deux modes
différents (4 bits et 8 bits), le mode 4 bits étant le plus utilisé parce qu’un
nombre moindre de lignes de données doit étre relié a I’afficheur, ce qui
fait diminuer le cott.

Mais peut-étre vous dites-vous que si nous utilisons 4 bits au lieu de 8,
nous aurons un débit de données moindre et nous pourrons transmettre
moins d’informations différentes. Comment faire alors ?

En réalité, cela fonctionne sans diminution du volume d’informations.
En mode 4 bits, les 8 bits d’informations a transmettre sont simplement
scindés en deux moitiés : 'une contenant les quatre premiers bits, et 'autre
contenant les quatre derniers bits. Un nombre binaire de 4 bits est appelé
nibble (quartet) dans le traitement des données. Les 4 bits d’un nibble sont
transmis en parallele, et les deux nibbles d’un octet en série. Surtout, ne
vous en faites pas. Le mode 4 bits est certes plus lent que le mode 8 bits,
mais ca n’a ici aucune importance. Venons-en maintenant au module d’af-
fichage LCD Hitachi HDD44780, a son brochage et aux branchements
nécessaires. Il existe deux variantes différentes : celle a 16 broches qui
possede un rétroéclairage, et celle a 14 broches qui n’en a pas besoin.

bits

4
l H—Rétroéclairage
D7

VO (10K-20K Poti)
RS

RW (GND)

Enable

+

a
z
O
GG B

Sur les huit lignes de données, seules les quatre lignes supérieures (D4 a
D7) sont nécessaires. Le tableau 15-2 donne Daffectation des broches et
leur signification.

Partie Il. Les montages

B Broche Arduino

<« Tableau 15-2

LCD Affectation des broches
1 GND Masse LCD pour la variante a 16
2 L5V +5V braches
3 - Réglage du contraste par un potentiométre
de 10K ou 20K
12 RS (Register Select)
GND RW (Read/Write)/connecté a la masse (HIGH :
Read/LOW : Write)
6 1 E (Enable)
11 5 Ligne de données D4
12 4 Ligne de données D5
13 3 Ligne de données D6
14 2 Ligne de données D7
15 - Anode (+)/via résistance série de 220 Q) !
16 GND Cathode (-)

Lobjectif du premier sketch LCD est de faire apparaitre a I’écran la phrase
« Un Arduino me commande ».

Schema

Le schéma de commande de Pafficheur LCD ne nécessite pas beaucoup de

composants supplémentaires :

Montage 15. Un afficheur alphanumérique

<« Figure 15-5
Connexions de l'afficheur
LCD
Lfn‘f ARARARACE L e e ﬂf|;8.:|
P %%ggﬁ"‘gﬁﬂgonnaqz"
Contraste
~” ©
GND HD44780 GND +5V

293

294

Figure 15-6 »
Réalisation du circuit
de commande

de l'afficheur LCD

Realisation du circuit

La réalisation du circuit est rapide sur une petite plaque de prototypage.

p—

L

S ——

p— o 23000 BTN EE———
Il S e S b —

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Revue de code

Le sketch suivant permet d’afficher un texte de 2 lignes sur I’écran LCD.

#include <LiquidCrystal.h>

#define RS 12
#define E 11
#define D4 5
#define D5 4
#define D6 3
#define D7 2

// Register Select
// Enable

// Ligne de données 4
// Ligne de données 5
// Ligne de données 6
// Ligne de données 7

#define COLS 16 // Nombre de colonnes
#define ROWS 2 // Nombre de lignes
LiquidCrystal lcd(RS, E, D4, D5, D6, D7); // Instanciation de 1'objet

Partie Il. Les montages

void setup() {

lcd.begin(COLS, ROWS); // Nombres de lignes et de colonnes
lcd.print("Un Arduino me"); // Affichage du texte
lcd.setCursor(@, 1); // Passer a la 2e ligne
lcd.print(“commande :-)"); // Affichage du texte

B

void loop() { /* vide */ }

Examinons la signification de ce sketch.

La bibliothéque LiquidCrystal doit étre incorporée afin de pouvoir utiliser
la fonctionnalité des commandes de I'afficheur LCD. Les parametres sui-
vants doivent étre communiqués au constructeur pour générer un objet
LCD:

o broche Register Select (RS) ;
e broche Enable (E) ;

e broches des lignes de données D4 a D7.

LiquidCrystal 1cd(RS, E, D4, D5, D6, D7); // Instanciation de 1'objet

La classe LiquidCrystal met une série de méthodes a disposition, car on ne
peut envoyer un texte a I'afficheur LCD avec le seul constructeur. Pour que
ce soit possible, il nous faut transmettre a I'objet afficheur quelques infor-
mations supplémentaires pour poursuivre I'initialisation. Les afficheurs
LCD different quant au nombre de colonnes ou de lignes, et ce sont pré-
cisément ces informations qu’il lui faut. On voit bien que le constructeur
ne dispose pas de tout pour une initialisation compléte. Une méthode est
ici nécessaire.

Méthode LCD : begin

Nom de laméthode ~ Nombre de colonnes Nombre de lignes <« Figure 15-7
| | Méthode LCD : begin
[| [\

(begin(Cols, Rows) ;)

La méthode begin communique les nombres de colonnes et de lignes a
'objet LCD. Tout est alors prét pour envoyer un texte.

Méthode LCD : print

Nom de la méthode Texte a afficher <« Figure 15-8
| Méthode LCD print
[| \

(print ("Un Arduino me");)

Montage 15. Un afficheur alphanumérique

295

296

Figure 15-9 >
Méthode LCD setCursor

Figure 15-10 >
Coordonnées

des différentes lignes
accessibles avec
setCursor

Figure 15-11 »
Méthode LCD clear

La méthode print indique a 'objet LCD ce qui doit étre affiché a I'écran.
Elle est comparable a celle du moniteur série.

Quand aucune indication n’est donnée sur la position du texte a afficher,
celui-ci se place au début de la premieére ligne. Comme vous pouvez le
voir dans 'exemple, une autre ligne est occupée par du texte. Venons-en
maintenant a la troisiéeme méthode importante.

Méthode LCD : setCursor
Nom de la méthode Colonne ~ Ligne
I l I
(setCursor (0, 1) ;)

La méthode setCursor permet de positionner le curseur a 'endroit ou le
texte suivant doit commencer. lle est ici aussi — et comment pourrait-il
en étre autrement — basée sur zéro, autrement dit la premiere ligne ou
colonne est pourvue de I'index 0. Pour atteindre la deuxieme ligne, vous
devez — comme Cest le cas ici — utiliser la valeur 1. La figure suivante peut
vous aider a positionner Iaffichage.

©19]38]815)8)5]8)5/813815[3158

Avant d’oublier : vous pouvez naturellement tout effacer jusqu’au dernier
caractére avec la méthode clear. La méthode suivante est utilisée pour
ce faire :

Méthode LCD : clear

Nom de la méthode

(clear() ;)

Partie Il. Les montages

Elle n’a pas de parametre, efface tous les caracteres de 'afficheur et posi-
tionne le curseur sur la coordonnée 0,0 dans le coin supérieur gauche.

VARIANTES DU HD44780

Dans certaines variantes du HD44780, on peut brancher le rétroéclairage sur
+5 V sans résistance série ; dans d'autres, une résistance dimensionnée en
conséquence est nécessaire. Regardez la fiche technique avant de brancher la
tension d'alimentation. Vous pouvez au pire laisser tomber le rétroéclairage. Si
c'est trop sombre, vous pourrez toujours augmenter le contraste de maniere
a pouvoir lire quand méme l'affichage.

Jeu : deviner un nombre

Quoi de mieux que le jeu ou il faut deviner des nombres pour une réalisa-
tion avec l'afficheur LCD ? Si ca fonctionne, vous n’aurez plus besoin d’un
ordinateur et gagnerez en indépendance grace a 'unité d’affichage LCD.
J’ai fixé, pour le besoin de la réalisation, le LCD sur une carte de circuit
imprimé perforée, sur laquelle deux supports de circuit intégré a 16 broches
sont posés I'un a coté de lautre.

Un support comparable — mais avec plus de broches bien sir - se trouve
sur votre carte Arduino et maintient le microcontroéleur en position. De
tels connecteurs sont vraiment utiles, car si un circuit intégré vient a gril-
ler pour de bon, plus besoin de le dessouder péniblement. Il suffit de le
remplacer. La carte mesure 10 x 5 cm.

<« Figure 15-12
Support de circuit intégré
a 16 broches

<« Figure 15-13
Carte-support
pour afficheur LCD

Montage 15. Un afficheur alphanumérique

297

298

Figure 15-14 >
Face soudée de la carte-
support pour lafficheur LCD

Figure 15-15
Afficheur LCD
sur sa carte-support

Comme vous pouvez le constater, j’ai également placé dessus le potentio-
metre trimmer pour le réglage du contraste. De ’autre coté de la carte, on
voit comment j’ai relié entre elles les différentes broches des supports de
circuit intégré. Les broches opposées ont toutes été reliées par plusieurs
points de soudure.

; Broche 16 Broche 1
Trimmer
Supportde CI 1 Support de (12
6305050
elele)ririe -~
rlrleliririerar

Un cdblage volant est parfois suffisant. La figure suivante montre lafficheur
LCD déja fixé sur la carte. Ses broches sont insérées dans les contacts de la
rangée inférieure des deux supports de circuit intégré. La rangée supérieure
servira plus tard pour la connexion au shield.

S R

. FYTYVYUYRVITVRYY

- - — .
——— .

Il ne manque plus maintenant que les lignes de raccordement a votre cla-
vier analogique. Les liaisons passent par les barrettes a broches que vous
connaissez bien. Il vous faut :

e 1 barrette a 16 broches ;
e 2 barrettes a 8 broches ;

e 1 barrette a 6 broches.

Partie Il. Les montages

La barrette a 16 broches est raccordée a la carte-support sur laquelle se
trouve lafficheur LCD. La figure suivante illustre les lignes de raccordement
analogique.

<« Figure 15-16
Barrette a 16 broches

Broche 1 Broche 16

Les deux barrettes a 8 broches et la barrette a 6 broches sont branchées
sur le clavier.

Barrette & 8 broches/RS et E Barrette a 8 broches/Lignes de données < Figure 15-17

v v Clavier analogique
e — avec ses trois barrettes

abroches

usse

Alimentation

Barrette a 6 broches pour +5V et masse

En utilisant les couleurs et I’affectation des broches indiquée,
vous ne devriez pas avoir de probléme pour construire le petit faisceau
de cables avec les barrettes a broches. La figure 15-18 montre a nouveau
les trois composants, a savoir la carte-support avec I'afficheur LCD, la carte
Arduino et le shield du clavier superposé, tous reliés entre eux.

Montage 15. Un afficheur alphanumérique

299

Figure 15-18
Réalisation du circuit
complet pour le jeu des
nombres

a deviner

Vous pouvez naturellement inscrire les différentes touches au marqueur
sur la carte. Mais le mieux est de fabriquer vous-méme un clavier a film a
’aide d’une plastifieuse.

6 ATTENTION AUX COURTS-CIRCUITS !

Figure 15-19 »
Barrette a 6 poles

avec deux morceaux de
gaine thermorétractable
(fleches rouges)

300

Sivous soudez sur les barrettes a broches des fils d'alimentation ou de masse
qui se trouvent directement l'un a coté de l'autre, vous risquez fort d'avoir un
jour ou lautre, par déplacement, un court-circuit entre ces contacts ou les
fils avoisinants. Aussi ai-je pris soin de mettre chaque soudure sous gaine
thermorétractable pour l'isoler. Pour plus de sécurité, vous pouvez le faire
pour toutes les broches auxquelles des fils sont connectés :

Gaine thermorétractable

Partie Il. Les montages

Voici maintenant le code complet, qui est déja un peu plus conséquent.

#include <LiquidCrystal.h>
#include "MyAnalogKeyPad.h"

#define analogPinKeyPad A@ // Définition de la broche analogique

#define MIN 10 // Limite inférieure du nombre aléatoire
#define MAX 1000 // Limite supérieure du nombre aléatoire
#define RS 12 // Broche Register Select du LCD

#define E 11 // Broche Enable du LCD

#define D4 5 // Ligne de données LCD broche 4

#define D5 4 // Ligne de données LCD broche 5

#define D6 3 // Ligne de données LCD broche 6

#define D7 2 // Ligne de données LCD broche 7

#define COLS 16 // Nombre de colonnes LCD

#define ROWS 2 // Nombre de lignes LCD

int arduinoNumber, tries; // Le nombre généré, nombre d’essais
char yourNumber[5]; // Nombre a 5 chiffres maxi
byte place;

MyAnalogKeyPad myOwnKeyPad(analogPinKeyPad); // Instanciation clavier

LiquidCrystal 1cd(RS, E, D4, D5, D6, D7); // Instanciation LCD

void setup() {

myownKeyPad . setDebounceTime(500); // Régler le temps du rebond a 500 ms

lcd.begin(COLS, ROWS); // Nombres de lignes et de colonnes
lcd.blink(); // Faire clignoter le curseur
startSequence(); // Appel de 1a séquence de démarrage

}

void loop() {

char myKey = myownKeyPad.readKey(); // Lecture de la touche pressée
if(myKey != KEY_NOT_PRESSED) { // Interrogation si une touche quelconque

// est pressée
yourNumber[place] = myKey;

place++;

lcd. print(myKey); // Afficher 1a touche sur le LCD
}
if(place == int(log18(MAX))+1) {

tries++;

int a = atoi(yourNumber);

if(a == arduinoNumber) {
lcd.cleax(); // Effacer écran LCD
lcd.print("Exact !!!"); // Affichage sur LCD

lcd.setCursor(e, 1); // Positionnement curseur sur 2e ligne
lcd.print("Essai : " + String(tries));
delay(4000); // Attendre 4 secondes
tries = 9; // Remise a zéro du nombre d'essais
startSequence(); // Appel de StartSequence

3

else if(a < arduinoNumber) {

lcd.setCursor(e, 1); // Positionnement curseur sur 2e ligne

lcd.print("Trop petit"); // Affichage sur LCD

Montage 15. Un afficheur alphanumérique

301

302

Figure 15-20 »
Méthode LCD blink

lcd.setCursor(@, 9); // Positionnement curseur sur 1re ligne

}

else {
lcd.setCursor(e, 1); // Positionnement curseur sur 2e ligne
lcd.print("Trop grand"); // Affichage sur LCD
lcd.setCursor(@, 9); // Positionnement curseur sur 1re ligne
}

lcd.setCursor(2, @); // Positionnement curseur sur 3e emplacement
// de 1la 1re ligne
place = @;
}
}

int randomNumber(int minimum, int maximum) {
randomSeed(analogRead(5));
return random(minimum, maximum + 1);

}

void startSequence() {
arduinoZahl = randomNumber(MIN, MAX); // Générer le nombre a deviner

lcd.cleaz(); // Effacer écran LCD
lcd.print("Devine un nombre"); // Affiche sur LCD
lcd.setCursor(e, 1); // Positionnement curseur sur 2e ligne
lcd.print(“de " + String(MIN) + " - " + String(MAX));
delay(4000); // Attendre 4 secondes
lcd.cleaz(); // Effacer écran LCD
led.print(">>"); // Affiche sur LCD
}

Je ne souhaite pas trop m’étendre sur le sketch pour l'instant. J’ai fait en
sorte que Iaffichage ait lieu sur le LCD. J’ai ajouté aussi une méthode qui
affiche un curseur clignotant a I’écran (voir figure 15-20).

Méthode LCD : blink

Nom de la méthode

(blink() ;)

blink est appelée une seule fois dans la fonction setup et fait clignoter un
curseur a endroit ou on va écrire. Quand on regarde le début du sketch,
on voit qu’il est tout a fait possible d’incorporer plusieurs bibliotheques
dans un projet. Il n’y a théoriquement aucune limite. La mémoire flash
finit quand méme a un moment par laisser entendre qu’elle est pleine et
qu’aucun code ne peut plus étre ajouté.

Partie Il. Les montages

Etudions de pres la ligne
lcd.print("de" + String(MIN) + " - "+ String(MAX));

Dans cette ligne, on affiche des chaines de caractéres et on utilise 'opéra-
teur +. Mais comment fait-on pour additionner des chaines de caractéres ?
Ca ne marche qu’avec des nombres, non ?

Evidemment ! Seules des valeurs mathématiques peuvent étre addition-
nées. Lopérateur + ne peut évidemment rien additionner dans le cas de
chaines de caractéres. Comment le pourrait-il ? Les différentes chaines
de caracteres sont simplement réunies en une seule. On dit aussi qu’elles
sont concaténées. Si maintenant, comme dans notre sketch, des valeurs
numériques font partie de la chaine de caracteres a afficher, elles doivent
étre préalablement converties en une string. Cest la fonction string qui
s’en charge, comme dans String(MIN).

Définir des caractéres personnels

Les caracteres standards pour I’affichage d’informations sont bien connus.
Toutefois, il est aussi possible de définir ses propres signes et symboles.
Souvenez-vous de la matrice composée de 5 x 8 pixels.

<« Figure 15-21
Matrice de pixels

Montage 15. Un afficheur alphanumérique 303

304

Figure 15-22 »
Matrice de pixels
pour les deux smileys

Supposons que vous vouliez afficher un smiley gai et un smiley triste. 1l
faudrait alors changer la matrice pour chaque icone. La figure 15-22 montre

la solution que je vous propose.

(LI][] obo000O
BBl BN obi1011
BBl BEHEobi1011
LI] oboo00OO
LM][] obo0100
B I][/M obi0001
[l] obo1110
LI] obooooo

[]oproooo00
[|l ob11011
[|l ob11011
[][]ovrooo00
B[]obo0100
CICIC]] obooooo
M] obo1110
B[[/I ob10o001

L]
[
LI
L]
LI

A droite des icones, vous pouvez voir les valeurs binaires : un 1 correspond
a un pixel visible. Le mode d’écriture avec le préfixe @b indique qu’il s’agit
d’un nombre binaire. Examinons le sketch commandant I'affichage des
deux smileys. Par manque de place, je vous épargne les lignes d’introduc-
tion consacrées a la définition des valeurs ou a I'instanciation de 'objet :

// Smiley joyeux
byte customChare[8] = {
0booooo,
ob11011,
0b11011,
0booooo,
0beo160,
ob100e1,
obe1110,
0booooe

¥

// Smiley triste
byte customChari[8] = {
oboooeo,
ob11011,
0b11011,
oboooeo,
0beo160,
0boooee,
obe1110,
ob10001

¥

void setup() {
lcd.createChar(@, customChare);
lcd.createChar(1, customCharl);
lcd.begin(COLS, ROWS);
lcd.write((byte)e);
led.write((byte)1);

Partie Il. Les montages

}
void loop() { /* vide */ }

Pour plus d’informations sur la génération d’'une matrice avec le code
correspondant, consultez le site Internet suivant :

https://omerk.github.io/lcdchargen/ Q

Les deux tableaux contiennent les informations relatives aux pixels des
deux smileys. La méthode createChar est utilisée pour la création des
nouvelles icones :

Nom de la méthode Index d'adressage Données

l
[| \ [\
(createChar (Index, Array) ;)

La ligne
lcd.createChar(@, customChare);

donne acces au tableau customChare avec I'index 0 dont nous aurons besoin
plus tard pour la méthode write. Pour plus d’informations, consultez la
page web :

https://www.arduino.cc/en/Reference/LiquidCrystalCreateChar e

La méthode write affiche un caractere :

Nom de Ia‘ méthode Index d'adressage
[I \
(write (Index) ;)

La ligne
lcd.write((byte)o);

nécessite quelques explications. Elle ne définit pas simplement la valeur
d’index du tableau de caracteres, mais elle est précédée d’un type de don-
nées entre parenthéses. Ce procédé appelé casting oblige presque la donnée
aprendre le type de données précisé. Elle peut donc étre considérée comme
appartenant au type de données byte, comme le veut la bibliotheque. Cela
ne me parait pas trés heureux, mais c’est ainsi et 'on n’y peut rien. Pour
plus d’informations, consultez le lien suivant :

https://www.arduino.cc/en/Reference/LiquidCrystalWrite Q

Montage 15. Un afficheur alphanumérique

305

Figure 15-23 »
Afficheur LCD a 4 lignes
(commande par bus I2C)

Un afficheur LCD multiligne

Si un afficheur a deux lignes vous parait insuffisant et si vous préférez une
commande plus conviviale, alors le module suivant vaut certainement que
vous vous y attardiez.

Bonjour utilisateur
d’Arduino !

Cet écran offre beaucoup
plus de possibilités

Sivous examinez cette photo attentivement, vous constatez que quatre fils
seulement sont raccordés a I’écran. Avant, il y en avait bien plus. Comment
cela se fait-il ? Manquerait-il quelque chose ?

Bien vu ! Lafficheur LCD que jutilise ici est commandé via le bus I*C. Nous
verrons bientot de quoi il s’agit précisément. Pour I'instant, sachez que deux
fils de commande suffisent. Les deux autres fils servent a I’alimentation
électrique et il est donc difficile de s’en passer. Si vous souhaitez trouver
plus d’informations sur ce module sur Internet, saisissez les critéres de
recherche suivants :

ywrobot arduino 1cm1602

Partie Il. Les montages

Le code du sketch permettant d’afficher le message illustré est relative-
ment simple :

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_12C lcd(ex27, 2, 1, @, 4, 5, 6, 7, 3, POSITIVE);

void setup() {
lcd.begin(20,4);
lcd.backlight();
lcd.setCursor(@,0); lcd.print("Bonjour !");
lcd.setCursor(@,1); lcd.print("Cet écran offre");
lcd.setCursor(@,2); lcd.print("beaucoup plus");
lcd.setCursor(@,3); lcd.print("de possibilités !");
3

void loop() { /* vide */ }

Les trois premieres lignes sont intéressantes :

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal _I2C lcd(ex27, 2, 1, @, 4, 5, 6, 7, 3, POSITIVE);

Elles incorporent la fonctionnalité d’utilisation du bus I*C et de la biblio-
théque I°C pour ’écran LCD. La derniére ligne contient divers paramétres,
comme les adresses de commande de Pafficheur. Vous en saurez plus
bientot.

Exercice complémentaire

Réfléchissez un peu a une serrure a code de sécurité, du type de celles
installées aux entrées des zones sensibles. Un code a plusieurs chiffres
doit étre saisi pour ouvrir la porte. On est bien entendu informé en cas de
saisie erronée que le code chiffré composé est trop bas ou trop élevé. Vous
pouvez par exemple brancher un servomoteur désengageant un péne du
systeme de fermeture en cas de code correct. 1l faut attendre un certain
temps, par exemple trois minutes, apres avoir tapé trois fois de suite un
code erroné. Créez un contrdle d’acces a votre chambre pour décourager
les colocataires ou proches trop curieux.

Montage 15. Un afficheur alphanumérique

307

308

Probléemes courants

Si, apres avoir raccordé le LCD et chargé le sketch, vous ne voyez rien a
écran, vérifiez les points suivants.

e Le cablage est-il correct ?
e Pas de court-circuit ?

e Le trimmer du contraste est-il correctement branché ? Augmentez
le cas échéant le contraste jusqu’a ce que vous puissiez voir quelque
chose a I’écran.

Qu’avez-vous appris ?

e Vous avez raccordé pour la premieére fois un élément d’affichage,
capable non seulement de clignoter comme une LED, mais aussi d’af-
ficher des nombres et du texte.

e La bibliothéque LiquidCrystal vous a permis de commander facile-
ment un LCD avec un controleur HDD44780.

e Vous avez ensuite clairement transposé le jeu des nombres a deviner.

e D’autres types de LCD vous ont été présentés pour vos expériences a
venir, de telle sorte que vos créations puissent étre sans limite.

e Je vous ai présenté un afficheur LCD dont la commande ne nécessite
que deux fils, ce qui est rendu possible par le bus I*C.

Partie Il. Les montages

Montage

Le moteur pas-a-pas 1 6

Si vous voulez obtenir un positionnement précis et répétés a I'aide d’un
moteur, alors les moteurs a courant continu ne sont pas adaptés. L’axe
tourne quand une tension est appliquée et cesse de tourner quand la
tension n’est plus appliquée. Une certaine inertie est presque inévitable.
D’autres moteurs sont mieux adaptés.

Encore plus de mouvement

Un servomoteur permet de transformer le courant électrique en mouve-
ment. Cependant, son rayon d’action demeure limité, méme si des modi-
fications peuvent étre entreprises pour combler ce manque. Mais il s’avére
suffisant pour la plupart des applications. Le moteur pas-a-pas s'impose
en revanche si une plus grande liberté d’action est nécessaire. Par souci
d’économie, vous pouvez essayer d’en récupérer un sur un vieil appareil
quelconque :

e imprimante ;

e scanner a plat;

lecteur de CD/DVD ;

e imprimante 3D ;

lecteur de disquette de 3,5 pouces.

Ces lecteurs possedent un petit moteur pas-a-pas, de type PL155-020 la
plupart du temps, qui entraine un petit chariot sur lequel se trouve la
téte d’écriture/lecture. La figure suivante montre une unité de ce genre
relativement bon marché.

309

310

Figure 16-1»
Moteur pas-a-pas 1208

de Pololu

Le moteur pas-a-pas dispose de 4 bornes, sur lesquelles nous allons revenir

en détail. Le schéma de raccordement d’un moteur pas-a-pas est illustré sur

la figure suivante. Attention aux repéres couleur des fils associés par paire.
® noir + vert
e rouge + bleu

Figure 16-2 Moteur pas-a-pas
Branchements du moteur A Pololu 1208
pas-a-pas Noir

C

Vert

B D

Rouge Bleu

Vu que ce moteur dispose de 4 bornes, il s’agit d’'un moteur pas-a-pas
bipolaire. Sa tension de fonctionnement est de 10 V avec 500 mA/bobine.
Vous trouverez de plus amples informations a 'adresse suivante :

Q https://www.pololu.com/product/1208

Pour mettre le moteur en marche, les bornes en question doivent recevoir
certaines impulsions dans un ordre chronologique bien déterminé.

Figure 16-3 » £ Bornes
Séquence de comrr]ande 8 é PAS A C B D
pour moteur pas-a-pas £ 0 HIGH | LOW | HIGH | LOW
1208 @5 1 LOW | HIGH | HIGH | LOwW
5 2 LOW | HIGH | LOW | HIGH
) 3 HIGH | LOW | LOW | HIGH

Quand on écrit un sketch pour traiter successivement les pas 1 a 4 et
envoyer les niveaux LOW ou HIGH correspondant au moteur pas-a-pas,
ce dernier tourne dans le sens horaire. Quand l'ordre des pas est inverseé,

Partie Il. Les montages

le sens est antihoraire. Il y a une chose importante que je n’ai pas encore
dite : on ne peut pas se contenter de raccorder le moteur pas-a-pas aux
sorties numeériques, car elles seraient alors tant sollicitées que la carte en
patirait. Aussi utilise-t-on ici un circuit de commande de moteur de type
L293 (voir figure 16-4).

L293
12EN[T}— [ig]Veet
1A[2] 15]4A
1Y|§§7«€E4Y
GND[4] [13|GND
GND[5] 12| GND
2Y[6] 11]3Y
QAE}‘ZSE 3A
Vee2[8] [9]3,4 EN

Les petits triangles sont le symbole du circuit driver nécessaire pour fournir
la puissance dont un moteur raccordé a besoin pour fonctionner. Les bornes
A du circuit intégré sont les entrées et celles Y sont les sorties. Chaque paire
de drivers a une borne de validation commune, libellée 1,2EN ou 3,4EN (EN
pour enable, ou permettre). Ce circuit de commande de moteur peut fournir
un courant de 600 mA par sortie. Les circuits de commande suivants sont
capables de délivrer un courant plus élevé :

e SN754410 (1 ampeére) ;
e 1298 (2 amperes).

Expliquons a présent le fonctionnement d'un moteur pas-a-pas. Il existe
différents types de moteurs pas-a-pas : unipolaires et bipolaires, ces der-
niers étant plus faciles a commander. Cest aussi pour cette raison que je
m’en sers dans ce montage. Un moteur bipolaire pas-a-pas possede deux
bobines dont les quatre raccordements sortent du boitier. Un moteur uni-
polaire pas-a-pas est construit sur le méme modele, a la différence que
chaque bobine posséde en son milieu un raccordement qui sort du boitier.
Un changement de direction du mouvement est obtenu en inversant les
poles du champ magnétique c’est-a-dire du sens du courant. Sur la figure
suivante, vous pouvez voir les deux bobines avec les fils de raccordement
A/C et B/D, qui bougent en fonction de la polarité du rotor au milieu :

Montage 16. Le moteur pas-a-pas

<« Figure 16-4
Commande de moteur
de type L293

3N

Figure 16-5 »
Schéma du moteur
pas-a-pas bipolaire

Figure 16-6 >
Symbole du moteur pas-a-
pas bipolaire

Tableau 16-1 »
Liste des composants

Le symbole du moteur pas-a-pas bipolaire est le suivant :

Vous trouverez de plus amples informations a 'adresse suivante :

https://fr.wikipedia.org/wiki/Moteur_pas_a_pas

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant

1 moteur pas-a-pas bipolaire, par ex.
Pololu 1208

1 circuit de commande de moteur
L293DNE

1 clip pour pile de 9 V

312

Partie Il. Les montages

Schema

Sur le schéma, vous pouvez voir le circuit de commande L293DNE du
moteur pas-a-pas raccordé a une source de tension externe fournie par
une pile de 9 V.

<« Figure 16-7
Tension d'alimentation externe Schéma de commande
Hopar ver| ey du moteur pas-a-pas
Input2 1,2EN o

10 Input3 3,4EN il ET:Ej
15 Inputd. Vee2 L

3 Outputt GND 4

5 Outputz GND 5

W outputs onp |2
W uputs ono >

L293DNE
A

Moteur pas-a-|
pas bipolaire
Pololu 1208
C
B D

Ligne de masse commune

Notez que la masse de la source de tension externe doit étre raccordée a
la masse de la carte Arduino.

ATTENTION AU RACCORDEMENT DU POLE + !

Le pole +de la carte Arduino ne doit jamais étre raccordé a la source de tension
externe. Cela détruirait votre carte Arduino ou le port USB de votre ordinateur!

Realisation du circuit

J’ai réalisé le circuit avec un Proto Shield, car tout tient a merveille sur

cette mini-plaque d’essais :

B <« Figure 16-8
Réalisation du circuit

de commande du moteur
pas-a-pas

Montage 16. Le moteur pas-a-pas

314

Pas de panique si vous ne trouvez pas de Pololu 1208 ! Vous pouvez en fait
prendre pratiquement n’importe quel moteur pas-a-pas bipolaire. Il vous
suffit de trouver la fiche technique correspondante sur Internet pour en
connaitre les spécifications. Attention cependant au courant consommé
par le moteur pas-a-pas en service ; comparez-le a celui pour le circuit de
commande de moteur utilisé ici. Il ne doit en aucun cas dépasser 600 mA
par borne. Faute de quoi, vous devez prendre soit un autre moteur pas-a-
pas, soit un autre circuit de commande.

Si vous regardez le schéma, vous pouvez remarquer que la source de ten-
sion externe, d’apres les données du moteur pas-a-pas, doit étre de 5 V.
Mais vous pouvez utiliser une pile de 9 V, comme moi, car cela fonctionne
parfaitement. En cas d’utilisation prolongée, utilisez de préférence un bloc
secteur. Nous en arrivons a la programmation du sketch. Que dois-je ajouter
? Il existe une bibliothéque pour cet élément. Alors, pourquoi réinventer
la roue ? La bibliothéque est tres bien fournie, car elle permet de com-
mander différents modeles de moteurs pas-a-pas. Plusieurs possibilités
s’offrent a nous :

e variation de la cadence ;
e saisie du déplacement ;

e les valeurs positives correspondent a une rotation vers la droite, tan-
dis que les valeurs négatives produisent une rotation vers la gauche.

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Revue de code

Le sketch exploite les possibilités mentionnées, c’est-a-dire le réglage de
la cadence, du déplacement et du sens de rotation :

#include <Stepper.h>

#define NOIR 2

#define VERT 3

#define ROUGE 4

#define BLEU 5

#define SPEED 100 // 100 tr/min

const int stepsPerRevolution = 200; // Pas par tour

Stepper myStepper(stepsPerRevolution, BLEU, ROUGE, VERT, NOIR);

void setup() {
myStepper.setSpeed(SPEED); // Réglage de la vitesse
}

Partie Il. Les montages

void loop() {
myStepper.step(stepsPerRevolution);
delay(500); // Courte pause
myStepper. step(-stepsPerRevolution);
delay(500); // Courte pause

}

Examinons la signification de ce sketch.

La bibliothéque Stepper est liée au sketch a I'aide de I'instruction include:

#include <Stepper.h>

Cela vous permet d’appeler diverses méthodes ou d’effectuer des confi-
gurations fondamentales dans le constructeur (nombre de pas par tour et
brochages) qui ne sont plus modifiées dans le sketch. Lobjet Stepper est
créé par I'instanciation de la classe dans la ligne :

Stepper myStepper(stepsPerRevolution, BLEU, ROUGE, VERT, NOIR);

Le constructeur posséde ici cinq parametres qui doivent étre communiqués
dans Pordre indiqué. Nous en arrivons a la premiére méthode qui définit
la vitesse du moteur pas-a-pas. Nous utilisons setSpeed :

myStepper . setSpeed(SPEED) ;

La ligne

myStepper.step(stepsPerRevolution);

met le moteur en marche par I’activation de la méthode step. Linversion
du signe de 'argument transmis permet d’inverser le sens de rotation. Une
courte pause doit étre marquée lors du changement de sens. La biblio-
théque stepper est programmeée de facon a pouvoir étre utilisée avec des
moteurs pas-a-pas ayant différents nombres de broches. Nous avons déja
vu ensemble les bases de la programmation orientée objet et la signification
d’une surcharge. Voici un extrait du fichier Stepper.h :

class Stepper {
public:

// constructors:

Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2);

Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2,
= int motor_pin_3, int motor_pin_4);

Stepper(int number_of_steps, int motor_pin_1, int motor_pin_2,
= int motor_pin_3, int motor_pin_4,
= int motor_pin_5);

/] ...

Montage 16. Le moteur pas-a-pas

315

316

Figure 16-9 »>
Shield pour moteur

Vous pouvez voir ici trois constructeurs qui portent tous le méme nom,
mais qui se différencient par leur signature, c’est-a-dire leur nombre de
parameétres. Ainsi, lors de 'instanciation, le compilateur saura précisément
combien votre moteur pas-a-pas posséde de broches (2, 4 ou 5).

Construire un shield pour moteur

Vous pouvez évidemment acheter un shield pour moteur prét a P'emploi
pour commander des moteurs a courant continu ou pas-a-pas, mais j’ai
décidé d’en construire un moi-méme, comme celui illustré sur la figure
suivante.

Quelques composants suffisent pour réaliser ce type de montage.

Commande de servomoteurs

Si vous souhaitez commander des servomoteurs avec la bibliotheque
Stepper, jetez un ceil a la bibliothéque suivante que vous trouverez a 'em-
placement indiqué ci-dessous :

C:\Program Files (x86)\Arduino\libraries\Stepper\src

Partie Il. Les montages

Vous y trouverez le fichier d’en-téte, ainsi que le fichier cpp :

Nom Date de modification Type Taille
*+ Stepper 22.11.2016 16:05 C++ Source 12KB
[®) Stepper 22.11.2016 16:05 C/C++ Header 5KB

Programmation d’un sketch personnalisé

Si vous souhaitez savoir comment programmer vous-méme ce type de
commande, alors examinez le code suivant. J’expliquerai le sketch direc-
tement dans la foulée. Les broches ont été définies a I'aide de I'instruction
define et la séquence de commande correspond a celle présentée dans le
tableau de la figure 16-3.

#define Stepper_A1 5 // Broche pour connexion Al
#define Stepper_A3 4 // Broche pour connexion A3
#define Stepper_B1 3 // Broche pour connexion Bl
#define Stepper_B3 2 // Broche pour connexion B3
byte stepValues[5][4] = {{Low, Low, LOW, LOW}, // Moteur a 1'arrét
{HIGH, LOW, HIGH, LOW}, // Pas 1
{LOW, HIGH, HIGH, LOW}, // Pas 2
{LOW, HIGH, LOW, HIGH}, // Pas 3
{HIGH, LOW, LOW, HIGH}}; // Pas 4

La fonction setup programme les broches numériques comme sorties et
active la fonction action qui posséde quant a elle deux parametres qui
sont chargés de définir le nombre de pas, puis d’aménager une pause. La
boucle for permet de faire tourner le moteur pas-a-pas vers la gauche et
vers la droite, puis de le mettre hors courant.

void setup() {

pinMode(Stepper_A1, OUTPUT);

pinMode(Stepper_A3, OUTPUT);

pinMode(Stepper_B1, OUTPUT);

pinMode(Stepper_B3, OUTPUT);

for(int i = 09; i <10; i++){
action(30, 2); // 30 pas vers la droite avec pause de 2 ms
action(-30, 10); // 30 pas vers la gauche avec pause de 10 ms

}

action(@, ©); // Mise hors courant

}

La fonction loop reste ici sans effet puisque la commande s’effectue exclu-
sivement dans la fonction setup.

void loop(){ /* vide*/ }

Montage 16. Le moteur pas-a-pas

317

318

Venons-en maintenant a la fonction action. Elle active les différentes étapes
de la séquence de commande qui activent a leur tour la fonction moveStep-
per dans laquelle les valeurs du tableau sont précisées. Le sens de rotation
du moteur pas-a-pas est défini par le signe de la variable count. La séquence
de commande est activée une fois vers I'avant et une fois vers I'arriére :

void action(int count, byte delayValue){

}

if(count > @) // Rotation vers la droite
for(int i = @; i < count; i++)
for(int sequenceStep = 1; sequenceStep <= 4; sequenceStep++)
moveStepper (sequenceStep, delayValue);
if(count < @) // Rotation vers la gauche
for(int i = @; i < abs(count); i++)
for(int sequenceStep = 4; sequenceStep > @; sequenceStep--)
moveStepper (sequenceStep, delayValue);
if(count == @) // Mise hors courant
moveStepper (0, delayvalue);

void moveStepper(byte s, byte delayvalue){

}

digitalWrite(Stepper_A1, stepvValues[s][@]);
digitalWrite(Stepper_A3, stepValues[s][1]);
digitalWrite(Stepper_B1, stepValues[s][2]);
digitalWrite(Stepper_B3, stepValues[s][3]);
delay(delayValue); // Pause

Ce n’est évidemment que 'une des possibilités et il existe une multitude
de variantes.

Problémes courants

Si le moteur pas-a-pas ne bouge pas ou ne fait que bourdonner ou vibrer,
vérifiez :

que le cablage est correct ;
qu’il n’y a pas de court-circuit ;

que le moteur pas-a-pas ne change pas de position ou qu’il ne bour-
donne pas ou ne vibre pas en début de sketch. Si tel estle cas, il ya de
fortes chances pour que vous ayez interverti les quatre branchements ;

que la connexion de masse commune est bien établie entre la carte
Arduino et la source de tension externe ;

que vous n’ayez pas raccordé ensemble les deux poles de tension
d’alimentation de la carte et de la source de tension externe, qui sont
marqués d’un +. Sinon, destruction de la carte Arduino assurée !

Partie Il. Les montages

Qu’avez-vous appris ?

e Vous avez découvert comment commander un moteur pas-a-pas
bipolaire.

e la commande a été réalisée au moyen du circuit de commande du
moteur L293DNE.

e Vous avez vu comment programmer vous-méme une commande de
moteur pas-a-pas.

Montage 16. Le moteur pas-a-pas

319

Montage

Commande 1 7
d’un ventilateur

Dans le montage n°13, vous avez appris a utiliser une thermistance afin
d’afficher la valeur mesurée. Dans ce montage, nous verrons comment
la fluctuation de la température va déclencher une réaction qui sera non
seulement visible, mais aussi perceptible.

Un peu de pratique

Il est temps maintenant de construire quelque chose de bien avec le capteur
de température. Que diriez-vous d’ajouter directement plusieurs com-
posants au circuit ? Je pense qu’un ventilateur pour améliorer le climat
ambiant et un afficheur pour donner les informations utiles seraient des
projets intéressants. Le circuit et le sketch doivent étre en mesure de mettre
en route un moteur de ventilateur quand une certaine température est
atteinte et de I'arréter quand elle ne I’est plus. Nous touchons ici a I'art et
la maniére de commander un moteur.

Comme un moteur a assurément besoin de plus de courant et de ten-
sion pour fonctionner que la carte Arduino ne peut en fournir, il nous
faut trouver autre chose. Cette fois-ci, nous n’utiliserons pas de circuit de
commande de moteur. En effet, cette situation de commande d’un seul
moteur étant légerement différente, nous explorerons une autre voie. Je
vous exposerai une mesure de sécurité incontournable dans le cadre de
la commande d’un composant qui posséde une bobine. C’est notamment
le cas du moteur ou du relais. Le circuit de commande 1293 se termine
par les lettres DNE, ce qui signifie que le composant possede un circuit de
protection qui bloque I'inductance, c’est-a-dire les courants induits tres
forts lors de la commutation des bobines. Nous y reviendrons bientot.

321

322

Tableau 17-1 »
Liste des composants

Voyons tout d’abord les composants nécessaires pour ce montage.

Composants nécessaires

Ce montage nécessite les composants suivants.

1 ventilateur de 12V

1 transistor de puissance TIP 120

1 thermistance LM35

1 diode 1N4004 -

marron/noir/orange

2 résistances de 10K
10 kQ

marron/noir/rouge

1 résistance de 1K

1 module afficheur LCD YwRobot 2C

>

Avant de nous intéresser au circuit de commande, nous allons nous attarder

sur la problématique évoquée plus haut.

Schéma d’un circuit de commande
de moteur

Dans le circuit suivant, un moteur est commandé au moyen d’un transistor
Darlington.

Partie Il. Les montages

Commande

M

1N4004
N
A
Ligne de masse
commune

Alimentation externe
du moteur

O + Batt
O -Batt

TiF120

Diode de roue libre

vers Arduino R
-

Alimentation externe du moteur

Le transistor qui est utilisé ici est un peu particulier. J’ai déja mentionné
quil s’agit d’un transistor Darlington - ici de type TIP 120. Il se compose
effectivement de deux transistors qui sont montés I'un a la suite de I'autre
et qui ont donc pour effet de produire une plus forte amplification en
courant. Par conséquent, il sera utilisé en présence d’une charge élevée
lorsque la tension de commande ne doit pas étre sollicitée. La figure 17-2
représente le schéma de connexion d’un transistor de type NPN.

? Collecteur

SD1

O Emetteur

Revenons-en au circuit de commande du moteur qui, parallelement a ses
raccordements, possede une diode de roue libre. A quoi cela sert-il ? Pour
qu’un moteur puisse tourner, il doit notamment comporter une bobine,
ou inductance, qui crée un champ magnétique. Cette inductance est dotée
d’une propriété spéciale qui fait qu’elle s’efforce de corriger une modifica-
tion voulue. Quand une tension est appliquée, un courant circule plutot a
contresens a l'intérieur du tres long fil enroulé de la bobine, ce qui crée un

<« Figure 17-1

Circuit de commande

d'un moteur avec une diode
de roue libre

<« Figure 17-2
Schéma de connexion
d'un transistor de type NPN

323

Montage 17. Commande d'un ventilateur

324

[R1 |
_+— Niveau haut
oV

champ magnétique. Ce dernier a non seulement pour effet de faire tourner
I’axe du moteur, mais il induit a son tour une tension a l'intérieur de la
bobine. Ce processus est appelé auto-induction. La bobine se rebelle en
quelque sorte, car la tension induite est orientée de maniere a sopposer
au courant qui I’a provoquée, ce qui fait que la tension ne s’accumule que
lentement dans la bobine. Si par contre je coupe a nouveau le courant,
la variation rapide du champ magnétique génere une tension induite qui
s’oppose a la baisse de tension et s’avére plusieurs fois plus élevée que la
tension initiale. La bobine est donc condamnée a juguler I'afflux de cou-
rant en se servant de I’énergie emmagasinée dans le champ magnétique.

Cest la tout le probléme. La commutation avec le léger retard ne constitue
pas un risque pour le circuit et ses composants. Lors de I’arrét en revanche,
Ieffet secondaire extrémement néfaste de la pointe de tension excessive
(> 100 V) doit étre impérativement évité pour que le circuit ne grille pas.
Faute de quoi, les chances de survie du transistor sont réellement minces.
Aussi une diode est-elle connectée en paralléle au moteur pour écréter la
pointe de tension et dériver le courant vers la source. La figure suivante
illustre les deux scénarios possibles.

o +12V 0 +12V

Sens passant
N
A1
o

Sens non passant
N

Figure 17-3 A
Diode de roue libre en
action

1K ,
T o -R1 T
‘ Le transistor

Le transistor Niveau haut i
est débloqué. oV est bloqué.

~ 7
GND GND

Quand le transistor a gauche est débloqué, le moteur démarre, de sorte que
les potentiels indiqués se mettent en place au niveau de la diode : le plus
a la cathode et le moins a 'anode. Autrement dit, la diode est bloquée et
le circuit se comporte comme si elle n’était pas la. Si par contre la base du
transistor est reliée a la masse, celui-ci se bloque et les potentiels indiqués
apparaissent du fait de la variation du champ magnétique de la bobine :
le plus a 'anode et le moins a la cathode. La diode travaille dans le sens
de la conduction et dérive le courant vers I’alimentation. Le transistor est
préservé. Maintenant que vous savez tout cela, nous allons pouvoir nous
intéresser a notre circuit.

Partie Il. Les montages

La diode est donc un composant qui est capable d’influencer le sens de cir-
culation du courant. Cest un composant concu a base de semi-conducteurs
(silicium ou germanium). Elle a la propriété de ne laisser passer le courant
que dans un seul sens (sens passant). Dans le sens inverse, le courant
qui circule a travers une diode est pratiquement nul. Ce comportement
électrique fait penser a une soupape de chambre a air : I’air de la pompe
entre, mais aucun air ne ressort.

<« Figure 17-4
Electrons traversant la
diode dans le sens passant

On voit que les électrons n'ont aucun mal a traverser la diode. Le clapet
interne s’ouvre et les électrons circulent sans probléme. Les suivants n’au-
ront pas cette chance...

<« Figure 17-5

Electrons tentant de travers
la diode dans le sens

non passant

Le clapet ne s’ouvre pas dans le sens souhaité, et on se bouscule au check-
point (ou point de controle), car rien ne bouge.

La forme et la couleur des diodes sont des plus variées. Voici deux exemples.

—
-

Montage 17. Commande d'un ventilateur 325

Figure 17-6 »

Symboles de la diode,
version en contour a gauche
et version pleine a droite

Figure 17-7 »>

Circuit pour commander
une diode au moyen

d'un générateur de signaux
sinusoidaux

326

Le sens dans lequel la diode est passante a une énorme importance, et la
présence d’un marquage sur le corps du composant est indispensable. 11
ne s’agit pas cette fois-ci d’un code couleur, mais d’un trait plus ou moins
épais avec une inscription dessus. Les deux polarités de la diode portent
également des noms différents :

e Panode;
e la cathode.

Une diode au silicium est polarisée dans le sens passant quand la différence
de tension entre I’anode et la cathode est supérieure a environ +0,7 V.

oM

Mais ou se situe ’anode par rapport a la cathode ? Voila le moyen
mnémotechnique que j’ai trouvé pour m’en souvenir : le mot « cathode »
commence en allemand par la lettre K (Kathode), qui possede un trait
vertical sur la gauche. On retrouve ce trait vertical sur le symbole de la
diode, a droite, ou figure donc la cathode. Physiquement, cette derniére
se repere par 'anneau inscrit directement sur le corps de la diode.

N
Anode 1 Cathode

Facile a se rappeler, non ? Voyons maintenant un peu comment fonctionne
la diode dans un circuit. J'utilise a 'entrée de cette derniére non pas un
signal rectangulaire, mais un signal sinusoidal, présentant aussi bien des
valeurs de tension positives que négatives. Le circuit doit vous étre familier
maintenant.

DIODE
InN |
1

G Générateur |:
de signaux
N sinusoidaux

éPoint

Partie Il. Les montages

Lentrée de la diode, c’est-a-dire 'anode, est raccordée a la sortie du généra-
teur de signaux sinusoidaux. Ce point est représenté par une courbe rouge
dans l'oscillogramme. La sortie, C’est-a-dire la cathode, est représentée par
la courbe bleue. Le signal d’entrée rouge forme une belle courbe sinusoi-
dale. La diode au silicium ne laissant cependant passer que des signaux
positifs > +0,7 V bloque les signaux négatifs. La courbe de sortie (en bleu)
ne représente que I’alternance positive de la sinusoide. Lorsque la tension
a lentrée est négative, la tension de sortie est nulle (diode bloquée).

Avant d’en finir avec la diode, jetons un coup d’ceil sur la caractéristique
tension-courant. Cette courbe montre a partir de quelle tension d’entrée
le courant se met a traverser la diode, et la diode a étre conductrice. On
ne détecte la présence d’un courant de conduction qu’a partir de +0,5 V
environ, et qui augmente tres rapidement a partir de +0,7 V.

<« Figure 17-8
Courbe caractéristique
tension-courant d'une diode
au silicium
Les deux circuits tres simples ci-aprés montrent le mode de fonctionnement
décrit a I'instant pour une vanne électronique. Ils se composent de deux
diodes et de deux lampes alimentées par une pile.
Y - - <« Figure 17-9
B =
(-D £ | B £ £ Sens passant et non
! a §. a % passant de diodes dans
5 MD1 D25 cMP' ¥P23 deuxcircuits
® g g O < & alampes
== 3 5
e @
L1 L2 L1 L2
o
|

[
\i
4

Montage 17. Commande d'un ventilateur 327

328

Figure 17-10 »
Circuit de commande
du ventilateur

Circuit de gauche

Le pole positif de la pile est relié a 'anode de la diode D2, qui est polarisée
dans le sens passant et laisse passer le courant. La lampe L2 s’allume. La
diode D1 est bloquée, car sa cathode est reliée au podle positif de la pile.
La lampe L1 reste éteinte.

Circuit de droite

La polarité de la pile est permutée et le pole positif se trouve en bas ; les
rapports de polarité sont inversés. Le pole positif de la pile est appliqué a
'anode de la diode D1 et la lampe L1 s’allume. La diode D2 est bloquée, car
le pdle positif se trouve connecté a sa cathode. La lampe L2 reste éteinte.

Vous vous demandez peut-étre maintenant a quoi servent de tels compo-
sants. Les domaines d’application sont multiples. En voici quelques-uns :

e redressement de courant alternatif ;
e stabilisation de tension ;

e diode de roue libre (protection contre la surtension aux bornes d’une
inductance lors de I’arrét, par exemple d’un moteur), comme dans
ce montage ;

Il existe de nombreux types de diodes, par exemple des Zener ou a effet tun-
nel. Nous ne pouvons toutes les énumérer ici et expliquer leurs différences.
Je vous renvoie par conséquent a la littérature spécialisée ou a Internet.

Schema d’un circuit de commande
du ventilateur

Nous avons a gauche le LCD I*C avec les résistances pull-up de 10K, au centre
notre Arduino et a droite le capteur de température LM35. Complétement
a droite se trouve la commande du moteur avec le transistor TIP 120 et la
diode de roue libre IN4004.

=
1N4004
InN|
L1
Diode roue libre

Module YwRobot ’C

R1 R2
10K| |10K TIP120

Masse commune

Partie Il. Les montages

Pour éviter toute confusion, voici le brochage de la thermistance LM35,
ainsi que celui du transistor Darlington TIP 120 :

LM35 TIP120 < Figure 17-11
7 Brochage de la

thermistance LM35 et du
transistor Darlington TIP
120

Ma

+5V Masse
Sortie

Realisation du circuit

La réalisation du circuit est rapide sur une petite plaque d’essais.

<« Figure 17-12
Réalisation compléte du
circuit de commande du
ventilateur

Alimentation externe

(apteur de température LM35

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Montage 17. Commande d'un ventilateur 329

Revue de code

#include <Wire.h>

#include <LiquidCrystal I2C.h>

#define sensorPin @ // Connexion de la sortie du LM35

#define DELAY1 10 // Bref temps d'attente lors de la mesure

#define DELAY2 500 // Bref temps d'attente lors de 1'affichage

#define motorPin 9 // Broche de commande du ventilateur

#define threshold 25 // Température de commutation du ventilateur
// (25 degrés Celsius)

#define hysterese 8.5 // Valeur d'hystérésis (8,5 degré Celsius)

const int cycles = 20; // Nombre de mesures

// Adresse I2C sur 0x27

Liquidcrystal_T2C lcd(ex27, 2, 1, @, 4, 5, 6, 7, 3, POSITIVE);

void setup() {
pinMode(motorPin, OUTPUT);
lcd.begin(20,4); // Initialisation du LCD
lcd.backlight(); // Activation du rétroéclairage
}

void loop() {
float resultTemp = ©.0;
for(int i = @; i < cycles; i++) {
int analogValue = analogRead(sensorPin);
float temperature = (5.8 * 100.0 * analogValue) / 1024;
resultTemp += temperature; // Addition des valeurs mesurées

delay(DELAYl) ;
}
resultTemp /= cycles; // Calcul de 1la moyenne
lcd.cleax(); // Effacer écran LCD
lcd.setCursor(e,0); // Positionnement curseur sur 1re ligne
lcd. print("**Commande ventilo**");
lcd.setCursor(0,1); // Positionnement curseur sur 2e ligne

lcd.print("Temperature : ");
lcd.print(resultTemp);

lcd.write(exDo + 15); // Caractere degré (Arduino 1.00)
lcd.print(“C");
lcd.setCursor(e,2); // Positionnement curseur sur 3e ligne

lcd.print(“Moteur : ");

if(resultTemp > (threshold + hysterese))
digitalWrite(motorPin, HIGH);

else if(resultTemp < (threshold - hysterese))
digitalWrite(motorPin, LOW);

lcd. print(digitalRead(motorPin) == HIGH?"en marche":"stop");

delay(DELAY2);

Partie Il. Les montages

La détermination de la température est effectuée de la méme maniére et
se trouve étre la méme que dans le montage n°13. Vous pouvez y lire sans
probleme la température et I’état du moteur :

Temr, & 25,85°C

Motewr : en marche

Imaginez la situation suivante : le ventilateur doit, tout comme dans notre
exemple, se mettre en marche a 25 °C et apporter un peu d’air frais a
ceux qui transpirent sur leur Arduino. La température ambiante n’étant
cependant pas constante a 100 %, le capteur est lui aussi soumis a certaines
fluctuations. Un état est donc par exemple atteint, dans lequel la tempéra-
ture mesurée varie constamment entre 24,8 et 25,2 °C. Autrement dit, le
ventilateur n’arréte pas de s’allumer et de s’éteindre. Plutot énervant a la
longue ! Voyons maintenant la figure suivante de plus pres.

Ted
25 _/ G N -
24 - - _ _
En Alarrét En Alarrét| En Alarrét En Etat du
arche marche marche marche moteur
O = Points de commutation t

Ceest la que Phystérésis (le mot vient du grec et signifie retard) entre en jeu.
On peut expliquer ainsi le comportement d’une régulation avec hystérésis :
la variable de sortie, qui commande ici le moteur, ne dépend pas seulement
de la variable d’entrée délivrée par le capteur. ’état de la variable de sortie,
qui régnait auparavant, joue aussi un réle important. Dans notre exemple,
nous avons une valeur-seuil de 25 °C et une hystérésis de 0,5 °C. Voyons
maintenant de plus pres la régulation du ventilateur :

if(resultTemp > (threshold + hysterese))
digitalWrite(motorPin, HIGH);

else if(resultTemp < (threshold - hysterese))
digitalWrite(motorPin, LOW);

<« Figure 17-13

En cas de température
fluctuant autour de la
valeur de consigne,
['état du moteur change
constamment.

Montage 17. Commande d'un ventilateur

Figure 17-14 »

En cas de fluctuation

de la température autour
de la valeur de consigne,

[‘état du moteur ne change

332

pas constamment.

Quand le ventilateur se met-il en marche ?

Si la condition :

resultTemp > (threshold + hysterese) ...

est remplie, le ventilateur commence a tourner. Cest le cas ici quand la
température mesurée est supérieure a 25 + 0,5 °C.

Quand le ventilateur s’arréte-t-il ?

Si la condition :

resultTemp < (threshold - hysterese)
est remplie, le ventilateur s’arréte de tourner, ici en 'occurrence quand la
température est inférieure a 25 - 0,5 °C. Pour résumer :

e le ventilateur est en marche si : température > 25,5 °C;

e le ventilateur est a I’arrét si : température < 24,5 °C.

Voyons maintenant la figure suivante de plus pres.
Tred

55 VAN SN
2 \@\/ \e_/

24 - -
En Alarrét En Alarrét n Ftat du
h h h
marche marche marche o oteur
O = Points de commutation f. ' 1‘2 t

Si vous regardez la courbe entre les points ¢, et t,, vous verrez que la
température passe constamment au-dessus et en dessous des 25 °C. Sans
commande avec hystérésis, nous aurions sans cesse moteur en marche et
moteur a Iarrét.

Exercice complémentaire

Il existe bien entendu beaucoup d’autres capteurs de température. En
voici une sélection :

e TMP75 (avec bus I°C) ;

e AD22100 (capteur de température analogique) ;

Partie Il. Les montages

e DHTII (capteur de température et humidité avec microcontréleur
8 bits intégré) ;

e DS1820 (capteur de température numérique 1-Wire).

Essayez de construire un circuit avec ces capteurs, sans oublier d’adapter
le sketch en conséquence. Lafficheur a 4 lignes pourrait aussi trés bien
servir a montrer ’humidité ambiante, par exemple. Ainsi, vous réaliserez
une petite station météo.

Problemes courants

Si le ventilateur ne se met pas en marche alors que la température-seuil
plus la valeur d’hystérésis est atteinte, éteignez tout et vérifiez ce qui suit.

o Le cablage est-il correct ?
e Pas de court-circuit éventuel ?

e Lamasse commune ala carte Arduino et a la source de tension externe
est-elle bien établie ?

La diode de roue libre est-elle montée dans le bon sens ?

e Si on ne voit rien sur le LCD, le contraste n’est-il pas trop faible ?

Qu’avez-vous appris ?

e Vous avez notamment appris pourquoi une diode de roue libre est
indispensable en cas de commande d’une bobine.

e Vous avez appris a utiliser un affichage YwRobot commandé via le
bus I°C pour présenter la valeur de température. Vous pouvez aussi
utiliser un autre modele d’écran LCD qui est commandé par le bus
I2C et pris en charge par Arduino. Vous trouverez des informations
plus précises sur Internet. N'oubliez pas de vérifier que I’adresse 12C
du module est correcte.

e Pour que le ventilateur fonctionne correctement, vous avez di recourir
aune alimentation externe, elle-méme connectée au transistor de puis-
sance TIP 120. Nous en avons profité pour étudier le fonctionnement
du transistor Darlington et vous en présenter le role.

e Vous avez appris comment une diode IN4004 sert, en tant que diode
de roue libre, a protéger votre carte Arduino.

Montage 17. Commande d'un ventilateur

333

Faire de la musique
avec Arduino

Comme le titre de ce montage le laisse deviner, il s’agit ici de son, et plus
précisément de création de sons. Vous allez connecter un élément piézoé-
lectrique a votre carte Arduino afin de produire des sons. Nous en profite-
rons également pour vous présenter un jeu qui stimulera vos cellules grises.

Y apas leson?

A la longue, vous en avez peut-étre assez des signaux lumineux et autres
LED clignotantes. Aussi allons-nous voir a présent comment votre carte
Arduino peut émettre des sons au moyen d’un élément piézoélectrique.

Vous ne risquez pas les ondes de choc acoustiques avec un piézo, car les
vibrations émises couvrent un espace des plus réduits. Il est cependant
parfait pour ce que nous allons faire. Sa forme est assez bizarre et on a
du mal a croire que ce composant puisse faire du bruit. Il renferme un
cristal qui se met a vibrer quand une tension alternative lui est appliquée.
Cet effet appelé piézoélectrique se produit quand des forces (pression ou
déformation) sont exercées sur certains matériaux ;

Montage

18

<« Figure 18-1
Disque piézo

335

Figure 18-2 >
Symbole du buzzer
piézoélectrique

Tableau 18-1 »
Liste des composants

une tension électrique est alors mesurable. Le buzzer piézoélectrique
agit de facon inverse : quand une tension alternative est appliquée, une
déformation réguliére, percue comme une vibration, se produit et met
en mouvement les molécules d’air, ce qui est percu comme un son. Pour
qu’il soit plus fort, le mieux est de coller le buzzer piézoélectrique sur un
support vibrant, de sorte que les vibrations émises soient transmises et
amplifiées. Voici comment peut étre représenté un buzzer piézoélectrique :

1

Si on branche, par exemple, I'élément sur une sortie numérique et si on
passe a intervalles réguliers la sortie en niveau HIGH ou LOW, on entend un
craquement dans I’élément piézoélectrique. Plus le laps de temps entre
niveaux HIGH et LOW est court, plus le son audible est aigu ; plus le laps de
temps est long, plus le son est grave. Le phénomene est le méme quand,
par exemple, vous passez vos doigts plus ou moins vite sur une grille a
lamelles. Plus vous allez vite, plus le bruit est aigu ; le piézo fonctionne
sur ce principe. Un craquement répété, tantot plus lent, tantot plus rapide,
influe sur la fréquence du son.

Composant nécessaire

La premiére partie de ce montage nécessite le composant suivant. Par la
suite, nous aurons besoin d’autres composants que nous vous préciserons
le moment venu.

Elément piézoélectrique

Schema

Le schéma est treés simple, car I’élément piézoélectrique doit étre raccordé
a une broche numérique et a la masse de la carte Arduino, sans I'aide de
composants supplémentaires. Je n’en inclus donc pas ici.

Partie Il. Les montages

Realisation du circuit

Le circuit est aussi tres simple puisque je me suis contenté de raccorder
I’élément piézoélectrique par des fils aux broches adéquates.

Maintenant que nous avons élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Revue de code

Le sketch suivant active et désactive la broche numeérique a laquelle ’é1¢é-
ment piézoélectrique est connecté. Une pause est ménagée entre ces deux
actions.

#define piezoPin 13 // Elément piézoélectrique sur broche 13
#define DELAY 1000 // Valeur de la pause

void setup() {
pinMode(piezoPin, OUTPUT);
}

void loop() {
digitalWrite(piezoPin, HIGH); delayMicroseconds(DELAY);
digitalWrite(piezoPin, LOW); delayMicroseconds(DELAY);
}

<« Figure 18-3
Réalisation du circuit

de commande de [‘élément
piézoélectrique

Montage 18. Faire de la musique avec Arduino

337

338

Ne vous inquiétez pas pour la fonction delayMicroseconds. Son action est
la méme que celle de la fonction delay, a ceci pres que la valeur trans-
mise n’est pas interprétée en millisecondes, mais en microsecondes ; la
microseconde est 1 000 fois plus petite (1 ms =1000 ps). Cette nouvelle
fonction est utilisée, car delay ne permet pas de descendre en dessous
de 1 ms. Pour le premier sketch qui doit étre capable d’émettre plusieurs
sons a des fréquences différentes, mieux vaut créer un tableau des sons
avec différentes valeurs que nous appellerons 'une apres I’autre pendant
le sketch. On utilise pour ce faire la fonction tone (sons) mise a disposition
par Arduino.

#define piezoPin 13 // Elément piézoélectrique sur broche 13
#define toneDuration 500 // Durée du son

#define tonePause 800 // Longueur de la pause entre les sons
int tones[] = {523, 659, 587, 698, 659, 784, 698, 880};

int elements = sizeof(tones) / sizeof(tones[@]);

void setup() {
noTone(piezoPin); // Rendre le piézo muet
for(int i = @; i < elements; i++) {
tone(piezoPin, tones[i], toneDuration); // Exécuter le son
delay(tonePause); // Pause entre les sons
3
}

void loop(){ /* vide*/ }

Le tableau unidimensionnel tones est du type de donnée int et contient les
fréquences en hertz des sons a exécuter. Les hertz (Hz) servent a mesurer
le nombre de vibrations par seconde. Plus la valeur est élevée, plus le son
est aigu, et vice versa. Le nombre d’éléments du tableau est affecté a la
variable elements ; il servira plus tard dans la boucle for pour traiter tous
les éléments. Le réglage manuel de la limite supérieure ou de la condition
de la boucle for est ainsi évité, celui-ci étant fait automatiquement au
moyen d’un calcul.

On utilise pour ce faire la fonction sizeof de C++, qui détermine la taille
d’une variable ou d’un objet dans la mémoire. Voici un court exemple :

byte bytevalue = 16; // Variable du type byte
int intvalue = 4; // Variable du type int
long longvalue = 3.14; // Variable du type long

int myArray[] = {25, 46, 9}; // Variable du type int

void setup() {
Serial.begin(9600);
Serial.print("Nombre d’octets pour 'byte' : ");
Serial.println(sizeof(bytevalue));
Serial.print("Nombre d'octets pour 'int': ");

Partie Il. Les montages

Serial.println(sizeof(intValue));
Serial.print("Nombre d’octets pour 'long': ");
Serial.println(sizeof(longvalue));
Serial.print("“Nombre d’octets pour 'myArray': ");
Serial.println(sizeof(myArray));

}

void loop() { /* vide */ }

Laffichage est donc le suivant :

Nombre d’octets pour 'byte’ : 1
Nombre d’octets pour 'int' : 2
Nombre d’octets pour 'long' : 4
Nombre d’octets pour 'myArray’ : 6

Quand on regarde les valeurs pour les types de données byte, int et long,
on s’apercoit qu’elles sont identiques a celles indiquées dans le chapitre 3,
dans lequel il était question de types de données et de domaines de valeurs.
Passons a la derniére ligne de I’affichage. On y voit que le tableau occupe
6 octets de mémoire, ce qui est logique puisqu’un seul élément int néces-
site 2 octets de mémoire. Or, nous avons 3 éléments. Le résultat est donc
2 x 3 = 6 octets. La ligne

int elements = sizeof(tones) / sizeof(tones[0]);

divise le nombre d’octets du tableau par le nombre d’octets d’un seul élé-
ment. C’est toujours de cette maniére qu’on obtient le nombre d’éléments
d’un tableau. Mais revenons a notre sketch. Tout au début, la fonction
noTone rend le piézo muet au cas ou il devrait encore pépier du fait d’un
sketch précédent. Elle n’a qu’un seul paramétre, qui indique la broche sur
laquelle se trouve le piézo.

Instruction Broche

[| | \
(noTone (piezoPin) ;)

La fonction tone possede en revanche deux autres parametres. 'un indique
la fréquence et I'autre la durée pendant laquelle le son doit étre audible.

Instruction Broche Fréquence Durée

l l
[| | | | || \

(tone (piezoPin, 400,700) ;)

<« Figure 18-4
La fonction noTone
rend le piézo muet.

<« Figure 18-5
La fonction tone

rend le piézo bavard.

Montage 18. Faire de la musique avec Arduino

339

340

Figure 18-6 »>

Shield avec la face avant
pour le jeu de la séquence
des couleurs

Peut-étre vous demandez-vous comment nous en sommes venus aux dif-
férentes valeurs utilisées dans le tableau des sons. Non, nous ne les avons
pas toutes testées pour savoir lesquelles convenaient ! Elles sont tirées d’un
exemple de sketch qui se trouve dans I'IDE Arduino. Recherchez le fichier
pitches.h dans le dossier C:\Program Files (x86)\Arduino\examples\@2.
Digital\toneMelody. Vous y trouverez les fréquences correspondant a de
nombreuses notes. Vous pouvez inclure ce fichier dans votre sketch et uti-
liser ensuite directement les constantes symboliques. Essayez ! Le code est
alors beaucoup plus parlant et plus clair que lorsque des valeurs numériques
sont utilisées. Nous allons maintenant essayer de faire quelque chose d’utile
en nous intéressant a un jeu mélant sons et couleurs. Comme il nécessite
la construction d’un shield, il sera d’autant plus intéressant.

Jeu de la séquence des couleurs

Vous allez mettre en pratique ce que vous venez d’apprendre dans un jeu
intéressant dit de la séquence des couleurs. Nous avons 4 LED de couleurs
différentes disposées en carré. Pres de chacune se trouve un bouton-pous-
soir. Le microcontréleur imagine un motif pour ordre d’allumage des LED ;
avous de le reproduire correctement. Au début, la séquence ne comporte
qu’une seule LED allumée ; une nouvelle vient s’ajouter apres chaque bonne
réponse. ’allumage de chacune des quatre LED est accompagné d’un son
qui lui est propre. Le jeu ravit donc non seulement les yeux, mais aussi les
oreilles. J’ai ajouté au circuit un shield avec une face avant de ma fabrica-
tion. Voyez plutét la figure 18-6.

Sur la face avant, on voit les 4 grosses LED de 5 mm avec leur bouton-pous-
soir respectif. Quand une LED s’allume, on doit appuyer sur le bouton-pous-

Partie Il. Les montages

soir placé a coté. La partie basse de la face avant est occupée par 3 plus
petites LED de 3 mm. Elles servent a afficher I’état, sur lequel je reviendrai
plus tard. La figure suivante montre bien le shield et la face avant avec le
cablage.

<« Figure 18-7
Shield ouvert et la face
avant retournée

Les choses sont moins compliquées qu’elles n’y paraissent, et la construc-
tion devient claire quand on regarde le schéma. Voici les points que je
poserai comme conditions pour le jeu :

o une longueur déterminée de la séquence, d’abord constante, est fixée
par le sketch ;

e chacune des 4 LED doit avoir sa propre note avec une fréquence
particuliere ;
e quand une des 4 LED s’allume, la note correspondante est émise ;

e quand le bouton-poussoir situé a coté est pressé, la LED s’allume et
la note correspondante est émise ;

e sila séquence a été correctement reproduite, la LED d’état verte s’al-
lume et une suite de sons crescendo se fait entendre. Le jeu reprend
ensuite au début avec une nouvelle séquence ;

e si la séquence reproduite est fausse a un endroit quelconque, la LED
d’état rouge s’allume et une suite de sons decrescendo se fait entendre.
Le jeu redémarre ensuite avec une nouvelle séquence.

Examinons maintenant les composants nécessaires pour la réalisation du
jeu.

Montage 18. Faire de la musique avec Arduino

341

Tableau 18-2 b
Liste des composants

Composant

1 élément piézoélectrique

4 LED (de différentes couleurs)

&
e

3 LED de 3 mm (de différentes couleurs) Q
«——

4 boutons-poussoirs miniatures

orange/orange/marron

7 résistances de 330 0 —_— l I I
3300

4 entretoises DK 15 mm, en plastique

4 vis M3 30 mm coupées a 23 mm
environ + 4 écrous

<

2 barrettes a 6 broches + 2 barrettes a

8 broches

(des barrettes plus longues peuvent étre
utilisées

avec la carte Arduino Uno Rev3)

Face avant
Jfaceavant

Shield
hield

1 shield + 1 face avant (la face avant
en mousse dure s'achéte dans les
magasins de bricolage)

Voyons maintenant le schéma.

Partie Il. Les montages

Schéma

<« Figure 18-8
Circuit du jeu de la
séquence des couleurs

Bouton-poussoir
—=— bianc
o—<c |

Bouton-poussoir

L 5 glaune
Bouton-poussoir
—o ot
Bouton-poussoir

—_
rouge

Sketch du jeu de la séquence des couleurs

Voici maintenant le code du sketch quelque peu élargi. Les explications

suivent.
#define MAXARRAY 5 // Définir la longueur de la séquence
int ledPin[] = {2, 3, 4, 5}; // Tableau des LED avec numéros de broche
#define piezoPin 13 // Broche piézo
#define buttonPinRed 6 // Broche bouton-poussoir LED rouge
#define buttonPinGreen 7 // Broche bouton-poussoir LED verte
#define buttonPinYellow 8 // Broche bouton-poussoir LED orange
#define buttonPinWhite 9 // Broche bouton-poussoir LED blanche

#define ledStatePinGreen 10 // LED d'état verte

#define ledStatePinYellow 11 // LED d'état orange

#define ledStatePinRed 12 // LED d'état rouge

int colorArray[MAXARRAY]; // Contient la suite de chiffres pour les
// couleurs a afficher

int tones[] = {1047, 1175, 1319, 1397}; // Fréquences des sons pour les

// 4 couleurs
int counter = 9; // Nombres de LED actuellement allumées
boolean fail = false;

void setup() {
Serial.begin(9600);
for(int i =9; i < 4; i++)
pinMode(ledPin[i], OUTPUT); // Programmation des broches de LED
// comme sortie
pinMode(buttonPinRed, INPUT_PULLUP);
pinMode(buttonPinGreen, INPUT_PULLUP);
pinMode(buttonPinYellow, INPUT_PULLUP);
pinMode(buttonPinWhite, INPUT_PULLUP);

Montage 18. Faire de la musique avec Arduino 343

pinMode(ledStatePinGreen, OUTPUT);
pinMode(ledStatePinYellow, OUTPUT);
pinMode(ledStatePinRed, OUTPUT);

}

void loop() {
Serial.println("Départ du jeu");
generateColors();
int buttonCode;
for(int i = @; i <= counter; i++) { // Boucle extérieure
giveSignalSequence(i);
for(int k = 0; k <= 1; k++) { // Boucle intérieure
while(digitalRead(buttonPinRed) && digitalRead(buttonPinGreen) &&
digitalRead(buttonPinYellow) &&
digitalRead(buttonPinWhite));
Serial.println("Bouton poussé !"); // Pour contréle dans moniteur
// série
if(!digitalRead(buttonPinRed))
buttonCode = ©;
if(!digitalRead(buttonPinGreen))
buttonCode = 1;
if(!digitalRead(buttonPinYellow))
buttonCode = 2;
if(!digitalRead(buttonPinWhite))
buttonCode = 3;
giveSignal(buttonCode);
// Vérifier si la bonne couleur a été pressée
if(colorArray[k] != buttonCode){

fail = true;
break; // Quitter la boucle for interne
}
}
if(!fail)
Serial.println("correct"); // Pour contrdéle dans moniteur série
else {

digitalWrite(ledStatePinRed, HIGH);
for(int i = 3000; i > 500; i-=150){
tone(piezoPin, i, 10); delay(20);
}
Serial.println("faux"); // Pour contréle dans moniteur série
delay(2000);
digitalWrite(ledStatePinRed, LOW);
counter = @; fail = false;
break; // Quitter la boucle for
}
delay(2000);

if(counter + 1 == MAXARRAY) {
digitalWrite(ledStatePinGreen, HIGH);
for(int i = 500; i < 3000; i+=150){
tone(piezoPin, i, 10); delay(20);
}

344 Partie Il. Les montages

Serial.println("Fini !"); // Pour contrdle dans moniteur série
delay(2000);
digitalWrite(ledStatePinGreen, LOW);
counter = 0; fail = false;
break; // Quitter la boucle for extérieure

}
counter++; // Incrémenter le compteur

}

3

void giveSignalSequence(int value) {
// Affichage LED
for(int i = @; i <= value; i++){
digitalWrite(2 + colorArray[i], HIGH);
generateTone(colorArray[i]); delay(1000);
digitalWrite(2 + colorArray[i], LOW); delay(10@0);
}
3

void generateTone(int value) {
tone(piezoPin, tones[value], 1000);

}

void giveSignal(int value) {
// Affichage LED + signal sonore
digitalWrite(2 + value, HIGH); generateTone(value); delay(200);
digitalWrite(2 + value, LOW); delay(208);

}

void generateColors() {

randomSeed(analogRead(@));

for(int i = @; i < MAXARRAY; i++)
colorArray[i] = random(4); // Générer des chiffres aléatoires de

//@8as3

// © = rouge, 1 = vert, 2 = orange, 3 = blanc

for(int i = @; i < MAXARRAY; i++)
Serial.println(colorArray[i]); // Pour contréle dans moniteur série

}

Revue de code

Une valeur numérique est affectée a chaque couleur a afficher : @ pour
rouge, 1 pour vert, 2 pour orange et 3 pour blanc. Un tableau peut ainsi étre
initialisé avec des valeurs allant de 0 a 3 ; il pourra ensuite servir a afficher
les LED. Supposons que vous ayez un tableau avec les valeurs , 2, 2, 1 et
3, les diodes s’allument donc dans l'ordre suivant : rouge, orange, orange,
vert et blanc. Dans notre sketch, son nom est colorArray et il recoit ses
valeurs via la fonction generateColors. Pour les rendre visibles, la fonction
giveSignal convertit les valeurs en signaux pour commander les LED.

Montage 18. Faire de la musique avec Arduino

345

346

void giveSignalSequence(int value) {
// Affichage LED
for(int i = @; i <= value; i++){
digitalwrite(2 + colorArray[i], HIGH);
generateTone(colorArray[i]); delay(1000);
digitalWrite(2 + colorArray[i], LOW); delay(1ee0);
3
}

Sila fonction doit toujours afficher la séquence des couleurs, peut-étre vous
demandez-vous pourquoi nous avons encore besoin d’une variable. Et ce
que signifie le 2 qui est utilisé dans la fonction digitalWrite.

En fait, la séquence complete ne doit pas s’afficher au début, mais seulement
au fur et a mesure avec, chaque fois, une couleur en plus. Le tableau des
couleurs colorArray contient bien la séquence compléte, mais la variable
transmise dans value indique a la fonction combien d’éléments du tableau
doivent étre interrogés et affichés. Les 4 grandes LED étant cependant rac-
cordées aux sorties numériques des broches 2 a 5, le chiffre 2 est quasiment
un décalage qui indique la broche de démarrage quand les valeurs @ a 3
sont ajoutées au tableau des couleurs. Bien entendu, il ne faut pas utiliser
de magic numbers. Vous pouvez naturellement employer une constante
symbolique, par exemple avec le nom COLORPINOFFSET.

Avant de passer a I'explication de la logique dans la fonction loop, nous
devons revenir sur la fonction setup. Iy a, par exemple, des broches de bou-
ton-poussoir qui sont, bien sir, programmées comme entrées. Pourtant,
quelque chose est envoyé a ces mémes entrées par la fonction digitalwrite.
Pourquoi cela ?

Jutilise la possibilité d’activer les résistances pull-up présentes et connec-
tées en interne dans le microcontroleur. Plus besoin ainsi de connecter des
résistances pull-up ou pull-down externes. J’ai déja expliqué cela dans le
montage n° 3. Ca vous dit quelque chose ? Si vous avez oublié, relisez-le !

Mais comment se fait-il que la fonction loop s’exécute continuellement ? La
premiére boucle for, que nous avons qualifiée de boucle extérieure, devrait
elle aussi s’exécuter continuellement. Cest pourtant elle qui est chargée
d’afficher la séquence en fonction de la variable counter.

Oui, bien vu ! La fonction loop, qui est une boucle sans fin, devrait norma-
lement s’exécuter en permanence. Seulement, j’ai incorporé un arrét qui
la bloque tant qu’un des quatre boutons-poussoirs n’est pas pressé. Voici
la partie de code en question :

while(digitalRead(buttonPinRed) && digitalRead(buttonPinGreen) &&
digitalRead(buttonPinYellow) && digitalRead(buttonPinWhite));

Partie Il. Les montages

Les entrées numeériques, auxquelles les boutons-poussoirs sont raccordés,
étant reliées au +5 V a travers les résistances pull-up internes, mon inter-
rogation doit porter sur le niveau LOW. Tant que toutes les entrées sont sur
niveau HIGH, la boucle while exécute I'instruction qui vient aussitot apres.

Mais quelle instruction est exécutée au juste ? D’apres le code, la ligne Serial.
println(“Bouton poussé !) ; devrait étre exécutée. Mais ¢a n’a pas beaucoup
de sens !

Vous avez raison, ca n’a pas beaucoup de sens ! Vous avez cependant
oublié une petite chose. U’instruction, qui vient immédiatement apres la
boucle while, est le point-virgule situé tout a la fin. 1l s’agit quasiment
d’une instruction vide, qui fait en sorte que la boucle while, quand aucun
des boutons-poussoirs n’est enfoncé, devienne elle-méme une boucle sans
fin. Cest une maniere élégante d’interrompre ici le déroulement du pro-
gramme. Ce n’est que quand 'un ou l'autre des boutons est pressé que
la condition dans la boucle while n’est plus remplie et que le programme
reprend son cours. Le bouton pressé est alors identifié afin de comparer
la valeur de la couleur concernée a I’élément du tableau qui vient d’étre
sélectionné dans la boucle intérieure. Si une concordance a été trouvée, on
passe a la valeur de couleur suivante dans la séquence. En revanche, si une
erreur a été commise, la variable fail recoit la valeur true, et I'instruction
break fait sortir prématurément de la boucle intérieure. Autrement dit,
Iinstruction if :

if(!fail)...

reprend le cours du programme en conséquence. La variable counter est
augmentée de la valeur 1, dans la mesure ou aucune erreur n’a été commise
etou la fin de la séquence n’est pas encore atteinte, si bien que la prochaine
séquence affichée sera plus longue. J’ai laissé les affichages sur le moniteur
série dans le code pour une meilleure compréhension des procédés. Ils
vous donnent au début la séquence qui a été sélectionnée pour que vous
puissiez faire, le cas échéant, un peu d’expérimentation. Lisez une fois le
code de bout en bout et essayez de le comprendre.

Problemes courants

Si aucune des 4 grandes LED ne s’allume ou si le piézo n’émet aucun son
une fois le sketch transmis, vérifiez :

o que le cablage est correct ;
e qu’il n’y a pas de court-circuit ;

e que des soudures ne se touchent pas par inadvertance.

Montage 18. Faire de la musique avec Arduino

347

348

Exercice complémentaire

Elargissez le sketch de telle sorte que la séquence soit allongée au démar-
rage d’un nouveau jeu apres chaque reproduction correcte. Vous pouvez
également jouer sur les pauses entre les différentes couleurs. Réduisez-les
afin que le jeu devienne peu a peu plus difficile. Une des 3 petites LED de
3 mm n’a pas été utilisée dans mon sketch. Essayez donc de lui donner
une fonction utile. Vous pouvez, par exemple, la faire s’allumer briéve-
ment quand un nouveau jeu commence. Les possibilités sont a coup sar
nombreuses !

Qu’avez-vous appris ?

e Vous avez découvert comment commander un élément piézoélec-
trique en générant une fréquence par l'alternance des niveaux HIGH
et LOW sur la sortie numérique correspondante.

e Il est également possible d’influer sur le piézo avec les fonctions noTone
et tone, de maniere a le rendre muet ou le faire vibrer a une fréquence
voulue.

e Vous avez vu comment fabriquer vous-méme une face avant conviviale
avec des moyens tres simples afin de réaliser un jeu intéressant.

Partie Il. Les montages

Montage

L’ Arduino-Talker 1 9

Je trouve toujours excitant de pouvoir instaurer une communication entre
divers appareils ou différents langages de programmation. C’est parfois
un peu compliqué, mais une fois les difficultés surmontées, le plaisir est
encore plus grand. Dans ce projet, je voudrais vous montrer comment
utiliser I'interface série de votre carte Arduino a I'aide du moniteur série.
Jutiliserai d’abord un script Python grace auquel vous pourrez facilement
controler toutes les broches. Vous serez ainsi capable de controler des
broches numériques et analogiques via un signal MLI (voir le montage
n° 1). Puis nous étudierons en détail 'application Arduino-Talker qui peut
étre programmeée en langage C#. Le code source complet correspondant
figure sur I'extension web de 'ouvrage.

Communiquer avec I’Arduino

Sur 'image ci-dessous, vous pouvez voir le shield de LED que j’ai réalisé.
Au lieu d'utiliser des LED individuelles, j’ai employé des afficheurs a barres.
Ainsi, les LED sont dans un boitier compact et parfaitement alignées.

e | <« Figure 19-1
Le shield d'affichage
pour les sorties numériques

349

350

Tableau 19-1 »
Liste des composants

Sur cette photo, vous pouvez aussi noter que les LED sont plus ou moins
brillantes. Ces LED sont placées sur les broches ot un contréle PWM est
possible. Une fonction clignotante est également possible, et si vous regar-
dez assez longtemps I'image, vous verrez peut-étre un clignotement ici
ou la. Evidemment, vous pouvez construire ce circuit sur une plaque d’es-
sais : I'utilisation d’un shield, comme je Iai fait ici, n’est pas obligatoire.
Laffichage graphique a barres est un composant Kingbright de référence
DC-10EWA.

Composants nécessaires

Ce montage nécessite les composants suivants.
12 LED rouges /
orange/orange/marron

12 résistances de 330 Q —_— I I I
3300

1 plaque perforée

1 Arduino Stackable Header Kit - R3
avec des barrettes empilables :
o 2 de 8 broches @ ! @

« 1de 6 broches
« 1de 10 broches

Schema

Le schéma de principe du circuit est si simple que je ne I’ai pas montré
a nouveau. Il s’agit d’un controle simple de LED avec résistances série
correspondantes.

Remarques

Avant de commencer, laissez-moi vous expliquer quel est le but de ce projet
et a quoi ressemble le programme de controle en langage C#. Comme je
I’ai dit au début, nous utiliserons un programme externe pour contrdler
les broches numériques du microcontréleur Arduino. Commencons par

Partie Il. Les montages

étudier l'interface de I'application Arduino-Talker, également appelée GUI
(Graphical-User-Interface).

% ArduinoTalker 20 by Erik Bartmann

S etinga = :
COMPots: [COMI BoudRate: 36400 [Dwoonneat] £ andunoGrk bartmann de
DigtatCortrat

oz (@] @or) (@8nk]

Proz (@on) ([@on) (@B] rww L <]

ot @00 @00 @]

s @00) @00) @mw] e 1L <[']

ot (@ 00 | ([@of (@B | eww L« v[o]

Pao7: (@00] (@0) (@8]

]
B8
e
i

L] Arduno SketchCode

[

A Figure 19-2

L'application Arduino-Talker

Vous reconnaissez plusieurs boutons utilisés pour controler les broches.
Les options de controle sont les suivantes :

e une seule broche On (HIGH) ;

e une seule broche Off (LOW) ;

o clignotement d’une seule broche ;
e contréle PWM d’une broche ;

e toutes les broches Off (LOW) ;

e toutes les broches On (HIGH).

Ce ne sont que quelques-uns des controles que j’ai installés mais bien sur,
il 0’y a pas de limites a la créativité. Vous pouvez programmer une fenétre
ou certains motifs d’affichage sont mémorisés puis affichés en séquence.

En haut de Pl'interface de I'application figurent les parameétres de la
connexion du port série via lequel nous communiquons avec I’Arduino.
Pour que I'Arduino accepte les commandes de 'Arduino-Talker, un sketch
spécial est requis, fourni avec ’Arduino Talker. Un clic sur le bouton Arduino
Sketch-Code affiche ce sketch dans une fenétre. En bas de I'interface, dans
la barre d’état, le statut de la liaison COM est indiqué et la chaine de
caracteres envoyée est affichée. Pour que tout fonctionne, j’ai défini un
protocole d’échange.

Mais qu’est-ce qu’un protocole ? Quand il y a un échange de données entre
ordinateurs ou microcontréleurs, la communication doit étre en quelque
sorte réglementée. Si deux personnes parlent, elles doivent déja utiliser

Montage 19. L'Arduino-Talker

351

352

la méme langue afin de se comprendre. La situation est similaire dans le
cas des ordinateurs. Un vocabulaire permettant la communication doit
étre établi pour indiquer a I’Arduino, sous une forme parfaitement claire
et compréhensible, les actions a mettre en ceuvre. Cest exactement ce qui
se passe dans un protocole. Examinons ces deux exemples.

Allumer la LED sur la broche 13
Pin 13: —> [Gs1301

Cliquer sur le bouton correspondant affichera la chaine générée par le
protocole, indiquée a droite et envoyée via I'interface série. La LED sur la
broche 13 s’allumera.

Régler le niveau PWM (MLI) de la LED sur la broche 10
L ; —> |4 51080076

Labroche PWM 10 est programmée a la valeur 76, la broche numérique 10
géneére le signal PWM correspondant et la LED s’allume donc faiblement. Au
début du livre, j’ai déja expliqué le principe de la modulation PWM ou MLI.

Venons-en maintenant a un exemple concret, car la broche numérique ne
sera pas commandée par la fonction digitalWrite mais par analogWrite.
Voyons en détail ce que cela signifie.

Comprendre le code,
étape par étape

Le sketch suivant étant assez long, je I’ai divisé en blocs pour le commenter.
Je voudrais d’abord revenir sur le protocole que jai utilisé. Celui-ci inter-
roge régulierement le port série pour étre en mesure de réagir au flux de
données entrant. Tous les flux de caracteres n'ont pas d’effet sur les LED
connectées. Le protocole de transmission doit le savoir. Pour le tester, vous
pouvez entrer directement dans le moniteur série une chaine appropriée :
si le protocole fonctionne bien, vous devrez constater une réaction cor-
respondante de ’Arduino. Veillez aussi a ce que la vitesse de transmission
soit correcte, sans quoi rien ne se passera méme si le protocole est bon.
Voici les détails de ce protocole.

Start Pin-Nr Mode Level

[sJ@mME

Partie Il. Les montages

Les blocs individuels ont les significations suivantes :

o S : létiquette de début (qui doit étre présente, sinon il n’y a pas de
controle LED) ;

e Pin:le numéro de broche ;

e M :le mode (D pour digital : numérique, A pour analog : analogique,
B pour blink : clignotant) ;

o L :le niveau (0/1: numérique, 0-255 : analogique).

Voici quelques exemples envoyés a la carte Arduino par le moniteur série.

s @eE
/@@l

s@AE
s @Em

Ftudions maintenant le sketch.

Définition globale

Les numéros de broches numériques a controler sont stockés dans le
tableau pinArray. Afin de pouvoir faire clignoter les broches, il nous faut
aussi un tableau pinBlinkArray pour stocker les valeurs booléennes ou
Iétat clignotant. Les autres variables n’ont pas besoin d’explications sup-
plémentaires. Le controle d’intervalle a I'aide de la fonction millis a déja
été étudié dans I'un des premiers montages.

#define ARRAY_SIZE 12 // Dimension des tableaux des LED
int pinArray[ARRAY_SIZE] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};
boolean pinBlinkArray[ARRAY_SIZE]; // Tableau des clignotements
int pin, level; // Numéro de broche et niveau
char mode;

// Mode numérique ou analogique

<« Figure 19-3
La broche numérique 03
est réglée sur HIGH.

<« Figure 19-4

La broche numérique 06
est réglée sur le niveau
LOW.

<« Figure 19-5

La broche numérique 09
est controlée en tant que
sortie analogique

avec le signal PWM 50.

<« Figure 19-6
La broche numérique 04
est réglée pour clignoter.

Montage 19. L'Arduino-Talker

353

354

int interval = 1000; // Durée du clignotement
unsigned long prev; // Variable de temps
int ledStatus = LOW; // Etat du clignotement

Initialisation

Dans la fonction setup, la vitesse de transmission de I'interface série est
réglée a 38 400 bauds et les broches 2 a 13 du réseau de broches sont défi-
nies comme des sorties. Le tableau clignotant est rempli avec des valeurs
false, donc aucune LED ne clignotera au début.

void setup() {
Serial.begin(38400);
for(int i = @; i < ARRAY_SIZE; i++)
pinMode(pinArray[i], OUTPUT);
for(int i = @; i < ARRAY_SIZE; i++)
pinBlinkArray[i] = false;

Boucle d’execution continue

La boucle loop appelle maintenant en continu la fonction readSerial que
nous avons écrite pour récupérer les données série transmises.

void loop() {
readSerial(); // Appel a la fonction d’acquisition

}

Récupération des données

Le flux de données de I'interface série est récupéré et évalué via la fonc-
tion readSerial. Qu’est-elle censée faire? Elle doit controler les broches
numériques en fonction de certains parametres. Tout d’abord, nous avons
défini le protocole pour que le contrdle commence toujours par le carac-
tere S. Si le flux envoyé n’est pas dans ce cas, rien ne se passe. Apres cette
balise de démarrage, le numéro de la broche a contrdler doit apparaitre
de facon a commander la broche souhaitée. Comme nous contrélons des
broches numériques normales et des broches PWM, le caractere suivant
définit le mode (D, A ou B) qui détermine comment la broche doit étre
commandée. Enfin, le niveau demandé est ajouté a la fin du flux. Etudions
’exemple suivant.

s/ @Em

Partie Il. Les montages

Cette combinaison de caracteres permet de programmer la broche numé-
rique 3 a un niveau HIGH, donc la LED correspondante sera allumée.
Lentrée sur le moniteur série est la suivante.

@ com3 = & <« Figure 19-7
g Entrée des données
- dans le moniteur série

v

Défilement automatique

[Nouvelleligne | v | (9600 baud

vl Eﬂ'awlasorﬁe‘
.

Faites attention au réglage en bas de la fenétre qui provoque un saut de

ligne apres I’entrée envoyée.

[Nouvelleiane | v |

Voyons maintenant comment le sketch traite cette chaine de caracteres
qui lui est transmise par le moniteur série. Voici le code complet de la

fonction, que je vais expliquer en détail.

void readSerial() {
if(Serial.available() > 0) {
while (Serial.peek() == 'S") {

Serial.read();

pin = Serial.parseInt();
mode = Serial.read();
// extraction mode digital D
level = Serial.parseInt();
if(mode == 'D") {
pinBlinkArray[pin - 2] = false;
digitalwrite(pin, level);

}

if(mode == ‘A") {
pinBlinkArray[pin - 2] = false;
analogWrite(pin, level);

}

if(mode == ‘B")
pinBlinkArray[pin - 2] = level;

3

// Attente du caractére de

// départ (Start)

// S(Start)lecture du

// flux dans le tampon série

// extraction numéro de broche

// extraction du niveau
// Arrét clignotement

// Commande de la LED

// Arrét clignotement
// Commande de la LED

// Mémorisation du clignotement

Montage 19. L'Arduino-Talker

355

356

while (Serial.available() > 0) { // Vider le tampon série
Serial.read();
}
3
// Clignotement
if((millis() - prev) > interval) {
prev = millis();
ledStatus = !ledStatus; // Inversion du statut
for(int i = @; i < ARRAY_SIZE; i++) {
if(pinBlinkArray[i] == true)
digitalWrite(pinArray[i], ledStatus);

Au début, la ligne

if(Serial.available() >0) {...}

vérifie s’il y a un flux de données disponible dans le tampon de l'interface
série. Si C’est le cas, le code entre les crochets sera exécuté. La méthode peek
examine le premier caractére du flux de données sans le retirer du tampon.

while(Serial.peek() == 'S") {...}

Cette instruction garantit que le premier caractére pour controler les LED
est bien I’étiquette de début S. Si c’est le cas, le caractere est lu dans le
tampon et supprimé. Puis le ou les caractéres suivants du flux de données
sont analysés par la méthode parselInt et convertis en une valeur entiere
mémorisée dans la variable pin.

pin = Serial.parselInt();

Cela permet aux numéros de broche a un ou deux chiffres d’étre correc-
tement identifiés. Ensuite, il faut savoir comment la broche en question
doit étre traitée : comme une broche numérique avec un niveau LOW ou
HIGH, ou comme une broche analogique a contrdler via un niveau PWM.
Ceci est mémorisé dans la variable mode.

mode = Serial.read();

La méthode read lit le caractére suivant du flux de données et le place
dans la variable mode. La lecture du flux de données se termine ensuite
avec la ligne

level = Serial.parseInt();

Partie Il. Les montages

ou, a nouveau, une valeur entiere valide est extraite, indiquant le niveau
demandé qui est mémorisé dans la variable level. ’évaluation des données
extraites intervient ensuite.

if(mode == ‘D") {
pinBlinkArray[pin - 2] = false; // Arrét clignotement de la broche
digitalwrite(pin, level); // Commande de la LED

}

if(mode == ‘A") {
pinBlinkArray[pin - 2] = false; // Arrét clignotement de la broche
analogWrite(pin, level); // Commande de la LED

3
if(mode == 'B")
pinBlinkArray[pin - 2] = level; // Mémorisation du clignotement
// de 1la LED

Pour les modes D et A, le tableau pinBlinkArray est mis a la valeur false
pour la broche correspondante afin de stopper I’état éventuellement cli-
gnotant de cette broche, car la LED reliée a une broche ne doit clignoter
que pour le mode B. Sile mode B a été identifié (clignotement), le tableau
pinBlinkArray est mis a la valeur level (1 soit true) afin que le clignotement
soit alors initialisé. Nous verrons bientot comment cela fonctionne. Enfin,
tous les caracteres suivants du flux de données qui ne nous intéressent pas
sont effacés par la ligne :

while (Serial.available() > @) { Serial.read(); }

Etudions maintenant le clignotement, qui est géré par le code suivant.

// Clignotement
if((millis() - prev) > interval) {
prev = millis();
ledStatus = !ledStatus; // Inversion du statut
for(int i = @; i < ARRAY_SIZE; i++) {
if(pinBlinkArray[i] == true)
digitalWrite(pinArray[i], ledStatus);
}
}

Vous avez déja rencontré ce processus de clignotement dans le montage
n° 4. Il n’utilise pas la fonction delay, sinon aucune autre commande ne
serait acceptée durant le clignotement, puisque I'appel de la fonction delay
provoquerait la pause du programme. Si ce processus n’est pas clair dans
votre esprit, retournez au montage n° 4. A P'intérieur de la boucle for, le
contenu du tableau pinBlinkArray est interrogé de facon permanente, et si
une broche a la valeur true (vraie), elle recoit une valeur de statut opposée
via la variable ledStatus, grace a la ligne suivante :

Montage 19. L'Arduino-Talker

357

358

Figure 19-8 >
Script Python permettant
le contrble des LED

ledStatus = !ledStatus;

Mais n’avions-nous pas dit que nous devions effectuer le controle par un
script Python ? Clest certainement plus intéressant que d’entrer les com-
mandes dans le moniteur série, non ?

Cest vrai, mais je voulais d’abord vous montrer les bases de notre proto-
cole. Nous sommes maintenant préts en effet a passer a un programme
externe pour envoyer les commandes. Pour programmer en Python, j’uti-
lise 'environnement de développement gratuit PyCharm avec la version
3.10 de Python et le module pyserial. Voici les liens utiles pour télécharger
ces logiciels :

e PyCharm : https://www.jetbrains.com/pycharm/download/
e pyserial : https://pypi.python.org/pypi/pyserial

Cet ouvrage n’étant pas un livre sur la programmation avec Python, je vais
seulement détailler les commandes utilisées ici. Pour plus d’information,
référez-vous aux manuels sur Python ou consultez Internet.

1 import serial

port = serial.Serial(port="COM17', baudrate=38400)
4 print (port.isOpen())
5 cmd = ['S02D1\r', 'S03A80\r’',
& 'S04B1\r', 'S05DI\r’',
7 'S06D1\r', 'SO07DI\r’,
B 'S08B1\r', 'SO09A10\r',
9 'S10D1\r’, 'S11DI\r’,
10 'S12DINTr’', 'S13DI\r’]

12 while True:
13 if port.isOpen():
14 port.writelines (cmd)

Alaligne 1, le module pyserial requis est importé, car nous voulons accé-
der a I'interface série. La ligne 3 instancie un objet série nommeé port qui
contient le parametre de Iinterface COM et le débit de transmission. Le
taux de transfert doit correspondre a celui que vous avez indiqué dans le
sketch Arduino, sinon il n’y aura pas de communication entre Python et
votre Arduino. A la ligne 4, a 'aide de la méthode isopen, jaffiche sur la
console I’état du port de I'interface mentionnée afin de vérifier qu’il a bien
été ouvert. La variable cmd utilisée en Python contient une liste des infor-
mations de commande pour les broches individuelles. Je laisse certaines
LED s’allumer complétement mais deux LED sont contrdlées par un niveau
de modulation PWM et deux autres clignotent. La boucle while de la ligne
12 exécute sans fin le code qui suit et utilise la méthode writelines pour

Partie Il. Les montages

envoyer toutes les définitions de broche contenues dans la liste a 'interface
série. Si vous souhaitez piloter une seule broche, vous pouvez limiter la
liste a un seul élément ou utiliser directement la méthode write.

& while True: <« Figure 19-9
7 if port.isOpen(): Script Python pour piloter
8 port.write('S02D1') une seule LED

Problemes courants

Si le contrdle de vos sorties numeériques ne fonctionne pas, vérifiez les
points suivants.

e Assurez-vous que le cablage ait été bien réalisé.

e Vérifiez qu’il n’y a aucun court-circuit dans le cablage.

Veillez a ce que ’émetteur et le récepteur aient la méme vitesse de
transmission.

Faites attention a I'emploi différencié des majuscules et des minuscules.

Utilisation d’un filtre passe-bas

Vous avez beaucoup appris sur le signal PWM et ses effets sur un compo-
sant connecté. La luminosité d’'une LED peut étre réglée et la vitesse d’un
moteur controlée. Mais savez-vous que vous pouvez aussi générer une
tension continue a partir de ce On/Off qui varie en fonction du cycle du
signal ? Comment est-ce possible ? Vous avez juste besoin d’une résistance
et d’un condensateur branchés comme suit.

Filtre RC (passe-bas) <«Figure 19-10
Le circuit filtre RC

GND

Si vous regardez ce circuit composé d’une résistance et d’'un condensa-
teur, cela doit vous faire penser a un diviseur de tension que nous avons

Montage 19. L'Arduino-Talker

359

360

Figure 19-11 »
Filtrage RC passe-bas

déja étudié. En effet, ce circuit RC n’est ni plus ni moins qu’un diviseur de
tension dépendant de la fréquence, qui dans cette configuration consti-
tue ce que l'on appelle un filtre passe-bas. 1l se nomme ainsi car il laisse
passer les basses fréquences plutot que les hautes. Ce circuit est encore
appelé intégrateur, assurant le lissage du signal d’entrée. Le condensateur
est placé en paralléle a la sortie et permet un stockage d’énergie. Si la
tension a l’entrée est de 5 V par exemple, le condensateur se charge a
travers la résistance et le signal de sortie augmente lentement. Lorsque
le niveau d’entrée revient a 0 V, le condensateur se décharge a travers la
résistance, si bien que le signal de sortie ne retombe pas brusquement a
0 V. Si ce changement se produit assez rapidement, le condensateur va
donc lisser le signal d’entrée. Bien entendu, ce comportement dépend des
caractéristiques des composants R et C.

Etudions deux signaux PWM différents et le lissage correspondant.

Signal PWM Signal de sortie
Valeur PWM =128
v nlu €3 €4 8000 samples at 1.6 MHz | 2017-01-27 07:35:50.976 BEE
- | R s [T Miaasses . ‘ =E
8
6
Tl
g N "
<
PP e RN (SN WSO S [N NN | Mt o
Valeur PWM = 200
v [_Tngd Jc1]c2|c3 ca 8000 samples at 1.6 Mz | 2017-01-27 07:37:13.335 REE)
10 I T T T T T T T T T v | BEpR
i |
6
4
2 |
R |
TR WSS | RN IUUURNN NSRS f| T (SN DRSNS SN]

Vous pouvez constater qu’avec un niveau de signal PWM plus élevé, la
tension de sortie est plus haute.

Mais, peut-on réellement calculer la tension de sortie lorsque les para-
meétres sont connus ? Eh bien, oui, c’est possible ! Examinons ce graphique
représentant les impulsions :

u t
5V

Partie Il. Les montages

En utilisant la formule suivante, vous pouvez calculer la tension de sortie Uy :

L+,

N

Si vous avez un oscilloscope, utilisez cette formule pour faire quelques
calculs et vous verrez que le résultat est correct. Naturellement, dans le
cas d’un seul circuit RC, sa capacité de stockage sera tres faible : aussi,
dans une application pratique, un petit amplificateur devra étre utilisé
sous la forme d’un amplificateur opérationnel. Le circuit suivant montre
cet amplificateur opérationnel (par exemple, le LM358).

0]
@)

N

Le circuit intégré LM358 se présente sous forme d’un petit boitier com-
portant 8 broches dont le brochage est le suivant.

LM358
OUT1 |1 8] Vce
IN1 (-) ouT2
IN1 (+) IN2 ()
GND [4] IN2 (+)

Pour terminer, voici une formule permettant de calculer la fréquence de
coupure d’un filtre passe-bas :

1

Je= 37T RC

Vous pourrez trouver des informations complémentaires sur ce sujet en
consultant ce lien :

https://fr.wikipedia.org/wiki/Filtre_passe-bas

Mais pourquoi le circuit RC ne laisse passer que les basses fréquences ? Je
vous explique. Nous savons que la résistance d’un condensateur est tres

<« Figure 19-12

Le filtre RC avec
amplificateur opérationnel
LM358

<« Figure 19-13
Affectation des broches
de lamplificateur
opérationnel LM358

Montage 19. L'Arduino-Talker

361

362

Figure 19-14 >
Courbe caractéristique
d'un circuit passe-bas

élevée pour un courant continu. Le condensateur laisse passer le cou-
rant uniquement pendant la phase de charge puis le bloque lorsqu’il est
chargé. Si le condensateur est inversé ou déchargé, un courant circule a
nouveau jusqu’a la décharge complete. Cependant, plus ces deux pro-
cessus de charge et de décharge ont lieu rapidement, plus la réactance
du condensateur est faible et ne constitue pas un obstacle au courant. A
proprement parler, il n’y a pas de courant car I’énergie n’est absorbée que
pendant le processus de charge et libérée a nouveau pendant le processus
de décharge. Puisque dans le circuit RC, le condensateur est placé en paral-
lele a la sortie et qu’il possede une résistance plus ou moins faible selon
que la fréquence du signal est plus ou moins élevée, les fréquences élevées
sont plus ou moins bloquées. Pour mieux comprendre ce comportement,
examinez le graphique suivant ou la fréquence est en abscisse et la réponse
en amplitude en ordonnée.

A
A

—»
f
On voit également ou se situe la fréquence de coupure f,.

Qu’avez-vous appris?

e Vous avez vu comment utiliser un protocole de transfert pour envoyer
différentes données sur le port série afin de controler votre carte
Arduino.

e Cela peut étre fait via une saisie dans un programme terminal tel que
le moniteur série, un script Python ou une application ergonomique
dotée d’une interface graphique. Le programme C# que nous avons
utilisé n’est qu'un exemple d’implémentation possible car vous pouvez
utiliser n’importe quel autre langage de programmation qui fournit
’acces au port série.

e Vous avez étudié un circuit composé d’une résistance et d’'un conden-
sateur, qui fonctionne comme un filtre passe-bas et convertit un signal
PWM en un signal analogique. Ce circuit est plus robuste s’il est com-
plété, en aval, par un amplificateur opérationnel.

Partie Il. Les montages

Communication sans fil
par Bluetooth

Cela fait déja quelques années que sonne le glas du cable de transmis-
sion. Depuis qu’une fonction Bluetooth a été intégrée a la grande majorité
des smartphones récents, ce protocole de transmission de données sur
de courtes distances s’est imposé et il est devenu incontournable. Cela
concerne évidemment aussi le domaine du bidouillage électronique ou le
Bluetooth a déja sa place depuis longtemps. Il est donc grand temps de
Iintégrer a un montage.

Qu’est-ce que
la communication radio ?

Jusqu’ici, I’échange de données, c’est-a-dire la communication entre I'or-
dinateur et la carte Arduino, a toujours été effectué de maniere filaire par
lintermédiaire du port série. Cest amplement suffisant pour la majorité
de nos expériences, car rien ne s’y oppose. Mais imaginez que vous vou-
liez que votre robot s’éloigne un peu et que la longueur du cable USB
soit insuffisante. Comment feriez-vous ? De méme, s’il devait effectuer
de nombreuses rotations dans différentes directions, le cable finirait par
étre trés emmeélé. Une solution consisterait a utiliser un cable USB plus
long, mais la longueur maximale est généralement de cinq meétres. Tout
ce qui dépasse présente un risque et les erreurs sont alors tres difficiles
a localiser. Il me parait étre grand temps d’envisager la communication
radio. Cette forme de communication sans fil facilite considérablement les
échanges de données avec le destinataire final sans qu’il soit nécessaire de
poser des cables dans lesquels on finit toujours par s’empétrer. Certes, il y
a toujours des restrictions concernant la portée qui varie en fonction de la
puissance de ’émetteur. Le WLAN, qui est probablement déja proposé par
votre routeur, est 'une des liaisons radio les plus connues. Ce réseau a une
portée de quelques métres qui varie en fonction de la nature de I'environne-
ment. La portée de 300 metres évoquée par certains me parait uniquement

Montage

20

363

364

Tableau 20-1 »
Classes Bluetooth
avec puissance et portée

Tableau 20-2 »
Liste des composants

possible en I'absence d’obstacles et dans des conditions tres favorables,
qui sont difficiles a remplir a 'intérieur de batiments. Dans tous les cas, la
communication passera mieux entre deux pieces que d’un étage a l’autre,
surtout lorsque le plancher contient une grille de blindage sous forme
d’armatures en acier. La portée se situe alors entre 10 a 20 metres.

Nous allons étudier un procédé de transmission radio qui est utilisé sur de
courtes distances ne dépassant pas 100 metres : le Bluetooth. Comme le
Bluetooth et WLAN se partagent la méme bande de fréquence de 2,4 GHz,
cela peut engendrer des perturbations dues a des recouvrements. Ne soyez
donc pas étonné si tout ne fonctionne pas du premier coup. En cas de pro-
bleme, éloignez-vous de quelques métres ou réessayez aprées avoir désac-
tivé le WLAN. Quelques essais sont parfois nécessaires, mais vous finirez
toujours par réussir a établir une connexion. Montrez-vous persévérant !

La portée du Bluetooth dépend aussi de la puissance de I’émetteur qui
peut appartenir aux trois classes suivantes :

Classe Puissance Portée

1 100 mW env. 100 metres
2 2,5 mwW env. 10 métres
3 T mwW env. 1 métre

émetteur n’est évidemment pas le seul responsable de la portée limitée. Le
récepteur y contribue aussi. Des facteurs tels que la qualité de I'antenne et
la sensibilité du récepteur jouent aussi un role important. Si vous souhaitez
obtenir plus d’informations a ce sujet, je vous invite a faire des recherches
sur Internet ou a lire la littérature spécialisée.]’aimerais vous présenter
un shield intéressant que nous utiliserons pour la communication sans fil
avec la carte Arduino. Voyons de quels composants vous allez avoir besoin
pour ce montage.

Composants nécessaires

Ce montage nécessite les composants suivants.

1 shield Bluetooth de ITead Studio,
version 2.1

1 adaptateur Bluetooth (si votre
ordinateur portable n'en est pas équipé)

Partie Il. Les montages

Mais comment la communication est établie et a 'aide de quels compo-
sants ? Comment interroger les données recues sur I’Arduino ? Existe-t-il
aussi une bibliotheque spéciale ? Ces questions sont tres pertinentes et je
me les suis également posées. Cest assez simple. Il est possible de commu-
niquer avec n’importe quel appareil Bluetooth, que ce soit un adaptateur
Bluetooth, par exemple, qui est branché sur I'ordinateur ou un smartphone.

Ce qu’il y a de vraiment génial dans la communication avec une carte
Arduino, c’est le fait qu’elle s’effectue entierement par le biais du port série
de la carte et qu’aucune bibliothéque particuliére n’est donc requise. De
plus, apres avoir installé I’adaptateur Bluetooth sur votre ordinateur, vous
disposez d’un nouveau port COM. Peut-étre voyez-vous déja ou je veux
en venir ? Lorsque vous connectez un programme de terminal, comme
PuTTY au port COM de ’'adaptateur Bluetooth et que vous y tapez des
commandes, celles-ci sont envoyées sur les ondes par le biais du Bluetooth.
Par conséquent, si votre carte Arduino est reliée au module Bluetooth, les
commandes envoyées par PUTTY peuvent y étre recues et analysées par
le biais du port série. Sur la figure suivante, j’ai tenté de représenter le
cheminement des données, de gauche a droite, tel qu’il s’effectue durant
la communication.

Shield Bluetooth Carte Arduino

Ordinateur +
programme de terminal Adaptateur
Bluetooth

<« Figure 20-1
Adaptateur Bluetooth
pour port USB

<« Figure 20-2
L'adaptateur Bluetooth
émet et le shield Bluetooth
recoit.

Montage 20. Communication sans fil par Bluetooth

365

366

Figure 20-3 >
Shield Bluetooth enfiché

Utilisation d’un adaptateur
Bluetooth

Si votre ordinateur n’est pas équipé d’un adaptateur Bluetooth — les ordi-
nateurs portables récents en integrent généralement un, alors vous devez
vous en procurer un. Sivous utilisez Windows 7 ou une version ultérieure,
le stack (ou pile) Bluetooth, c’est-a-dire le programme de communication
avec ce support, est préinstallé. Vous n’avez donc rien de plus a faire.
Linstallation s’effectue en arriere-plan lorsque vous raccordez le module sur
un port USB disponible. Toutefois, vous devez ajouter un nouvel appareil
Bluetooth dans votre ordinateur, car le shield Bluetooth doit étre identifié
par le systéeme d’exploitation. Nous le ferons ensemble. Mais avant, nous
allons établir une connexion entre le moniteur série et le shield Bluetooth
afin de procéder a quelques essais et ajustements. Pour commencer, bran-
chez le shield sur la carte Arduino.

Pont entre les broches
GND et Reset

i Broches d'alimentation

Raccordez I’entrée Reset, qui est active au niveau LOW, a la masse de la
carte.

ATTENTION AU RACCORDEMENT !

Comme vous créez un pont, faites trés attention a bien raccorder la broche
Reset a la broche GND ! A la moindre erreur, vous risquez de produire un
court-circuit.

Vous devez préalablement avoir connecté le shield Bluetooth. Mais avant
cela, examinez attentivement la rangée de broches correspondantes.
Lorsque vous avez créé le pont comme illustré, la LED DI de la carte se
met a clignoter rapidement. C’est bon signe ! Le shield Bluetooth dispose
de deux petits interrupteurs coulissants.

Partie Il. Les montages

Alimentation

Mode

Comme vous utilisez I'’Arduino Uno, l'interrupteur du haut doit étre en
position 5 V. Lors de la configuration de la carte, I'interrupteur du bas doit
étre en mode To FT232, ce qui signifie que la transmission des données
s’effectue au moyen de 'ATmega8U2.

Mode configuration

00000000

Terminal

Transmission de données par cable

Dans ce cas, la carte Arduino est utilisée comme interface entre un pro-
gramme de terminal, comme le moniteur série ou PuTTY, et le shield
Bluetooth. Vérifiez que vous avez bien sélectionné le port COM de la carte
Arduino, car la communication avec le shield s’effectue encore de facon
filaire. Une autre intervention est requise de votre part, car le port série ne
doit pas étre bloqué par I’Arduino. Raccordez la broche Reset a la masse
afin que le microcontroleur se trouve en mode de réinitialisation. Ensuite,
la configuration du shield peut commencer. Ouvrez le moniteur série. La
communication avec le shield Bluetooth s’effectue au moyen de com-
mandes AT (AT signifie Attention) qui, autrefois, servaient a configurer
les modems. Ce protocole a perduré jusqu’a aujourd’hui et il est encore
utilisé pour la configuration de divers appareils. Pour vous assurer que
le shield Bluetooth est correctement raccordé, saisissez AT, puis appuyez
sur la touche Entrée. Vérifiez au préalable que la vitesse de transmission
a bien été réglée sur 9 600 bauds et que l'option Pas de fin de ligne a été
sélectionnée.

<« Figure 20-4
Configuration du shield
Bluetooth

<« Figure 20-5
Mode configuration du
shield Bluetooth

Montage 20. Communication sans fil par Bluetooth

367

Figure 20-6 »
Réponse du shield BT

Figure 20-7 »>
Nouveau nom du shield BT

Réponse du shield Bluetooth :

coms

S oEm

[ar

| [Envoyer |

0K

v

Défilement automatique

[Nouvele igne

v | [3600 baud

v [Effacer a sortie
J

Si tout fonctionne correctement, le shield Bluetooth répond oK.

Nommer le shield BT

Vous devez maintenant nommer le module au moyen de la commande

AT+NAME suivie du nouveau nom.

coms

S o

[ar+navemysooy|

| [Envoyer |

OKsetname

A

v

v| [Effacer a sortie
J

[¥) Défilement automatique [Nouveleligne v | [9600 baud

Je 'ai nommé MyBTe@1. Vérifiez qu’il n’y a pas d’espace entre la commande
AT et action que vous voulez exécuter. Le module confirme l’attribution
du nom par OKsetname. Le code Pin qui protége par défaut la communi-
cation contre les accés indésirables est 1234. Personnalisez-le également.

Modifier le code Pin du shield BT

Saisissez la commande AT+PIN puis saisissez le nouveau code Pin afin de
définir un nouveau code de jumelage.

368

Partie Il. Les montages

lA'rmmwmnl == H Envoyer

OKsetname Al

v

) Défilement automatique [v/ [s600baud | [Effacerlasortie

Modifier la vitesse de transmission du shield
BT

Vous pouvez évidemment aussi modifier la vitesse de transmission qui est
définie par défaut sur 9 600 bauds. Utilisez a cette fin la commande AT+BAUDx
suivie de la nouvelle vitesse de transmission. Le petit x est un code qui
correspond a une certaine vitesse qui est indiquée dans le tableau suivant :

Paramétre Vitesse de transmission

BAUD1 1200
BAUD2 2400
BAUD3 4800
BAUD4 9600
BAUDS 19 200
BAUD6 38 400
BAUD7 57 600
BAUD8 115200

Méme si je conserve le débit prédéfini de 9 600 bauds, je saisis la commande
suivante pour en illustrer le fonctionnement :

(AT+BAUD4 H Envoyer |

(0K9600

Ve é sur «Envoyer »... [Noweleligne v| [9600baud v/ [Effacerlasortie

5]

<« Figure 20-8
Nouveau code de jumelage
du shield BT

<« Tableau 20-3
Vitesses de transmission

<« Figure 20-9

Nouvelle vitesse

de transmission du shield
BT

369

Montage 20. Communication sans fil par Bluetooth

Figure 20-10 »
Ajouter un nouveau
périphérique Bluetooth

Le message 0k9600 indique que le débit a bien été défini sur 9 600 bauds.

Ajout d’un nouveau shield BT

Maintenant que le shield BT a été configuré, il va pouvoir étre identifié
par le systéme d’exploitation. Cliquez sur I'icone bleue Bluetooth avec le
bouton gauche de la souris pour afficher le menu suivant.

Ajouter un périphérique Bluetooth
Autoriser la connexion d'un périphérique

Afficher les périphériques Bluetooth

Envoyer un fichier

Recevoir un fichier

Joindre un réseau personnel
Ouvrir les paramétres
Supprimer licéne
SR S 00/ 01/2018

Sélectionnez la commande A4jouter un périphérique. La boite de dialogue
qui apparait énumere tous les adaptateurs Bluetooth qui sont installés dans
le systeme d’exploitation. Le shield BT y figure sous son nouveau nom.
Cliquez sur Suivant. Ensuite, vous devez sélectionner un mode de jumelage.
Si vous utilisez un code, choisissez 'option avec code et saisissez le code
de jumelage dans le champ correspondant. Un message devra apparaitre,
vous confirmant que Iinstallation a réussi.

Lappareil apparait aussi dans le Gestionnaire de périphériques Windows.
Vérifiez quun port COM lui a bien été attribué, car c’est par ce biais que
s’effectuera la communication avec le shield BT. Notez que les ports COM
de votre ordinateur ne seront pas forcément les mémes.

Mais n’est-il pas possible d’utiliser I’Arduino-Talker présenté dans le mon-
tage précédent pour la communication Bluetooth ? Cela nous éviterait
d’avoir a saisir ces lignes de commandes compliquées. Bien sur, c’est par-
faitement possible !

Realisation du circuit

Nous allons maintenant pouvoir tester le shield Bluetooth. Vous aurez
besoin du code du sketch du montage précédent sur 'Arduino-Talker. Au
préalable, vous devez évidemment supprimer la réinitialisation au moyen
du petit cable de patch et faire passer la carte du mode configuration au

Partie Il. Les montages

mode opérationnel. Faites glisser le curseur vers la gauche en position
To Board :

Mode opérationnel Mode configuration

Les données circulent alors comme illustreé sur la figure suivante :

Mode opérationnel

00000000

Terminal

00000000

Adaptateur BP
Transmission filaire

Transmission radio T

Le transfert des données s’effectue maintenant par liaison radio. C’est ainsi
qu’elles sont acheminées jusqu’au port série de la carte Arduino en passant
par le shield Bluetooth.

A propos du schéma du mode opérationnel, le programme de terminal
doit bien étre connecté a un port COM ? Est-ce le méme que celui utilisé
par le moniteur série pour la communication avec 'Arduino ?

Bien siir que non ! Le port COM du moniteur série est directement raccordé
a la carte Arduino. Il s’agit d’'une communication filaire. Ici, nous voulons
communiquer au moyen d’une liaison radio et c’est pour cette raison que
nous avons besoin d’un adaptateur Bluetooth. Cet adaptateur détecte les
périphériques Bluetooth — comme le shield Bluetooth — qui se trouvent a
proximité et les ajoute a votre systéme afin que vous puissiez y accéder par
une liaison sans fil. Si I'ajout du shield Bluetooth a réussi, un nouveau port
COM apparait sur votre ordinateur. Vous pouvez alors établir le contact
avec votre programme de terminal par le biais de ce port qui représente

<« Figure 20-11
Les deux modes du shield
BT

<« Figure 20-12
Mode opérationnel
du shield Bluetooth

Montage 20. Communication sans fil par Bluetooth

372

Figure 20-13

Shield BT et shield des
LED enfichées sur la carte
Arduino

le shield Bluetooth. Nous en sommes la. Vous pouvez continuer a utiliser
votre moniteur série pour solliciter le shield Bluetooth par liaison radio. Il
vous suffit de sélectionner le port COM correspondant a I'aide de la com-
mande Outils | Port.

Nous voulons maintenant procéder au test de 'ensemble. Chargez le sketch
de 'Arduino-Talker sur la carte Arduino. Pensez a vérifier que la vitesse
de transmission du sketch et celle du shield BT concordent. Elles doivent
toutes les deux étre réglées sur 9 600 ou 38 400 bauds, par exemple.
Essayez différentes vitesses afin de déterminer lesquelles sont possibles. Si
vous rencontrez des problémes lors du téléversement, déconnectez provi-
soirement le shield BT de la carte Arduino. Une fois que tout a fonctionné
correctement, enfichez la shield des LED du montage de I'Arduino-Talker
— si vous I’avez fabriqué — sur le shield BT.

Voici ce que cela donne :

Shield d'affichage —— «

Shield Bluetooth Alimentation externe

Carte Arduino ——> N

Comme vous pouvez le constater, apres le téléversement du sketch
Arduino-Talker, la liaison USB est superflue et vous pouvez la supprimer.
Pour finir, vous pouvez connecter une batterie de 9 V a la prise de I'ali-
mentation en tension externe. La carte Arduino devrait étre autonome et
ne plus recevoir que les instructions par Bluetooth. Jetez un dernier coup
d’ceil au Gestionnaire de périphériques. Sélectionnez le bon port COM
dans I'IDE Arduino et ouvrez le moniteur série afin de choisir la vitesse de
transmission correcte et la configuration Saut de ligne (CR). Ensuite, vous
pouvez saisir une commande. Les LED correspondantes doivent clignoter
sur le shield des LED.

Au lieu du port COM Arduino, connectez-vous au port COM Bluetooth,
comme je viens de le faire avec le moniteur série. Fermez préalablement
le moniteur série, sinon le port COM sera occupé par ce programme. La
communication avec ’Arduino-Talker s’effectue alors par liaison radio.

Partie Il. Les montages

Pz [@.on | [@.of
Pts (@ On | [@.of
it (@00) [@ 08
pots (@00 | (@ o8
Prts (@ On | [@ of
Pn07 (@00 | [@ of
Pnog (@00 | [@.0f
ety @0 J[@ ot |[@8ek |
Patt (@00 | ([@of | [@Bk |
Pt (@00 | (@06 | [@8ek]
iz [@on |[@o |[@Bx |
P13 (@0 |[@o0i][@Bek |

a@x J@au]

@ COM-Status |4 5340070 57 Port 09 set to PW-Level of 70

J
]
]
]
J
|
|

A Figure 20-14
Commande du shield
Bluetooth a l'aide de
l'application Arduino-Talker

LLe module Bluetooth HC-06

Il existe d’autres modules Bluetooth intéressants et bon marché. Parmi
eux, j’aimerais vous présenter le module HC-06.

<« Figure 20-15
Le module Bluetooth HC-06

Il permet également d’établir des liaisons Bluetooth. Toutefois, bien que ce
module possede une alimentation en tension de +5V, les lignes de don-
nées RX/TX du port série fonctionnent en 3,3 V. Méme si cela ne devrait
pas poser de problémes, c’est néanmoins risqué. Voici un petit circuit
comportant deux résistances qui font passer le niveau de +5V a +3,3 V.

Montage 20. Communication sans fil par Bluetooth 373

374

Figure 20-16 >
Passage du niveau
de+5Va+33V

Figure 20-17 »>
Un diviseur de tension

_____________ Arduino__________ _HC-06
33V 1 33V
RX @ @l TX

La ligne émettrice TX de I’Arduino fonctionne en +5V, ce qui est trop élevé
pour le module HC-06. La ligne émettrice TX de ce dernier fournit seule-
ment 3V, ce qui suffit a PArduino et ne nécessite donc pas d’ajustements.
Le diviseur de tension illustré permet de ramener la tension de +5 V a
3,3 V. Revoyons le principe du diviseur de tension.

+5V
U1 R1
U
u2| [R2 u2
GND O O
GND

La tension d’entrée U de +5 V se trouve sur le coté gauche et la tension de
sortie U, se trouve du coté droit. Cette derniere n’a pas encore véritable-
ment de valeur, puisque les deux résistances R, et R, n'ont pas encore non
plus de valeurs definies. La tension de sortie U, est appliquée a la résistance
R, ce qui signifie qu’une tension est ajustée entre les deux résistances. Une
partie de la tension d’alimentation U, qui est de +5 V, chute a travers de R,
et I'autre a travers R,. Pour que la tension requise de 3,3 V chute a travers

Partie Il. Les montages

de R, elle doit chuter de 1,7 V a travers R, Les rapports de tension sont
équivalents a ceux de la résistance et nous pouvons donc établir la formule
suivante : la tension totale (U) rapportée a la résistance totale (Rl + Rz)
est égale a la tension partielle (U,) rapportée a la résistance partielle (R,).
Traduit en langage mathématique, cela donne :

U U,
Ri+ R, R,
I ne reste plus qu’a déplacer R, et on obtient le résultat suivant :
R,
b= ——7—---U
27 R+ R,

Si vous choisissez les valeurs de résistance suivantes, par exemple, vous
obtenez un résultat plausible :

R,=12KetR,=22K
2,2K

=—————-5V=324V
2K +2,2K

2

La valeur de 3,24 V est tres proche des +3,3 V requis et elle permet donc
de travailler. Méme si vous ne disposez pas des deux valeurs de résistance
citées, ce n’est pas dramatique, car trois valeurs identiques sont nécessaires.
Le diviseur de tension peut aussi étre fabriqué avec des résistances de 1K.

Exercice complémentaire

Essayez de diffuser différents sons par une liaison Bluetooth avec un élé-
ment piézoélectrique. Peut-étre devrez-vous légérement adapter le pro-
tocole. Ecrivez le votre, car vos idées différeront sans doute des miennes.
Lessentiel est que le circuit et le sketch forment un tout et qu’ils soient
sur la méme longueur d’onde.

Problemes courants

Vérifiez ce qui suit en cas de probleme de commande des sorties numériques.
o Le cablage est-il correct ?
e Pas de court-circuit éventuel ?

e Vérifiez que vous utilisez le port COM adéquat. Cela m’est déja arrivé
et j"ai mis du temps a localiser l'origine du probleme.

Montage 20. Communication sans fil par Bluetooth

375

376

e Sivous utilisez un autre programme de terminal a la place du moni-
teur série, comme PuTTY, pour la saisie, assurez-vous d’abord qu’il
est correctement configuré. Il est parfois nécessaire de faire des essais
afin de trouver les bons parametres.

Qu’avez-vous appris ?
e Vous avez appris a établir une connexion sans fil Bluetooth.

e Nous avons réutilisé les commandes générées par le montage précé-
dent dans le moniteur série comme entrée du shield Bluetooth pour
commander I'affichage.

Partie Il. Les montages

Montage

Communication 21
reseau

Avant de connecter votre carte Arduino Uno a votre réseau domestique ou
a Internet, vous devez savoir quelques petites choses. Dans ce montage,
nous allons donc étudier les bases de la communication réseau. A I'aide d’'un
shield complémentaire connecté a votre Arduino Uno, vous raccorderez
la carte a Internet au moyen d’un cable Ethernet. Une fois la connexion
établie, le microcontréleur transmettra des données qui seront visualisées
sur une page web. Nous profiterons également de ce chapitre pour dresser
une rapide introduction au langage HTML.

Qu’est-ce qu’un réseau ?

Le plus gros réseau que "Homme utilise quotidiennement est le World
Wide Web. 1l s’agit de I'interconnexion d’une multitude de systémes infor-
matiques en contact les uns avec les autres dans le monde entier. On parle
de réseau des l'instant ou deux ordinateurs sont associés via un support
de transmission approprié (par exemple : cable Ethernet, fibre optique
ou WLAN). Vous pouvez I'imaginer comme un cerveau contenant plu-
sieurs centaines de milliards de cellules nerveuses. Chacune d’elles possede
jusqu’a dix mille synapses. Ce sont des voies de communication qu’elles
utilisent pour transmettre ou échanger des informations. Chaque cellule
nerveuse du cerveau figure un ordinateur en contact avec d’autres systemes
au moyen des synapses — donc de sa carte réseau (ou de ses cartes le cas
échéant).

377

378

Figure 21-1»
Petit réseau avec carte
Arduino

Figure 21-2 »
Connecteur RJ45
d'un cable de réseau

= @ I@ IT5
O, P %%

@
&’ Arduino

Les différents systemes informatiques, que j’ai appelés IT1a IT7 sur la figure
21-1 pour plus de commodité, sont reliés entre eux au moyen des cartes ou
plutot des cables de réseau. Cette représentation est bien str simplifiée,
car les composants du réseau sont par exemple reliés par des switches
dans la réalité. Ces répartiteurs ou coupleurs de réseau transmettent les
données de maniére intelligente aux différents utilisateurs. La figure 21-2
montre un connecteur de type RJ45 d’un cable réseau couramment utilisé.

Je pense que vous avez déja vu une fiche de cette sorte puisque votre ordi-
nateur est relié a coup sir par un cable de réseau au routeur qui établit
une liaison vers votre fournisseur d’acces, autrement dit vers Internet.

I n'y a pas de prise femelle pour cette fiche sur la carte Arduino car cette
derniére ne dispose pas d’une connexion réseau. Un composant réseau
supplémentaire est donc nécessaire.

Partie Il. Les montages

La figure 21-3 montre un shield Ethernet, qui dispose en plus d’un socle
microSD. Vous pouvez y stocker temporairement des données, mais la
n’est pas le sujet. Vous trouverez de plus amples informations sur le shield
Ethernet a I’adresse suivante :

https://www.arduino.cc/en/Guide/ArduinoEthernetShield

Nous avons déja utilisé plusieurs fois le mot Ethernet. Qu’est-ce que ca
veut dire ? Le moment est venu d’aborder certains points spécifiques aux
réseaux pour le savoir.

Ethernet

Le mot Ethernet qualifie une technologie cablée pour transmettre des
données. Depuis les années 1990, elle est Ia norme pour toute une gamme
de technologies LAN (Local Area Network). Le transfert des données est,
en principe, assuré par un cable a paires torsadées (Twisted-Pair-Cable)
selon la norme CAT-5 ou supérieure.

<« Figure 21-3
Shield Ethernet

Montage 21. Communication réseau

TCP/IP

Ethernet utilise un protocole appelé TCP (Transfer Control Protocol,
protocole de controle de transfert) pour transmettre des données.
Ce protocole permet de transférer des informations au moyen d’un réseau
local ou global et garantit une communication sans erreurs. Des méca-
nismes permettent, en cas d’erreur de données menacante, de corriger ou
de retransmettre les paquets de données a transférer. La désignation IP
(Internet Protocol) concerne I'adressage des paquets de données a transférer
qui doivent étre acheminés de I’émetteur a un destinataire bien défini. Ce
protocole assure donc I'adressage des paquets de données a transmettre.
Chaque utilisateur du réseau posséde une adresse précise, comparable au
numéro de maison dans une rue. Pour qu’un colis puisse étre par exemple
livré a coup str par la Poste, les numéros des maisons ne doivent pas étre
en double, ce qui est le cas normalement. L'IP est toujours indiqué ou
utilisé en rapport avec le TCP.

Adresse IP

L’adresse IP d’un utilisateur doit satisfaire a 'exigence d’unicité dans un
réseau. Elle est affectée a un appareil qui fait partie du réseau, garantissant
ainsi qu’il est adressable et accessible. Les adresses IP de la notation Ipv4
sont composées de quatre octets (32 bits).

32 bits

Octet 1 Octet2 Octet3 Octet4

(192](168)(2) [100]

Cette adresse a été attribuée par mon routeur a mon PC, afin que je sois
disponible sur le réseau.

Masque de réseau

Une adresse IP comprend toujours une partie réseau et une partie hote.
Le masque de réseau définit quant a lui combien d’appareils doivent étre
atteints dans un réseau et lesquels se trouvent dans d’autres réseaux.

AdresselP(192) (168) (2] (100)
Masque de réseau(255) (255) (255) (0)

Partie réseau Partie hote

Partie Il. Les montages

Pour parvenir a la partie hote, I’'adresse IP est combinée au masque
de réseau par une opération ET. D’apres le masque précédent, il est
théoriquement possible d’avoir 2° = 256 ordinateurs dans le réseau.
Je dis bien théoriquement, car 255, par exemple, a une signification parti-
culiere. Des détails supplémentaires sortiraient du cadre de ce livre, c’est
pourquoi je vous invite a consulter la littérature spécialisée ou a regarder
sur Internet.

Adresse MAC

L’adresse MAC (Media Access Control) doit étre sans ambiguité a I’échelle
mondiale. Elle a été attribuée a chaque adaptateur de réseau. Elle se com-
pose de six octets, les trois premiers contenant un code fabricant OUI
(Organizational Unit Identifier). Les trois autres octets contiennent I'indi-
catif de I’appareil, assigné par le fabricant en question. Voici un exemple
d’adresse MAC pour une carte réseau :

1C-6F-65-94-D5-1A

Passerelle

Une passerelle (gateway, en anglais) est un passage vers une zone parti-
culiére qui, rapporté a notre thématique, peut étre appelé passerelle de
réseau. De quel appareil pourrait-il s’agir ? Le routeur, qui se trouve a
moitié sur Internet, passe pour étre une passerelle. Mon routeur a par
exemple 192.168.2.1 comme adresse [P et transmet mes demandes a mon
fournisseur d’acces, c’est-a-dire sur Internet. Si vous ouvrez une console
DOS et que vous écrivez la commande ipconfig /all, vous obtenez, entre
autres, les indications suivantes :

Passerelle par défaut :192.168.178.1
Serveur DHCP. :192.168.178.1

Cable résoa-auE <« Figure 21-4
¢ Shield Ethernet Shield Ethernet et carte
% Arduino
Cable USBi Wy

c Carte Arduino

Voyons de quels composants vous avez besoin.

Montage 21. Communication réseau

Tableau 21-1 »
Liste des composants

Composants nécessaires

Ce montage nécessite les composants suivants.

Composant

1 shield Ethernet

1 cable réseau

1 shield d'entrée analogique
(ou un potentiomeétre distinct)

ATTENTION AU CABLAGE !

Figure 21-5 >
Modeéle client-serveur

Utilisez un céble normal pour relier votre shield Ethernet a votre routeur.
Ces cables sont jaunes, blancs ou méme noirs. Ne vous servez pas d'un
cable réseau rouge entre votre routeur et le shield Ethernet, car il s'agit
généralement d'un cable croisé qui ne doit étre employé que pour relier votre
shield directement a la carte réseau de votre ordinateur. Les lignes de réception
et démission sont alors croisées.

Le sketch suivant permet d’utiliser le shield Ethernet comme un serveur
web. Quand vous passez par un navigateur web (tel Firefox, Opera ou IE)
pour vous connecter a Internet, vous établissez une liaison avec un serveur
web (voir figure 21-5).

Client 1
= Client 5
Client 2 @
/
g [Serveur

Client4

Client3

Partie Il. Les montages

La figure 21-5 montre un serveur (fournisseur) au centre, qui répond aux
requétes de nombreux clients (utilisateurs). Un serveur est un logiciel qui
réagit a une demande de contact venant de 'extérieur et délivre des infor-
mations. Il peut s’agir d’'un serveur mail ou FTP ou encore d’un serveur
web. Un client peut étre un client mail, tel que Thunderbird ou Outlook.
S’il s’agit d’un client web, cela peut étre Firefox, Opera ou Chrome, tous
déja mentionnés dans ce livre. Prenons maintenant un exemple concret,
dans lequel le shield Ethernet, en tant que serveur web, doit envoyer les
valeurs des entrées analogiques de la carte Arduino. La figure 21-6 offre
un apercu de Iaffichage dans le navigateur web.

Valeurs des entrées analogiques

Broche analogique 0 : 356

Broche analogique 1 : 710

Broche analogique 2 : 866

Broche analogique 3: 454

Broche analogique 4 : 415

Broche analogique 5: 349

Est-ce que cela signifie que vous allez apprendre a programmer un
site Internet ? Eh oui, on ne peut pas faire autrement, mais soyez ras-
suré. Nous n’allons qu’effleurer le sujet, car celui-ci pourrait sans peine
remplir toute une bibliotheque. Les sites Internet sont programmeés en
HTML (Hypertext Markup Language). 1l s’agit d’'un langage de balisage
a base de texte permettant par exemple de représenter du texte, des
images, des vidéos ou des liens sur un site Internet que le navigateur
web peut lire et afficher. Vous trouverez ci-aprés la trame de base d’un
site, que nous remplirons par la suite pour présenter nos informations.
La plupart des éléments HTML sont identifiés par des paires de balises
(tags). 11 y a toujours une balise de début (ouvrante) et une balise de fin
(fermante). La figure 21-7 montre la trame de base en question, les paires
correspondantes étant indiquées en couleurs.

A Figure 21-6

Affichage de la page HTML
dans le navigateur web
(représentation numérique
et graphique)

Montage 21. Communication réseau

383

384

Figure 21-7 »>
Trame de base
d'un site Internet

Figure 21-8 »
La paire de balises title

((<htmi>)
o
i Tite
 (</head>

: Contenu du site

(Sihtmb)

Les lignes pointillées en rouge vous permettent de voir les formations
de paires. Les différentes balises ou éléments HTML sont constitués par
les noms des éléments entre chevrons. Voyons maintenant une paire de
balises de plus pres :

Balise de début Balise de fin

Titre (<ftitle>

Cette paire génere le titre du site Internet, le texte se trouvant entre la
balise de début et la balise de fin. La balise de fin présente le méme nom
d’élément que la balise de début, cependant il est précédé d’une barre
oblique (appelée également slash).

Sketch Arduino

Le sketch initialise un serveur web et fournit des données a un client —
C’est-a-dire votre navigateur web.

#include <Ethernet.h>

byte MACAddress[] = {OxDE, ©xAD, OxBE, OxEF, OxFE, OxED}; // Adresse MAC
byte IPAddress[] = {192, 168, 178, 200}; // Adresse IP
int const HTTPPORT = 80; // Port HTTP 80 (port standard)
String barColor[] = {"ffeeee", "eeffee", "eeffff",

- "ffffoe", "ffeoff", "550055"}; // Couleurs RGB pour

// barres de couleur
#define HTML_TOP "<html>\n<head><title>Server Web Arduino</title></
= head>\n<body>"
#define HTML_BOTTOM "</body>\n</html>"
EthernetServer myServer(HTTPPORT); // Démarrage du serveur web sur le
// port indiqué

void setup() {
Ethernet.begin(MACAddress, IPAddress); // Initialisation Ethernet
myServer.begin(); // Démarrage du serveur

}

Partie Il. Les montages

void loop() {
EthernetClient myClient = myServer.available();
if(myClient) {
myClient.println("HTTP/1.1 260 OK");
myClient.println("Content-Type: text/html");
myClient.println();

myClient.println(HTML_TOP); // HTML début
showvalues(myClient); // Contenu HTML
myClient.println(HTML_BOTTOM); // HTML fin

}

delay(1); // Courte pause pour navigateur web

myClient.stop(); // Fermeture connexion client

}

void showValues(EthernetClient &myClient) {
for(int i = 9; i <6; i++){

myClient.print("Analog Pin ");
myClient.print(i);
myClient.print(": ");
myClient.print(analogRead(i));
myClient.print("<div style=\"height: 15px; background-color: #");
myClient.print(barColox[i]);
myClient.print("; width:");
myClient.print(analogRead(i));
myClient.println("px; border: 2px solid;\"></div>");

Pour accéder au serveur web Arduino, écrivez I’adresse IP du code de
sketch dans la ligne d’adresse de votre navigateur web Arduino. Dans mon
cas, 'adresse est la suivante.

« > € = |®| httpy/192.168.178.200/ 0@ | '\ ®

Si cette indication vous semble trop énigmatique, vous pouvez bien sir
choisir une adresse plus parlante :

4 = C i | ® btipy/arduino/ 00"‘ ®

1l vous suffit d’adapter dans Windows le fichier hosts avec des droits d’ad-
ministrateur sous

C:\Windows\System32\drivers\etc

et d’ajouter la ligne dans laquelle j’ai indiqué le nom Arduino :

Montage 21. Communication réseau

385

386

Figure 21-9 >
Parameétres de sécurité
pour antivirus

localhost name resolution is handled within DNS itself.
#

127.0.0.1 localhost
#

i1 localhost
192.168.178.200

arduino

L’appel est alors plus simple et vous n’avez pas besoin de retenir 'adresse
IP. 1 arrive parfois qu’un logiciel antivirus interdise I’acces au fichier. Dans
Antivir, décochez la case illustrée, corrigez le fichier, puis cochez a nou-
veau la case.

Généralités > Sécurité ? | Aide
D Sécurité PC Exécution automatique
Bloquer Ia fonction Autorun
&) séauité Intermet [¥]Exdure les CD et DVD
B cénéralités Protection systéme
Catégories de dangers | Protéger Je fichier héte Windows des modifications|
::t:‘:“" e Protection cu produit
[VProtéger les processus dun arrét non souhaité
WML Protection étendue des processus
Evénements N ¥ :
Rapports Protéger les fichiers et entrées de registre de toute manipulation
Répertoires
Avertissements sonores
Avertissements

Examinons la signification de ce sketch.

Revue de code

La bibliotheque Ethernet.h doit étre incorporée pour qu’il soit possible
d’utiliser la fonctionnalité du shield Ethernet.

Peut-étre croyez-vous qu’il y a une faute de frappe dans la variable HTTPPORT,
et qu’il s’agit-il de HTMLPORT puisqu’il est question ici de pages HTML ?
Cest vrai qu'on s’y perd un peu au début. HTTP est la forme abrégée de
HyperText Transfer Protocol. Comme vous I’avez peut-étre remarqué, on a
affaire a un grand nombre de protocoles différents en informatique. Quand
il s’agit de pages web, ce protocole est chargé de la transmission. Quand
vous tapez une adresse web dans votre navigateur, celle-ci commence la
plupart du temps par http:// et non par html://. Passons maintenant a la
définition du port. Le port standard pour des serveurs web qui utilisent le
protocole HTTP est le numéro 80. Imaginez-vous ce numéro comme une
sorte de bifurcation sur la route du réseau, ou d’autres protocoles circulent
encore. Voici une petite liste d’applications dont vous avez peut-étre déja
entendu parler.

Partie Il. Les montages

Objet <« Tableau 21-2

Port Service et ,
Petite liste de numéros

21 FTP Transfert de fichier via FTP-Client de port et services
25 SMTP Envoi d’e-mails
110 POP3 Accés client a un serveur de messagerie

Je voudrais encore vous parler brievement de la structure d’une page HTML.
La seule partie variable de notre page est la partie que j’ai appelée Contenu
de ma page. Tout ce qui est au-dessus ou en dessous ne change pas. Cest
pour cette raison que j’ai créé les raccourcis pour la partie supérieure :

dans la définition HTML_TOP et pour la partie inférieure :

(abodys

dans HTML_BOTTOM. Vous retrouverez la méme chose dans le sketch, avec
les lignes suivantes :

#define HTML_TOP "<html>\n<head><title>Server Web Arduino</title></head>\
n<body>"
#define HTML_BOTTOM "</body>\n</html>"

La séquence d’échappement \n provoque un saut de ligne, de telle sorte
que le code HTML soit formaté d’une certaine maniere et que tout ne
soit pas mis sur une seule ligne. Venons-en maintenant au déroulement
du sketch proprement dit. Diverses parties du programme sont, comme
toujours, initialisées dans la fonction setup.

void setup() {
Ethernet.begin(MACAddress, IPAddress); // Initialisation Ethernet
myServer.begin(); // Démarrage du serveur

}

La premiére étape consiste a doter le shield Ethernet de I'adresse MAC et
d’une adresse IP unique.

Montage 21. Communication réseau

387

388

Vous vous demandez certainement d’ou sort ’adresse IP 192.168.2.110
en question. Eh bien, c’est tout simple ! Mon routeur se trouve dans la
zone d’adresse 192.168.2 et ’'adresse d’hote 1 lui est attribuée, autrement
dit son adresse IP est 192.168.2.1. Je peux donc affecter des adresses
comprises entre 192.168.2.2 et 192.168.2.254 a d’autres utilisateurs du
réseau. Revenons a l'initialisation. La deuxiéme étape consiste a démarrer le
serveur web, de sorte qu’il puisse réagir a des demandes entrantes. Celui-ci
épie le réseau et reste sur le qui-vive jusqu’a ce qu’un client I'aborde et
lui demande quelque chose. Il accomplit ensuite son travail et délivre les
données avant de se remettre a nouveau en position d’attente. Passons
maintenant au traitement proprement dit dans la fonction loop. La présence
de la demande d’un client est d’abord vérifiée :

EthernetClient myClient = myServer.available();
if(myclient){...}

Si I'interrogation if est satisfaite, le serveur peut commencer a envoyer
ses informations au client.

Vous remarquerez que cette interrogation n’est que la forme abrégée du
code suivant :

if(myClient == true){...}

Linterrogation sur true est facultative du fait que si 'expression est vraie
dans P'instruction if, c’est le bloc subséquent qui est exécuté. Vous n’avez
pas besoin de vérifier a nouveau avec == que l’expression est vraie. Vous
comprenez maintenant ? Donc, si un client a effectué une demande aupres
du serveur, ce dernier renvoie pour commencer les lignes suivantes :

myClient.println("HTTP/1.1 200 OK");
myClient.println("Content-Type: text/html");
myClient.println();

Dans la premiere ligne, le serveur confirme la demande du client en
transmettant la version 1.1 du protocole HTTP, suivie du code d’état 200
indiquant que la demande a été traitée avec succes et que le résultat de
la demande est transmis dans la réponse. La deuxiéme ligne indique ce
que l'on apelle le type MIME, a savoir le genre des données envoyées par
le serveur (text/html dans notre cas). S’agit-il d’informations purement
textuelles ou une image est-elle éventuellement délivrée au client ? Les
données transmises doivent alors étre bien sir interprétées en conséquence
et non pas affichées en texte clair. Passons maintenant au code, qui envoie
les données lues de votre carte Arduino :

Partie Il. Les montages

myClient.println(HTML_TOP); // HTML début
showvalues(myClient); // Contenu HTML
myClient.println(HTML_BOTTOM); // HTML fin

Les taches de HTML_TOP et HTML_BOTTOM vous sont connues. ’appel des don-
nées de la carte est exécuté par la fonction showvalues que je vous redonne
ici :

void showvalues(EthernetClient &myClient) {
for(int i =09; i <6; i++){
myClient.print("Analog Pin ");
myClient.print(i);
myClient.print(": ");
myClient.print(analogRead(i));
myClient.print("<div style=\"height: 25px; background-color: #");
myClient.print(barColoxr[i]);
myClient.print("; width:");
myClient.print(analogRead(i));
myClient.println("px; border: 2px solid;\"></div>");

Vous noterez que dans I'en-téte de fonction, il y a un « et » commercial (8)
devant le parametre myClient. Ce signe distinctif est en fait une référence.
Quand on passe une variable comme parametre d’une fonction, celle-ci
travaille avec une copie de cette variable, ce qui n’a aucune influence sur
la variable d’origine. La fonction peut par exemple doubler la valeur du
parameétre. Loriginale demeure inchangée. Mais pour pouvoir utiliser 'objet
Client original dans la fonction, I'adresse mémoire de I'original est com-
muniquée au moyen de l'opérateur de référence & Dans la fonction, je
travaille quasiment avec 'original. La fonction affiche d’une part les valeurs
des entrées analogiques et de I'autre des barres horizontales. J'utilise pour
ce faire la balise div, qui peut servir de contenant pour d’autres éléments
HTML. Je m’en sers ici pour colorer une certaine zone. Il est possible de
donner des informations de hauteur ou de largeur au moyen d’une indi-
cation style. Une ligne HTML peut alors ressembler a cela :

Analog Pin @: 168<div style="height: 25px; background-color: #ff0000;
width:168px; border: 2px solid;"></div>

La zone div a ici une hauteur de 25 pixels et une largeur de 168 pixels.
Vous trouverez des informations détaillées dans la littérature spéciale ou
sur Internet.

Montage 21. Communication réseau

389

POUR ALLER PLUS LOIN

Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« selfhtml;

« cascading stylesheets ;

« div-tag.

Peut-étre avez-vous constaté, lors de votre réalisation, que les valeurs des
entrées analogiques s’affichent un point c’est tout. Si vous tournez I'un
des potentiometres, rien ne bouge sur la page Internet. C’est normal car
le navigateur web appelle une page aupres du serveur web et en assure
la présentation (ce procédé est également appelé rendu). Si le naviga-
teur n’émet aucune autre demande, le contenu de la page demeure bien
entendu inchangé. Vous pouvez toujours appuyer assez souvent sur la
touche Actualiser (F5). Mais je doute que cela vous donne satisfaction.
Modifiez plutot dans votre sketch la ligne de code ou HTML_TOP a été défini
et vous verrez que le comportement de votre navigateur changera.

#define HTML_TOP "<html>\n<head><title>Server Web Arduino</title></
head>\n \
<meta http-equiv=\"refresh\" content=\"1\">\n<body>"

Le passage suivant est décisif :
<meta http-equiv=\"refresh\" content=\"1\">

La balise meta en question demande au navigateur d’exécuter automati-
quement une actualisation (refresh) toutes les secondes. Le backslash \
a la fin de la premiere ligne définissant HTML_TOP permet que cette ligne
se poursuive sur la suivante. Faute de quoi une erreur de compilateur se
produirait.

Exercice complémentaire

Ecrire un nouveau sketch montrant, en plus des entrées analogiques, 'état
des entrées numeériques sur votre page web Arduino.

Partie Il. Les montages

Problemes courants

Vérifiez ce qui suit si la page du serveur web ne s’affiche pas.

e Avez-vous saisi la bonne adresse IP dans la ligne d’adresse de votre
navigateur ? Elle doit correspondre a celle de votre sketch.

e Pouvez-vous atteindre le serveur web en tapant une commande ping
dans la ligne de commande ? Sinon, vérifiez votre cable réseau ou
éventuellement les réglages du pare-feu. Une exécution réussie de la
commande ping donne le résultat suivant.

= Administrateur : CAWINDOWS\system32\cmid.exe - 0 u

Microsoft Win version 6.3.9600)
(c) 2013 Microsoft Corporation. Tous droits réservés.

C:\Users\Jean>ping 192.168.0.24

Envoi d'une requéte 'Ping’ 192.168.0.24 avec 32 octets de données
Réponse de 192.168.0 : octets=32 3
8 de 192.168.0 : octets=32
de 192.168.0.24 : octets=32 temp
de 192.168.0.24 : octets=32 temps=204 ms TT

Statistiques Ping pour 192.168.0.24:
Paquets : envoyés = 4, recus = 4, perdus = 0 (perte 0
Durée approximative des boucles en millisecondes :
Minimum = 8ms, Maximum = 274ms, Moyenne = 184ms

C:\Users\Jean>_

Le shield Ethernet possede certaines LED qui donnent des informations
sur P’état (voir figure page suivante).

Montage 21. Communication réseau

391

392

TX (Resp. RX) clignote quand des données sont envoyées
(Resp.regues).

& Clignote quand une collision Ethernet a été constatée.
& Réseau en Full-Duplex

& Connexion réseau a 100 Mbits/s détectée

&———— Lien réseau établi. Clignote en cas de transfert.

&——————— Shield Ethernet sous tension

Vérifiez I’affichage des LED. Les LED PWR et LINK doivent étre allumées.
La LED 100M ne s’allume que dans le cas d’un réseau 100 Mbits/s. Elle
reste éteinte pour 10 Mbits/s. Si des données sont envoyées toutes les
secondes comme dans le dernier exemple, les LED TX et RX clignotent
au méme rythme.

’ .
Qu’avez-vous appris ?
e Vous avez appris a réaliser un serveur web avec le shield Ethernet.

e Vous avez interrogé les entrées analogiques et vu comment s’affichent
les valeurs a peu de chose pres en temps réel.

e Latrame de base d’'une page HTML devrait maintenant vous étre plus
familiere.

e Vous maitrisez les notions de base relatives aux réseaux.

Partie Il. Les montages

La carte ESP32

UInternet des objets (Internet of Things en anglais, ou IoT) et ses appli-
cations sont aujourd’hui la norme et occupent une place de plus en plus
importante dans 'univers des développeurs amateurs. Ce qui était autre-
fois réalisé par des architectures client-serveur prend maintenant une
tout autre allure dans I'environnement IoT. Il a fallu faire évoluer les bus
physiques spécifiques aux applications pour les adapter aux interfaces de
réseau ouvertes telles que les réseaux locaux (LAN et Wi-Fi) ou Bluetooth.
Dans ce montage, vous allez découvrir un autre microcontroleur, ’'ESP32.
’ESP32 est un microcontroleur 32 bits bon marché et de faible puissance,
qui integre la connectivité sans fil (Wi-Fi). Lintérét de ce petit composant
est qu'on peut le programmer avec I’environnement de développement
Arduino.

Presentation de la carte ESP32

Le module ESP32 est un microcontréleur développé par la société chinoise
Espressif. Cette puce constitue le perfectionnement logique du module
ESP8266. Plus de mémoire SRAM, une vitesse de processeur plus élevée,
une communication Bluetooth, un plus grand nombre de ports (GPI0), des
capteurs tactiles, une conversion A/N et N/A sont quelques-uns des points
forts de ’ESP32, si bien que I'on rencontre de plus en plus son module
monté sur des cartes. Une carte de développeur avec une puce ESP32 est
représentée ci-dessous :

Montage

22

< Figure 22-1
['ESP32-Pico-Board V4

393

394

Figure 22-2 »
L'ESP32-Pico-Board V4
et ses composants

Il s’agit ici de PESP32-Pico-Board V4. Jetons un ceil sur ce module et voyons
de quels composants cette petite platine est constituée. Cette carte est en
vente partout a moins de 10 euros. La figure suivante montre les principaux
composants qui nous intéressent pour le moment :

Quelles sont les fonctions des composants indiqués ci-dessus ?

Reset : bouton-poussoir miniature portant le marquage EN qui permet
de redémarrer le systeme lorsqu’on appuie dessus. 1l existe également
une broche avec la méme désignation permettant de déclencher un
Reset par contact a la masse (LOW actif).

Boot : autre bouton-poussoir miniature portant le marquage BOOT,
pouvant étre utilisé en association avec le bouton EN pour charger
un firmware. Il ne nous est toutefois pas utile pour le moment, car le
téléchargement de firmware, qui sera ensuite enregistré sur la carte,
sera effectué par I'environnement de développement Arduino que
nous utiliserons.

Power-LED : petite LED qui s’allume lorsque la carte est alimentée en
tension par un port USB ou via une source externe.

Antenna : nécessaire pour la communication sans fil.
ESP32 : microcontroleur ESP32-PICO-D4.

LDO : étant donné que la carte ESP32 fonctionne sous une tension de
3,3V, la tension de 5 V issue du port USB doit étre abaissée et régu-
lée a 3,3 V par un régulateur de tension LDO (Low Dropout Voltage
Regulator).

USB-UART : il s’agit d’une puce CP1202 de Silicon Labs qui crée un pont
entre 'USB et 'UART (dispositif de communication série), assurant la
transmission de données. Le débit de transfert est d’1 Mbps.

USB-Port : ici une micro prise femelle USB 2.0 pour connecter la carte
a l'ordinateur.

Partie Il. Les montages

Les liaisons entre les différents composants sont visibles sur le schéma-bloc
fonctionnel suivant :

< Figure 22-3
Schéma fonctionnel
— en blocs de 'ESP32-
==ai] Pico-Board V4
[Signal

Examinons maintenant les différentes broches de ’ESP-32-Pico-Board ; de

nombreuses informations sont a prendre en compte. La figure suivante

montre les broches les plus importantes et leurs fonctions, comme I’ali-

mentation en tension, [0 (Entrées-Sorties), ADC (Conversion analogique-

Numérique), le bus I°C et SPI (Bus série synchrone) :
<« Figure 22-4

L'ESP32-Pico-Board V4
et ses broches

smmEmm

ESP32 Pico v4
Alimentation W

Nous voyons que certaines broches ont deux fonctions pouvant étre acti-
vées selon la programmation. Il existe des fonctions primaires et des fonc-

Alimentation

Montage 22. La carte ESP32

395

396

@0

Tableau 22-1 »
Spécifications de
['ESP32-Pico-Board

tions alternatives. Le nombre de broches a ainsi été réduit sur la carte pour
diminuer sa taille autant que possible. Afin que les informations ne soient
pas trop déroutantes, surtout pour les débutants, je n’ai représenté sur la
figure que les détails qui sont les plus importants pour nous a ce stade.
Un bon nombre de ces broches présentent d’autres fonctionnalités qui
sont secondaires pour nous. Pour en savoir plus sur le sujet, vous pouvez
consulter le site Internet suivant :

https://esp-idf.readthedocs.io/en/latest/get-started/get-started-pico-kit.html

LES TENSIONS SUR LA CARTE ESP32

Il faut bien noter que la carte, le microcontréleur ESP32, fonctionne avec une
tension de service de 3,3 V. Tout ce qui est supérieur a cette tension entraine
la destruction de la carte. La tension de service de 5V, courante sur la carte
Arduino Uno, ne doit pas étre utilisée.

Je voudrais ici présenter quelques caractéristiques importantes de PESP32-
Pico-Board, qui intéresseront certainement quelques-uns d’entre vous. La
liste n’est pas exhaustive. Pour des informations détaillées, je vous renvoie
au site du fabricant Espressif.

Spécification détaillée

Processeur 32-Bit Dual Core (deux microprocesseurs LXé 32 bits Low-Power

Xtensa)
Mémoire ® Mémoire ROM 448 Ko pour l'amorgage et les fonctions Core
interne ® Mémoire SRAM 520 Ko (8 Ko RTC FAST Memory) (On-Chip) pour

les données et les instructions

® Mémoire SRAM 8 Ko dans RTC (RTC FAST Memory) pour les
données et l'utilisation par le processeur pendant le processus
d'amorcage RTC a partir du mode Deep-Sleep

® Mémoire SRAM 8 Ko dans RTC (RTC SLOW Memory) pour l'accés
du coprocesseur pendant le mode Deep-Sleep

e eFuse 1 Ko, dont 320 octets sont utilisés pour 'adresse MAC et la
configuration de la puce. Les 704 octets restants peuvent servir aux
fonctions propres comme Flash Encryption ou U'ID de la puce.

Mémoire ® Acceés ala mémoire QSPI Flash et a la mémoire SRAM via caches
externe High-Speed

® Mémoire Flash Memory-Mapped externe de 16 Mo maximum dans
la plage de code du processeur. Compatible avec un accés 8, 16 ou
32 bits.

® Mémoire Flash/SRAM Memory-Mapped externe de 8 Mo maximum
dans la plage de données du processeur. Compatible avec un accés
8, 16 ou 32 bits. Data-Read compatible pour mémoire Flash et
SRAM, Data-Write proposé seulement pour mémoire SRAM.

® Mémoire SPI Flash externe 4 Mo. Mémoire SPI Flash Memory-
Mapped 4 Mo dans la plage de code du processeur. Compatible
avec un accés 8, 16 ou 32 bits et Code Execution.

Partie Il. Les montages

Spécification détaillée

Fréquence Oscillateur quartz 40 MHz
Wi-Fi 2,4 GHz HT40
Bluetooth BLE 4.2 (Bluetooth-Low-Energy)

Périphérie SPI, I2C, I?S, UART, CAN 2.0 et interface Ethernet ADC
12 bits (convertisseur analogique-numérique)

Capteurs Tactile, Hall et température

MLI 1 canal matériel et 16 canaux logiciels MLI (modulation de largeur
d’impulsion)
ES Broches GPIO (General Purpose Input/Output)

L’intégration de ’ESP32 et un premier test

Pour intégrer les fonctions du module ESP32 dans I’environnement de
développement Arduino, sélectionnez dans I'IDE Arduino 'option de menu
Fichier | Préréglages pour accéder a la boite de dialogue de configuration
et entrez 'URL suivante :

URL de gestionnaire de cartes supplémentaires | https://dl.espressif.com/d|fpackage_esp32_index.json

Sélectionnez ensuite 'option de menu Outils | Type de carte | Gestionnaire
de carte pour ouvrir le gestionnaire de carte éponyme. Cherchez ESP32 et
installez la bibliothéque en cliquant sur le bouton Installer.

@ Gestionnaire de carte

Type |Tout ~ | | Filrez votre recherche

esp32 by Espressif Systems

Cartes incluses dans ce paguet:

ESP3Z Dev Module, WEMOS LoLin32, WEMOS D1 MINI ESP32.
More info

w Installer

Cliquez sur 'option de menu Outils | Type de carte pour trouver une nou-
velle entrée portant le nom ESP32 Boards. Vous pouvez voir toutes les
cartes compatibles et sélectionner celle que vous recherchez (figure 22-6).

La liste est trop longue pour étre représentée ici. Lentrée qui nous importe
est ESP32 Pico Kit. Si vous avez opté pour une autre carte, vous devrez
la sélectionner dans la liste. Mais avant de ’acheter, vérifiez qu’elle figure
bien dans cette liste.

Fermer

A Figure 22-5
Installation de la
compatibilité ESP32

Montage 22. La carte ESP32

Figure 22-6 »
Sélection de votre
carte ESP32

9 sketch_dec02a | Arduino 1.8.5 -] X
Fichier Edition Croguis | Outils Aide

Formatage automatique Ctrl+T

Archiver le croquis

sketch_dec02a

Réparer encodage &L recharger

void setup{) { Moniteur série Ctrl+MajeM | ™
4Pt yonT metn Traceur série Ctrl+Maj+L
¥ WiFi101 Firmware Updater
void loop() { Type de carte: "Arduino/Genuino Uno" A
// put your main i Arduine Robot Control
1 Récupérer les informations de la carte Arciiing Rabot Motar

Arduino Gemma
Programmateur: "AVRISP mkll" Adafruit Circuit Playground
Arduino Yin Mini

Arduine Industrial 101

Graver la séquence d'initialisation

Linino One
Arduino Uno WiFi

ESP32 Arduino
ESP32 Dev Module
ESP32 Wrover Module
ESP32 Pico Kit

v

En regle générale, le pilote correspondant est installé automatiquement
par Windows 10 :

v & DESKTOP-SE1HDTR
v @ Ports (COM et LPT)
3 Sificon Labs CP210x USB to UART Bridge (COM3)

Une fois I'installation réussie, vous pouvez vous livrer a un premier test.
Cest ce que nous allons faire avec un test LED-Hello-World, qui ne devrait
pas prendre trop de temps. Mais avant de commencer, je vais vous montrer,
parallélement a I'installation sur une plaque de prototypage ordinaire, deux
solutions intéressantes pour réaliser la mise en circuit.

L’ESP32-Pico-Discoveryboard

La figure suivante montre deux modeles d’'une méme carte, que j’ai nom-
mée ESP32-Pico-Discoveryboard : a gauche, un modele basé sur une carte
au format Europe 160 x100 mm, qui a donc été soudé par vos soins, et a
droite une carte réalisée par un fabricant professionnel.

Vous connaissez déja mon penchant pour les cartes faites maison. Cest
pourquoi je vous montre ces deux solutions.

Partie Il. Les montages

ESP32-Pico-Discoveryhoard - DIY ESP32-Pico-Discoveryboard

’ESP32-Pico-Discoveryboard dispose déja des divers éléments de base,
électriques et électroniques, parmi lesquels :

e un support pour PESP32-Pico-Board ;

e des gabarits de broche ESP32 (a enregistrer avec des couleurs de votre
choix) avec des prises femelles pour une orientation et un cablage
plus faciles ;

e 10 LED dotées de résistances en série adéquates et de prises femelles ;

e 5boutons-poussoirs miniatures avec résistances de rappel (Pull-down)
correspondantes et prises femelles ;

e un potentiometre ;

o un affichage sept segments doté de résistances en série adéquates et
de prises femelles ;

e un écran LC piloté par le bus I*C et des prises femelles ;
e des rails d’alimentation pour 3,3 Vet GND ;

e une petite plaque de prototypage (Breadboard) pour loger des com-
posants électroniques supplémentaires.

Vous pouvez aussi prendre une plaque de prototypage tout a fait normale
et y connecter les composants en fonction de vos centres d’intérét. Si
vous souhaitez ne tester qu’une fois ’ESP32-Board pour connaitre ses
capacités, je vous conseille de prendre une plaque de prototypage. Et si
cela vous convient mieux, vous pouvez l'utiliser au lieu d’'une des deux
Discoveryboards. Le principal avantage est que toutes les broches de
’ESP32 sont marquées et que, comme la Discoveryboard Arduino, cer-
tains composants de base sont fournis d’office. Vous trouverez représentée
ci-apres la mise en circuit sur ’ESP32-Pico-Discoveryboard.

<« Figure 22-7
Les ESP32-Pico-
Discoveryboards

Montage 22. La carte ESP32

Tableau 22-2 »
Liste des composants

Faire clignoter avec le module
ESP32

Pour communiquer avec le monde extérieur, la carte de développeur repré-
sentée dispose, comme on I’a vu, de broches 10, 10 étant I’abréviation de
Input/Output (Entrée/Sortie en francais). Des informations peuvent étre
fournies a la carte et envoyées par ces broches, tout comme sur la carte
Arduino Uno.

Pour ce montage, nous aurons besoin des composants suivants :

Composant
Carte ESP32
1 LED rouge
orange/orange/marron
1 résistance de 330 0 l E l
3300
marron/noir/orange
1 résistance de 10 kQ) = I I i

10 kQ

1 bouton-poussoir
miniature

La figure 22-8 montre a I'aide du schéma des connexions comment réaliser
les deux sens du flux de données.

Partie Il. Les montages

<« Figure 22-8
Exemple simple
d'activités 10

Sortie

Entrée

o}

ESP32 Pico v4

La broche portant la désignation 10 21 est utilisée comme sortie et pilote
via une résistance en série, une diode électroluminescente ou LED. Dans
le sens opposé, c’est la broche portant la désignation 10 22 qui fait office
d’entrée pour interroger un bouton et la résistance de rappel (Pull-down)
qui est utilisée. La carte ESP32-Pico-Discoveryboard posséde déja des
résistances de rappel (Pull-down) a ses six boutons, bien que celles-ci ne
soient pas nécessaires (comme sur la carte Arduino Uno), car il existe des
résistances de tirage (Pull-up) internes dans P’ESP32.

<« Figure 22-9
Circuit sur 'ESP32-Pico-
Discoveryboard

Montage 22. La carte ESP32 401

402

Le code ESP32 pour interroger le bouton et commander la LED est :

define bouton 21 // Broche bouton
#define LED 22 // Broche LED

void setup() {
pinMode(bouton, INPUT);
pinMode(LED, OUTPUT);
}

void loop() {
digitalWrite(LED, digitalRead(bouton));
}

Une fois le code chargé sur la carte ESP32, le message dans I'environne-
ment de développement Arduino est un peu différent de celui auquel on
est habitué sur Arduino Uno. Par manque de place, je n’ai pas représenté
ici toutes les lignes d’édition, mais seulement un petit extrait. La derniere
ligne est importante. Elle indique un reset du module ESP32, qui vous
laisse présager que le chargement a fonctionné.

esptool.py v2.6

Serial port COM9

Connecting.....

Chip is ESP32-PIC0-D4 (revision 1)

Features: Wi-Fi, BT, Dual Core, Embedded Flash, Coding Scheme None
MAC: d8:20:1d:40:9e:e8

Changing baud rate to 921600

Changed.

Configuring flash size. ..

Auto-detected Flash size: 4MB

Compressed 8192 bytes to 47...

Wrote 8192 bytes (47 compressed) at ©x0000e000 in 0.0 seconds
(effective 10922.6 kbit/s)...

Leaving. ..

Hard resetting via RTS pin...

L’'ESP32-Board D1 R32

Il existe bien sir d’autres cartes de développeur ESP32, proposées par
différentes sociétés. Ces cartes présentent une disposition de broches dif-
férente et certaines ont un plus grand nombre de broches. Les montages
indiqués peuvent certainement étre réalisés avec d’autres cartes ESP32. 1l
faudra cependant veiller au brochage respectif, c’est-a-dire a la disposition
des broches. Vous la trouverez sur Internet. La figure 22-10 page suivante
montre une carte qui ressemble a une carte Arduino. Il s’agit de la carte
D1 R32 de la marque AZ-Delivery. Elle a le méme format que la carte
Arduino Uno et les en-tétes déja bien connus.

Partie Il. Les montages

Montage : le log de températures

Voila pour les informations préalables. Je voudrais vous présenter un mon-
tage intéressant, qui affiche non seulement une valeur de mesure locale-
ment, mais qui lui permet aussi d’utiliser le réseau Internet afin de pouvoir
y étre représentée dans un graphique. Mon objectif est de développer
avec vous un sketch (je ne suis pas sir que le terme sketch soit approprié
pour une carte ESP32, mais tant pis !). Le sketch qui suit doit établir une
connexion a votre routeur par Wi-Fi. En Allemagne, on emploie commu-
nément le terme WLAN pour désigner un réseau sans fil alors que dans
d’autres pays, on utilise généralement le terme Wi-Fi. Il y a certes de petites
différences, mais elles ne nous importent pas ici. Avant de commencer,
regardez d’abord les données d’accés Wi-Fi a votre routeur, car vous en
aurez besoin pour connecter un appareil a votre réseau domestique. Au
début du sketch, vous devez signaler a votre ESP32 que vous souhaitez
utiliser la fonctionnalité Wi-Fi. Une instruction include correspondante
supplémentaire est donc nécessaire. Supposons que les données d’acces
dans un réseau domestique soient les suivantes :

e SSID : EriksWLan ;

e mot de passe : Schnickschnack.

Le sketch commencerait ainsi :

#include <WiFi.h>
const char* ssid “EriksWLan”;
const char* password = “Schnickschnack”;

< Figure 22-10
La carte D1 R32
de AZ-Delivery

Montage 22. La carte ESP32

403

Vous avez posé la premiere pierre a ’établissement de la connexion. A
Iintérieur de la fonction setup, I'interface sérielle pour le controle de la
liaison Wi-Fi est initialisée a une vitesse de 115200 bauds et l'objet WiFi
est initialisé avec les données d’accés. Dans la boucle while a lieu une
interrogation continue de I’état de la connexion, qui passe a WL_CONNECTED
lorsque la liaison Wi-Fi a été établie. Tant que cela n’est pas le cas, la boucle
while n’est pas interrompue. Une courte pause de 500 ms est ajoutée et
un point est édité pour le controle visuel a chaque itération de la boucle.

void setup() { Serial.begin(115200);
WiFi.begin(ssid, password);
Serial.println(“Connection au réseau Wi-Fi...");
while(WiFi.status() !'= WL_CONNECTED) {
delay(500); // Courte pause
Serial.print(”.”); // Editer point si pas encore de connexion

}

Serial.println(“\nConnecté au réseau Wi-Fi"); Serial.print(“Adresse
IP: “);

Serial.println(WiFi.localIP());
}

void loop() {/* ... */}

En absence de connexion au routeur si les données d’accés sont incor-
rectes, le résultat dans le moniteur série de 'IDE Arduino s’affiche comme
indiqué ci-apres.

& coma - O b

Connection au réseau WiFi...

Défilement automatique [] Afficher I'horodatage :Nouvelle ligne v“ "115200 baud -~ |

Figure 22-11 A La série de points devenant de plus en plus longue, il faut parfois appuyer
Pas encore de connexion briévement sur le bouton Reset du module ESP32. En revanche, si la
entre 'ESP3Z et le routeur -onnexion Wi-Fi fonctionne plus ou moins directement, I'affichage dans
le moniteur série est le suivant et I’adresse IP attribuée par le routeur

s’affiche elle aussi :

404 Partie Il. Les montages

com4 - | X

[[Envoyer -
Connection au réseau WiFi...

E:;r-u-u;cl‘.r-;é au réseau WiFi

Bdresse IP: 192.165.173.68

Défilement automatique [Afficher lhorodatage %IE.Iouve.l.l.e hgne vI ;:115200 baud v: Effacer la sortie |

Voici donc les conditions preéalables a la suite de la procedure et a 'exten- A Figure 22-12
sion du sketch, car nous souhaitons obtenir une sorte de trafic par Wi-Fi. ~ Connexion établie entre
Mon routeur Fritzbox a détecté le nouvel appareil sous la forme de la 'ESP3Zetle routeur

carte ESP32 :

Signaly Namel MAC-Adresse

Réseau local

o))))

espressif D8:A0:1D:40:D8:1D X

52
24

Le serveur ThingSpeak

Pour que le processus visé de collecte et de transfert de données sur Internet
fonctionne, il nous faut une contrepartie correspondante sur Internet, qui
fasse office de serveur et qui puisse établir une liaison avec mon client local.
Comme le laisse entendre le nom du montage n° 13 « La température », le
but est de collecter des valeurs de température. Le schéma suivant vous
indique clairement le chemin que nous prévoyons entre les instances :

Capteur

de température ESP32
DS18B20 y

">

Routeur Internet

A Figure 22-13
Parcours de l'information
température a travers
les différentes instances
jusqua Internet

Montage 22. La carte ESP32 405

406

Tableau 22-3 »
Liste des composants

Pour ce montage, nous aurons besoin du composant suivant :

Composant

Capteur de température |
(thermistance) DS18B20 [

Pour notre montage, nous utiliserons ThingSpeak, un service cloud gratuit.
Avant de pouvoir l'utiliser, vous devez vous y inscrire gratuitement sur le
site Internet du fournisseur :

https://thingspeak.com/

Inscrivez-vous (je ne montre pas Iinscription ici) en confirmant I'adresse
e-mail que vous avez indiquée. Vous pourrez ensuite commencer. Une fois
inscrit, vous devez créer un Channel (une chaine, en francais), dans lequel
seront traitées, mais aussi affichées, les données que vous allez envoyer a
ce serveur. Allez dans le menu Channels puis cliquez sur le bouton New
Channel :

l:JThingSpeak“‘ Channels ~ | Apps~ | Support-

My Channels

New Channel

J’ai pour ma part entré quelques informations pour décrire la chaine et je
les ai confirmées en cliquant sur le bouton vert Save en bas de la page :

New Channel

Name Température par ESP32
Description Relevé de température par capteur DS18820
A
Field 1 Température

Partie Il. Les montages

Nous obtenons la vue suivante :

Field 1 Chart o & %

Température par ESP32

Température

ThingSpeak.com

Nous y voyons un diagramme avec les métadonnées que j’ai indiquées, qui
ne contiennent pas encore de données, ce qui est logique puisque rien n’a
encore été envoyé au serveur. Pour pouvoir le faire, vous devez générer
une clé qu'il est possible de créer dans I'onglet API Keys :

Private View Public View Channel Settings Sharing APl Keys Data Import / Export < Figure 22-14
Clé API personnelle
pour [écriture des valeurs

White AP Kejp de mesure sur la chaine
ThingSpeak
Key [HG6FDP89QBCMLT3]
Cette clé est indispensable pour envoyer les valeurs de mesure sur le serveur
ThingSpeak. Pour I'envoi d’une seule valeur mesurée a I’aide du navigateur,
il faut utiliser le mode d’écriture suivant :
Commande update API-Key Champ valeur
e | r 1 T ¥

https://api.thingspeak.com/update?api key=HG6FDP89QBCMLT3&fieldl=17

Vous devez saisir ici votre propre clé API. La description du champ se trouve
sous 'onglet Channel Settings. Apreés la description du champ, vous devez
saisir dans PURL un signe = suivi de la valeur correspondante. Lorsque
le transfert a réussi, le serveur répond par un chiffre qui correspond au
nombre de valeurs de mesure envoyées. Dans mon navigateur, j’ai entré
successivement les lignes suivantes :

https://api.thingspeak.com/update?api_key=J7HKMNNSVU2QHETK&field1=17

Montage 22. La carte ESP32 407

Figure 22-15 p-

Ma chaine de températures

408

avec les valeurs envoyées

https://api.thingspeak.com/update?api_key=37HKMNNSVU2QHETK&field1=21
https://api.thingspeak.com/update?api_key=J7HKMNNSVU2QHETK&field1=34
https://api.thingspeak.com/update?api_key=37HKMNNSVU2QH6TK&field1=4

Veillez a toujours maintenir une petite pause d’au moins dix secondes entre
les différentes saisies et de ne pas insérer d’espace vide dans la chaine de
caracteres. Cela m’est arrivé plusieurs fois et je me suis demandé pourquoi
rien ne se passait. Le résultat dans ma chaine se présente sous la forme
suivante :

Field 1 Chart o #& =

Température par ESP32

Température:34
Wed Jan 12 2022

20 20:46:03 GMT+0100

Température

20:45:30 20:45:45 20:46:00 20:46:15

Date
ThingSpeak.com

Si vous déplacez le pointeur de la souris sur I'un des points de mesure
rouges, I'infobulle vous donnera des informations supplémentaires sur la
valeur exacte ainsi que la date et 'heure. Vous avez vu comment s’effectue
le transfert des valeurs via le navigateur, mais c’est le module ESP32 qui
doit s’en charger avec la carte Arduino Uno. Cest en principe le méme
procédé, sauf que la transmission des données s’opére avec une méthode
de requéte appelée HTTP-POST. Cette requéte, qui est envoyée au ser-
veur ThingSpeak, contient de multiples informations standards, comme
un en-téte, la clé API avec la description du champ, ainsi que les valeurs
mesurées, par exemple :

J7HKMNNSVU2QH6TK&field1=24.63

Elle indique a la fin le nombre de caractéres dans la chaine de caracteres a
envoyer. Nous verrons cela en détail lorsque nous examinerons le sketch
Arduino. Avant cela, il nous faut installer une bibliotheque, car la thermi-
stance DS18B20 utilisée requiert un support particulier. Il s’agit d’un capteur
bus One-Wire qui, comme son nom 'indique, envoie ses données via un

Partie Il. Les montages

seul fil. Donc, en gros, deux bibliotheques sont nécessaires pour le sketch :
la bibliotheque pour la thermistance DS18B20 et celle pour le bus One-Wire.

QU’EST-CE QU’UN BUS ONE-WIRE ?

1-Wire ou bus One-Wire est un bus a un conducteur avec une interface sérielle,
congu par la société Dallas Semiconductor Corp. Un fil de données sert a la
fois pour l'alimentation en courant et comme fil d'émission et de réception.

Si vous installez la bibliotheque pour la DS18B20, il vous sera demandé
lors de I'installation si vous souhaitez installer en méme temps une autre
bibliotheque. Vous devez répondre par oui. Dans le champ de recherche
de la bibliothéque a ajouter, entrez alors dallas et cliquez sur le bouton
Installer.

by Miles Burton Version 3.8.0 INSTALLED
Arduino Library for Dallas Temperature ICs Supports DS18B20, DS18520, DS1822, DS1820
More info

sion 3,9.0 vl i_ Installer |—Ma; Zjour |

©) Gestionnaire de bibliotheque *
Type i:l'out w : Sujet [Tout G |dallas
DallasTemperature -

| Fermer |

_) A Figure 22-16
OK, maintenant, on peut vraiment commencer ! Installation de la

bibliotheque Dallas
Schéma

Examinons d’abord la thermistance DS18B20. Capteur de grande précision,
elle est capable de fonctionner avec une tension comprise entre 3 Vet 5,5V
et couvre une plage de température allant de —55 °C a +125 °C. Ce capteur
ressemble a un transistor a trois broches présentant la disposition suivante :

DALLAS < Figure 22-17
Disposition des broches
E::’ a1 DS 18620
Vue de
[l] dessous

| |

GND! | |3v-5,5V
Out

Montage 22. La carte ESP32

409

Figure 22-18 p-
Circuit du DS18B20

Figure 22-19 »

Schéma des connexions
avec ['ESP32-Pico-Board

et la thermistance DS18B20

Puisqu’il s’agit d’un capteur communiquant via le bus One-Wire, vous avez
la possibilité de raccorder plusieurs capteurs de ce genre si nécessaire. Nous
commencerons toutefois avec un seul capteur qui, comme sur le bus I°C,
requiert une résistance de tirage (Pull-up) sur le bus, ce qui nous donne :

capteur de température

DS18B20

La résistance de 4,7 kQ est la résistance de tirage (Pull-up) pour le bus. Il
est possible ici de modifier le cas échéant la broche GPIO 21. Les lettres
GPIO sont I’abréviation de General Purpose Input/Output, ce qui signifie
qu’il s’agit d’une broche pouvant étre programmeée librement en tant qu’en-
trée ou sortie pour un usage général. Ne vous laissez pas impressionner,
ce n’est rien d’autre qu’une broche de votre carte Arduino Uno, pouvant
étre configurée par linstruction pinMode comme une entrée simple ou
avec résistance de tirage (pull-up) ou une sortie. Ci-dessous le schéma des
connexions avec ’ESP32-Pico-Board et la thermistance DS18B20 :

DS18B20
123
GND| | [+33v
) LI

Iz

N ESP32 Pico v4

GND GND
- W =

410

Partie Il. Les montages

Realisation du circuit

Faire un circuit test sur PESP32-Pico-Discoveryboard est un jeu d’enfant.
On vy voit la thermistance DS18B20. La résistance de tirage (Pull-up) est
cachée par un cable, mais elle est bien la !

2 E Pico Discovery
AR AR EEREE] 1131

Yo o

Sketch Arduino

Regardons maintenant de plus pres le sketch Arduino. Je I’ai divisé en
plusieurs parties pour que mes explications collent au plus prés de ce qui
se passe. La premieére partie va jusqu’a I'intégration supplémentaire de
bibliotheques pour interroger la thermistance DS18B20. On a ajouté par
ailleurs une bibliotheque qui supporte un client HTTP, car notre ESP32
est le client qui établit une liaison avec le serveur ThingSpeak. Remplacez
ici les données d’acces et la clé API par vos données sinon la connexion
ne pourra pas se faire :

#include <WiFi.h> // Intégrer la bibliothéque Wi-Fi
#include <HTTPClient.h> // Intégrer la bibliotheque client HTTP
#include <OneWire.h> // Intégrer la bibliotheque One-Wire
#include <DallasTemperature.h>// Intégrer la bibliotheque Dallas
#define ONE_WIRE_BUS 21 // Broche DS18B20 - GPIO 21

const char* ssid = "EriksWLan"; const char*

password = "Schnickschnack”;

const char* serverName = "http://api.thingspeak.com/update"; String

apiKey = "J7HKMQSSVU2QHETK" ;
unsigned long lastTime = 0;
unsigned long timerDelay = 10000; // 16 secondes

OneWire oneWire(ONE_WIRE_BUS); // Initialisation One-Wire
DallasTemperature sensors(&oneWire);// Transmettre référence One-Wire
// a Dallas

<« Figure 22-20
Circuit du DS18B20
sur 'ESP32-Pico-
Discoveryboard

Montage 22. La carte ESP32

i

412

void setup() { Serial.begin(115200);
WiFi.begin(ssid, password);
Serial.println(“Connection au reseau Wi-Fi...");
while(WiFi.status() !'= WL_CONNECTED) {
delay(500); // Courte pause
Serial.print(“."); // Editer point si aucune connexion

}

Serial.println(“\nConnecté au réseau Wi-Fi "); Serial.print(“IP
address: “); Serial.println(WiFi.localIP());
}

Tout le processus d’interrogation de la thermistance et de I’envoi de cette
valeur de mesure a lieu au sein de la fonction loop. Lenvoi des données dans
le temps ne s’opere pas ici par la fonction delay, mais par la construction
au moyen de la fonction millis, que vous connaissez déja.

void loop() {
// HTTP POST request toutes les 10 secondes
if((millis() - lastTime) > timerDelay) {
// Statut Wi-Fi OK ?
if(WiFi.status()== WL_CONNECTED) {
HTTPClient http; // Client http
http.begin(serverName); // Serveur http

Voici quelques informations sur la méthode HTTP-Post que nous allons
utiliser. Celle-ci envoie des données au serveur. Le type de corps, autre-
ment dit le message a envoyer, dont le format est indiqué par I’en-téte
Content-Type. Il existe différents types pour ce procédé. Le type applica-
tion/x-www-form-urlencoded que nous utilisons a la signification suivante :
les clés et les valeurs sont codées dans des paires clés-valeurs, séparées par
@, avec un signe = entre la clé et la valeur. Vous vous souvenez certaine-
ment de cette partie de I'URL que j’ai envoyée au serveur ThingSpeak et
qui se présente comme suit : key=]7HKMNNSVU2- QH6TK@field1=4. On
y voit trés bien les paires clés-valeurs. Cest justement cette configuration
d’en-téte HTTP que nous obtenons avec la méthode addHeader.

La méthode requestTemperatures de la bibliothéque de capteurs sert a
interroger la valeur de la température, tandis que la méthode getTem-
pCByIndex(0) interroge le premier capteur avec index = 0 (méme si nous
n’en n"avons qu’un) et stocke la mesure dans les variables temperature. La
demande HTTP a envoyer au serveur se compose alors de plusieurs infor-
mations comme la clé API, le champ de données et la valeur de mesure.
Cette derniere est envoyée avec la méthode POST, une valeur de retour est
ensuite attendue. Celle-ci fournit des renseignements sur le déroulement
et le résultat de la demande. Un code retour de 200 indique que tout s’est
bien passé et que les données ont été transmises au serveur. Toute autre
valeur de retour indique une erreur, qu’il convient d’analyser.

Partie Il. Les montages

// Content-type header

http.addHeader (“Content-Type”,
"application/x-www-form-urlencoded”);

// Envoyer les données par HTTP-POST

sensors.requestTemperatures(); // Demander mesure température

float temperature = sensors.getTempCByIndex(0);

String httpRequestData = “api_key=" + apiKey + “&field1=" +
String(temperature);

// HTTP-POST-Request

int httpResponseCode = http.POST(httpRequestData);

if(httpResponseCode == 208) {
Serial.print(“Température: “);
Serial.println(temperature);
Serial.println(“SUCCESS - HTTP Response code: 200 - Données

envoyées !");
}
else {

Serial.println(“ERROR - Données non envoyées!");
Serial.print(“HTTP Response code: “);
Serial.println(httpResponseCode);

}

// Débloquer les ressources

http.end();

3
else {
Serial.println(“Wi-Fi Disconnected”);
3
lastTime = millis();
}

Veillez a régler correctement la vitesse de transmission au moniteur série
a 115200 bauds et observez ce qu'’il affiche pendant la transmission des
données. La figure ci-aprés montre un exemple de transfert de données.

@ com3 O X

| ==

Connection au réseau WiFi... L

Connecté au réseau WiFi
Bdresse IP: 192.168.178.68

Température: 24.12
SUCCES - Code retour HITE:
Température: 24.06
SUCCES - Code retour HITE:
Températurs: 29.37
SUCCES - Code retour HITE:
Température: 31.06
SUCCES - Code retour HTTP:
Température: 31.69
SUCCES - Code retour HITE:
Température: 32.00
SUCCES - Code retour HITE:

200 - Données transmises!

200 - Données transmises!

200 - Données transmises!

200 - Données transmises!

200 - Données transmises!

200 - Données transmises! v

vi i115200 baud « | ! Effacer la sortie

Défilement automatique [] Afficher Ihorodatage |Nouvelle ligne

< Figure 22-21
Le moniteur série fournit
des renseignements

sur le transfert de données

en direction du serveur.

Montage 22. La carte ESP32

413

414

Figure 22-22 »-
Valeurs dans la chaine
ThingSpeak

Figure 22-23 »
Vider ou supprimer
la chaine ThingSpeak

Vous pouvez suivre en méme temps les données qui arrivent sur la page
Internet ThingSpeak dans la chaine correspondante. Le graphique suivant
montre quelques valeurs que j’ai transmises en touchant la thermistance :

Field 1 Chart F o £ x

Température par ESP32
325

Température

09:48:00 09:48:30 09:49:00

Date
ThingSpeak.com

Veillez a ce que votre chaine ne déborde pas de données lors des divers
tests. Vous pouvez supprimer ces données pour repartir a zéro. Pour cela,
allez dans 'onglet Channel Settings et déroulez le menu jusqu’en bas.
Attention, vous devez cliquer sur le bon bouton rouge. Le bouton Clear
Channel en haut permet de supprimer toutes les données antérieures, sans
supprimer la chaine.

Le bouton Delete Channel en bas supprime complétement la chaine et avec
elle, toutes les données qu’elle contient.

Want to clear all feed data from this Channel?

Clear Channel

Want to delete this Channel?

Delete Channel

Problemes courants

Si vous n’arrivez pas a établir la connexion entre votre carte ESP32 et le
routeur, vérifiez encore une fois les données d’acces. Vous devez également
saisir correctement la clé API pour que les valeurs de mesure puissent
étre transmises ensuite au serveur ThingSpeak. Vérifiez encore une fois ce
que vous avez saisi. Si la thermistance DS18B20 ne livre pas de valeurs de
mesure logiques, vérifiez une nouvelle fois le cablage ainsi que la broche
GPIO utilisée sur ’'ESP32-Pico-Board.

Partie Il. Les montages

Qu’avez-vous appris ?

e Nous avons fait connaissance du composant électronique ou micro-
controleur ESP32 et appris comment le programmer avec 'IDE Arduino.

e Vous avez découvert deux cartes, sur lesquelles la puce ESP32 a été
installée : PESP32-Pico-Board et la D1 R32.

e Vous avez raccordé une thermistance au microcontroleur par le biais
du bus One-Wire.

e Vous connaissez maintenant le service cloud ThinkSpeak et vous avez
pu éditer une représentation graphique des données fournies en per-
manence par votre log de températures.

Workshop sur le log
de températures

1l est possible de raccorder et d’interroger via le bus One-Wire plusieurs
capteurs de température de type DS18B20. Il vous suffit de procéder comme
suit :

DALLAS DALLAS DALLAS
DS18B20 DS18820 DS18820

@ SRNEREER

@—:I—'

Mais comment alors interroger un par un les différents capteurs ? Tous les
modules ou esclaves connectés au bus I°C se voient affectés leur propre
adresse de bus. Cela nous permet de définir un adressage unique, ce qui
ne semble pas étre possible ici. Exact, mais une affectation précise est belle
et bien effectuée. Chaque capteur dispose d’une adresse matérielle 64 bits
unique, enregistrée dans une mémoire ROM interne. Voici un exemple
de programmation possible par laquelle I'index est incrémenté a chaque
échantillonnage de la température :

< Figure 22-24
Plusieurs capteurs

de température DS18B20
sur le bus One-Wire

Montage 22. La carte ESP32

415

Figure 22-25 »

Le capteur de température

416

et d'humidité DHT11
ou DHT22

void loop() {

float temperaturl; // Enregistre température 1
float temperatur2; // Enregistre température 2

// Demander mesure de la température
sensors.requestTemperatures();

temperaturl = sensors.getTempCByIndex(@); // Capteur 1
temperatur2 = sensors.getTempCByIndex(1); // Capteur 2

Modifiez votre sketch de facon que, dans ce cas, deux valeurs de mesure
soient transmises au serveur ThingSpeak. Jusqu’a présent, vous n’avez
envoyé qu’un seul champ via la requéte HTTP. Celui-ci doit étre modi-
fié et étendu. Evidemment, vous devez faire aussi quelques ajustements
sur la page du serveur et créer deux champs ou graphiques. Je n’en dirai
pas plus. Cherchez de votre coté avant de me poser des questions. Vous
apprendrez davantage ainsi que si 'on vous présente des solutions toutes
faites. 1l serait également intéressant de programmer un montage pour
le capteur de température et d’humidité DHTII ou DHT22 (voir montage
n°26) avec le module ESP32.

Partie Il. Les montages

Montage

Numeérique appelle 23
analogique

Dans ce montage, nous allons découvrir comment générer des signaux
analogiques sur la carte Arduino Uno. Nous produirons diverses formes
d’onde et nous fabriquerons un petit générateur de fonctions.

Comment convertir des signaux
numeériques en signaux analogiques?

Lexploitation de signaux analogiques est relativement simple par les
entrées analogiques avec votre carte Arduino. Le sens inverse — c’est-a-dire
produire et distribuer une tension analogique a I'aide du microcontréleur —
n’est faisable qu’en utilisant les sorties numériques capables de MLI. Quand
vous aurez vu la forme de la courbe des signaux MLI, vous saurez combien
elle differe de celle d’un signal analogique.

La plupart des microcontroleurs courants ne convertissent pas un signal
numeérique en signal analogique. Il leur faudrait pour ce faire intégrer un
convertisseur N/A. Notre projet consiste a fabriquer un tel convertisseur,
appelé aussi CNA (Digital-Analog-Converter en anglais ou DAC), avec des
moyens simples. Tout tourne ici autour du réseau R2R. Cette appellation
est due au fait que le convertisseur est composé de plusieurs résistances,
disposées en cascade et qui doivent se trouver entre elles dans un rapport
déterminé. La disposition des éléments fait penser a une échelle, c’est
pourquoi ce type de circuit est également nommeé réseau en échelle de
résistances dans la littérature spécialisée. Retenons seulement que le réseau
de résistances sert a répartir une tension de référence qui, dans notre cas,
est de +5 V. La figure 23-1 montre un réseau de résistances R2R avec une
entrée de 6 bits.

417

Figure 23-1»

Réseau de résistances R2R

418

avec une entrée de 6 bits

E5 ouT

Ms B Usortie

[

E4
[

E3
2

E2
[

E1
[

LB
&

GND

Vous vous demandez peut-étre d’ou vient ce nom, R2R. Si vous regardez le
schéma de plus prés, vous verrez que les résistances n’ont pas une valeur
fixée, et que seuls les rapports de résistance sont indiqués. Les résistances
R2R (horizontales), qui sont reliées aux connexions E a E_ des sorties
numériques, valent le double des résistances (verticales), qui relient les
résistances précédentes et ménent au point de sortie U, . La résistance du
bas, qui est reliée a la masse, a la méme résistance 2R que les résistances
horizontales. La formule suivante peut étre utilisée pour déterminer la
tension de sortie :

Us U Us U Uy Un

e

sorfie =5 " 4 8 16 32 64

d

Pour cet exemple avec six entrées, la résolution suivante peut étre obtenue :

[jref

U;‘ésolution - 64

Partie Il. Les montages

U, estici la tension avec laquelle les différentes entrées sont commandées.
Pour une tension Uref de 5V, le résultat serait donc le suivant :

U.
[]résolulion - L = ﬂ = 789 13 mV
64 64

Cette valeur représente le plus petit pas de progression obtenu chaque fois
que la valeur binaire de I’entrée a 6 bits est incrémentée de 1. Le tableau
23-1 fournit les quatre premiéres valeurs ainsi que la derniére.

Valeur binaire Tension de sortie

000000 ov
000001 78,13 mV
000010 156,26 mV
000011 234,39 mV

[ARRRNI 5V

Nous avons donc, pour le shield de conversion N/A prévu, une définition
de 6 bits (2° = 64). Vous avez peut-étre remarqué que je n’ai donné jusqu’ici
aucune valeur de résistance. Ce n’est pas utile tant que le rapport des
résistances est exactement de 2:1. En outre, la tolérance des différentes
résistances doit étre aussi faible que possible pour obtenir des résultats
relativement précis. Nous n’en tiendrons cependant pas compte dans ce
montage.

Composants nécessaires

Ce montage nécessite les composants suivants.

17 résistances de 47K

1 jeu de connecteurs femelles
empilables

2 connecteurs a 8 broches
« 1 connecteur a 6 broches

« 1 connecteur a 10 broches

1 carte shield

<« Tableau 23-1
Combinaisons binaires
et tensions de sortie
arrondies

<« Tableau 23-2
Liste des composants

Montage 23. Numérique appelle analogique

419

Le réseau R2R avec rapports de résistance 2:1 peut s’avérer difficile a réaliser,
car vous devez trouver des valeurs de résistance qui sont dans ce rapport
entre elles. La solution n’est certes pas simple. J’ai choisi une résistance de
47K pour que les courants en circulation ne soient pas trop élevés. Vous
vous demandez peut-étre si une résistance de 23,5K existe. Non seulement
je ne crois pas, mais cette valeur est en plus trés facile a obtenir. Quand on
branche deux résistances de méme valeur en parallele, le résultat obtenu
est ’exacte moitié de la résistance en question. Donc si R =R,o0n obtient :

1 1 1 1 1 2
Rtotale Rl R2 R R R
R
doncR, , ., =—
totale)

Cest élémentaire, n’est-ce pas ? Examinons maintenant le schéma.

Schema

Vous constaterez que pour des questions de place, les résistances ont été
disposées a I'horizontale.

i)

a7k |1
47K |
R14
a7k |
47K |
R1
a7k |
47K |
R16
M 1
47K |
R17

| 1 | 1 [1 | 1
Sy i) i A e
2 2 2| 7
{ 47K } { 47K | [47K } {47k |—
R5 R7 R9 R11

bhord

GND

Figure 23-2 A
Schéma du générateur
de signaux analogiques

Les résistances R ont naturellement une valeur de 47K. Les paires de résis-
tances R/2 ont comme valeur résultante 23,5K.

420 Partie Il. Les montages

Realisation du circuit

Le circuit peut évidemment aussi étre réalisé sans shield, sur une plaque
d’essais.

Maintenant que nous avons €élucidé les questions techniques, nous allons
pouvoir nous pencher sur le sketch.

Sketch Arduino

int pinArray[] = {8, 9, 10, 11, 12, 13};
byte R2RPattern;
void setup() {
for(int i = 0; 1 < 6; i++)
pinMode(pinArray[i], OUTPUT);
R2RPattern = BO@@OO1; // Configuration binaire pour commander les sor-
ties numériques

}

void loop() {
for(int i =09; i < 6; i++){
digitalWrite(pinArray[i], bitRead(R2RPattern, i) == 1?HIGH:LOW);
}
3

Ce sketch, vraiment tres court, commande les sorties numériques sur les-
quelles se trouve le réseau R2R. Elles sont commandées via la variable
R2RPattern, qui délivre une tension correspondante a la sortie du réseau.

<« Figure 23-3
Réseau R2R
sur une plague d'essais

Montage 23. Numérique appelle analogique

421

422

Figure 23-4 »
Réalisation du réseau R2R
sur un shield dédié

Revue de code

Le réseau R2R est commandé avec la combinaison de bits Beeeee1 tirée du
sketch ; le multimeétre affiche une tension de 0,078 V, soit 78 mV. Dans le
tableau 23-1, la valeur est de 78,13 mV pour la combinaison de bits. La valeur
de sortie de 78 mV ne correspond donc pas tout a fait a la valeur calculée
du tableau, mais c’est tout de méme correct quand on sait que le résultat
se trouve par exemple légerement faussé par les tolérances matérielles des
résistances utilisées ou par des erreurs d’affichage du multimetre. Il m’est
arrivé de construire un réseau R2R ou les valeurs coincidaient presque
toutes jusqu’a deux chiffres apres la virgule, mais ce n’était que pur hasard.
Linterrogation des bits du nombre du pattern est effectuée au moyen de la
fonction bitRead. Pour placer les bits au moyen de la fonction digitalWrite
dans la boucle for, nous utilisons un opérateur ternaire représenté par un
point d’interrogation. Nous I’avons déja évoqué dans le montage n° 10 du
dé électronique. Si la condition formulée bitRead(R2RPattern, i) ==
renvoit la valeur true, la valeur qui se trouve immédiatement apreés le point
d’interrogation (HIGH) est renvoyée a son tour. Si tel n’est pas le cas, c’est la
valeur qui figure apres les deux points (LOW) qui est renvoyée.

Realisation du shield

Cette figure montre bien le réseau de résistances, la broche en haut du
shield étant la sortie sur laquelle vous pouvez brancher votre multimétre
pour mesurer la tension de sortie.

Partie Il. Les montages

Commande du registre de port

Je ne vous apprendrai rien en vous disant que la carte Arduino ne com-
munique que par les entrées et les sorties. Ceci vaut également pour com-
mander des LED, des moteurs, des servomoteurs et pour lire, entre autres,
les valeurs d’un capteur de température ou d’une résistance réglable ou
photosensible. Votre microcontréleur ATmega328P travaille en interne avec
ce qu'on appelle des registres, raccordés aux entrées et sorties (broches).
Dans le domaine informatique, ce sont des zones de mémoire a l'intérieur
d’un processeur, qui sont reliées directement a l'unité centrale de calcul.
Ainsi I'acces a ces zones est trés rapide puisque le détour par des circuits
mémoire externes est évité. Les différentes broches de votre carte Arduino
sont reliées en interne a des registres de port, encartouchés en couleurs
(vert, rouge ou jaune) et nommeés port B, C ou D sur la figure 23-5.

SESEEEEEEE EEEEEEES ;egi?(l:gse(f:;)grt
PortD de la carte Arduino

Arduino Uno

I ARRRRRRRRRRRII
ATmega328P
[AR RRRRRRRRNN]]

Alimentation . .

Regardons par exemple le port B de plus pres sur la figure 23-6.

Port B e 25

Broche:13 1211 10 9 8

On reconnait immédiatement les entrées et sorties numeériques (broches 9
a 13). Les deux broches de gauche sont pour nous sans intérét, car elles
sont reliées a Aref (entrée pour la tension de référence du convertisseur
analogique-numeérique) et a la masse et ne peuvent étre manipulées. Six bits
en tout sont donc disponibles dans le registre de port B. Ils vont nous

Montage 23. Numérique appelle analogique

424

Figure 23-7 >
Registre de port B

avec divers sens de
circulation des données
selon les broches

servir a faire des choses diverses. Comme par hasard, notre réseau de
résistances est lui aussi commandé avec 6 bits. Je ne vous en dis pas plus
pour I'instant. Chacun des trois ports est sollicité dans un sketch au moyen
des identifiants suivants :

e PORTB
® PORTC
® PORTD

Nous savons déja comment les différents ports sont sollicités, mais nous
nous en tiendrons, comme je I'ai dit plus haut, au port B dans notre exemple.

Nous avons vu que quand on programme des broches numériques, on doit
définir dans la fonction setup si elles vont servir d’entrée ou de sortie. Mais
dans le cas d’un registre de port, comment lui dire de servir d’entrée ou
de sortie ? Eh bien, je vais vous I'expliquer mais je dois vous dire quelque
chose auparavant : vous pouvez bien sir attribuer a chaque bit du registre
de port un sens de circulation des données particulier. Le registre complet
ne fonctionne pas de telle sorte que toutes les broches servent d’entrées
ou de sorties. Chaque broche peut étre configurée séparément. D’autres
registres sont en effet spécialement prévus pour influer sur le sens de
circulation des données de chaque broche. IlIs ont pour nom DDRx, x
indiquant le port a solliciter. Le registre DDRB est par conséquent celui de
notre PORTB — (DDR, pour Data Direction Register, signifie a peu de chose
pres registre de direction de données). Voyons comment tout cela fonc-
tionne dans le détail. Avant d’utiliser un port, je dois donc définir le sens
de circulation des données par le DDR correspondant. Sur la figure 23-7,
les fleches indiquent les sens de circulation des données que nous voulons
obtenir avec notre programmation.

Port B

Broche:131211 10 9 8

La configuration est donc la suivante :
e entrées : broches 8,9 et 10 ;
e sorties : broches 11, 12 et 13.

Pour affecter un sens de circulation des données a une broche, la valeur
du tableau suivant doit étre entrée dans le DDR.

Partie Il. Les montages

Valeur Mode de fonctionnement

0 Broche servant d'entrée, comparable & pinMode(pin, INPUT);

1 Broche servant de sortie, comparable a pinMode(pin, OUTPUT);

Cela nous donne pour le DDR la programmation de la figure 23-8.

Port B

DDR: [H]]] [0] [0] [0]
Broche: x x 13121110 9 8

Nous pouvons maintenant mettre par exemple les sorties numériques des
broches 11, 12 et 13 au niveau HIGH par I'instruction PORTB. Voici un extrait
correspondant tiré d’un sketch :

void setup() {
DDRB = 0b11111008; // Broches 8, 9, 16 = INPUT.
// Broches 11, 12, 13 = OUTPUT
PORTB = 0b00111000; // Mise des broches 11, 12, 13 au niveau HIGH

}

void loop(){ /* vide */ }

Les deux bits les plus significatifs pour les broches non utilisées ont sim-
plement été pourvus d’un 1 dans le DDR. Cela n’a aucune importance dans
notre cas. Si vous regardez la mise des sorties au niveau HIGH, que consta-
tez-vous de différent par rapport a la manipulation des broches habituelle ?
Je vous donne les deux variantes pour comparaison :

digitalWrite(11, HIGH);
digitalWrite(12, HIGH);
digitalWrite(13, HIGH);
PORTB = ©b00111000;

Aucune idée ? Bon. La maniere traditionnelle de gauche met les différentes
broches 'une aprés I'autre au niveau HIGH. Celle de droite met par contre
toutes les broches en méme temps au niveau HIGH avec une seule instruc-
tion, la configuration binaire étant alors appliquée simultanément a toutes
les broches. Mieux vaut donc choisir la nouvelle variante de manipulation

<« Tableau 23-3
Valeurs pour le registre
DDR

<« Figure 23-8
Initialisation du DDR

pour les différents sens

de circulation des données

425

Montage 23. Numérique appelle analogique

des ports pour aller plus vite. Le sketch suivant génére une tension en
dents de scie a la sortie du réseau de résistances :

void setup() {
DDRB = @b11111111; // Toutes les broches programmées en tant que sorties

}

void loop() {
for(int i = @; i <= 63; i++) // 63 = BEA111111
PORTB = i; // Commande du registre de port B

Figure 23-9» < m Dane | 2014101727 11:02:58.562- 6192 Samples at 40 Mz 25 ns Zoom: 200X (3~ Y |
Oscillogramme %Y / : ’ ' '/ ! ey i '/

avec une courbe i
en dents de scie o ’/ // // / /
T T J J J <
/ P F 4 Fé

v A 1% / /
ov [cip : !

D’apres vous, comment adapter le sketch pour obtenir la courbe suivante ?

Figure 23-10 > ¢! @@@% Done | 2014/01/27 11:04:45.800- 8192 Samples at 40 MHz / 25 ns Zoom: 200X (&~ [¥]
Oscill Y T ' ‘ ‘ ' '
avec jrfle 235?[:;22 % \ ,/\\ / ,\
triangles = \ ; / \ / \
& N X
/ _/ \
ov e

Bien joué si vous avez trouvé la solution !

void loop() {
for(int i = @; i <= 63; i++)
PORTB = i; // Commande du registre de port B //(front montant)
for(int i =63; i >=0; i--)
PORTB = i; // Commande du registre de port B (front descendant)

Quelles sont les autres courbes ? Qu’en est-il d’une courbe sinusoidale ? La
fonction sinus ayant besoin d’un certain temps pour calculer les valeurs, on
a eu l'idée de créer des tables de correspondance ou Lookup-Tables (LUT).
Les résultats d’un calcul y sont déja enregistrés. On peut ainsi reproduire
la courbe d’une fonction sinus en s’aidant des points qui se trouvent sur
la courbe, par exemple.

426 Partie Il. Les montages

. [HE | SR T R AT Snglon st A T B &-[¥] <« Figure 23-11
p i N TN T AT T e
o / \ | \ / / \ / /} sinusoidale
N AL PNV N

. WIRFIRWTERN LY

N YIS \J T\/

Le sketch pour générer la courbe sinusoidale est plutot laborieux a écrire
car la LUT est trés longue.

byte LUT[] =
{31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 49,
41, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49,
50, 50, 50, 51, 51, 52, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56,
56 57, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61,
61, , 61, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62,
62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61,
61 , 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57,
56, , 55, 55, 55, 54, 54, 54, 53, 53, 52, 52, 52, 51, 51, 50, 50,
50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41,
, 39, 39, 38, 38, 37, 36, 36, 35, 35, 34, 34, 33, 33, 32, 32,
, 29, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 22,
, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13,
, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7

’

’

12, 12, 12 ,7,6,6,6,5,5,
5,4,4,4,3,3,3,3,2,2,2,2,2,1,1,1,1,1,1,90,0,0,09,0,
0, 0,
1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,5,6,6,6,
7,7,7,8,8,8,9,9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14,

15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31};

void setup() {
DDRB = 0b11111111; // Toutes les broches programmées en tant que sorties
}

void loop() {

for(int i = @; i <= 360; i++)
PORTB = LUT[1]; // Commande du registre de port B

Montage 23. Numérique appelle analogique

428

@ VERIFIEZ BIEN VOTRE SKETCH !

En effet, vous courez le risque non négligeable de programmer votre
microcontroleur de telle sorte qu'il ne réagisse plus par la suite. Si vous
regardez le port D, vous verrez que les signaux de controle RX et TX se trouvent
respectivement sur les broches 0 et 1. RX sert a recevoir et TX a envoyer les
données. Le sens de circulation des données est donc le suivant : RX = INPUT
et TX = OUTPUT. Si vous modifiez par inadvertance la programmation de
ces valeurs via DDRD, vous ne pourrez a coup s(r plus transmettre aucun
sketch sur votre carte Arduino. Vous devez par conséquent étre sir de ce que
vous faites. Mieux vaut vérifier trois fois votre sketch avant de l'envoyer au
microcontrleur. Vous trouverez des informations plus précises sur le lien :

https://www.arduino.cc/en/Reference/PortManipulation

Problemes courants

Si la tension de sortie du réseau R2R ne correspond pas aux valeurs sou-
haitées pour la combinaison binaire, vérifiez les points suivants :

e Toutes les résistances utilisées pour le réseau R2R ont-elles la méme
valeur ?

e Aucune connexion au réseau n’a été oubliée ? (Je sais de quoi je parle,
car j’avais oublié un point de jonction, et j’ai passé pres de dix minutes
a chercher lerreur!)

Exercice complémentaire

Essayez, en ajustant le tableau LUT, de créer des courbes de formes diffé-
rentes. Vérifiez dans tous les cas que seuls 6 bits sont a votre disposition
pour représenter une courbe. Le domaine de valeurs va de 0 a 63. Si vous
étes au-dessus, ni le circuit ni votre microcontroleur n’en souffriront, mais
la courbe ne ressemblera a coup sr pas a ce que vous auriez souhaité.
Une autre méthode également tres intéressante consiste a utiliser le circuit
d’extension de port MCP23017 avec ses 16 broches d’E/S. Cela permet de
profiter d’une résolution bien plus élevée des différentes valeurs de tension

Partie Il. Les montages

par bit. De plus, pour une meilleure stabilité de sortie du réseau de résis-
tances R2R, vous pouvez aussi utiliser I'amplificateur opérationnel LM358.

, .
Qu’avez-vous appris ?
o Ce montage vous a présenté un réseau de résistances R2R.
e Avec ce réseau, vous avez pu réaliser un convertisseur numeérique/
analogique simple.

e Vous avez découvert les registres de port de votre carte Arduino et
manipulé les sorties numériques au moyen du port B.

Montage 23. Numérique appelle analogique

429

Programmer Arduino
avec un langage

de programmation
par blocs

1l existe d’autres alternatives non moins intéressantes que la programma-
tion de la carte Arduino avec I’environnement de développement Arduino.
Peut-étre avez-vous entendu parler de I'environnement de programmation
Scratch. Ce langage de programmation permet de créer trés facilement
un programme ou un script sans avoir a entrer une seule ligne de code.
Nous allons voir plus précisément comment cela est possible. Quel sera
mon objectif dans ce montage ? Eh bien, tout d’abord vous initiez au
langage Scratch ou §44, qui est I'abréviation de Scratch for Arduino, et
vous permettre ensuite de passer a d’autres langages de programmation
par blocs. Outre S4A, nous aborderons ArduBlock et Open Roberta Lab,
qui fonctionnent de maniere similaire. J’aurai également l'occasion de
vous présenter la puissante infrastructure IoT Node-RED, qui est aussi une
programmation avec une assistance visuelle.

S4A - Scratch for Arduino

S4A est une extension de Scratch, spécialement développée pour pro-
grammer la carte Arduino. Dans S4A, toutes les opérations disponibles
sont organisées en catégories ou palettes réparties selon des couleurs :

rorrence I e

Montage

24

<« Figure 24-1

Les catégories d'instruction

dans S4A

431

Figure 24-2

Les catégories d'instruction

432

dans S4A — extrait

Comme dans tous les autres langages par blocs qui offrent une assistance
visuelle, les instructions disponibles sont proposées avec ce genre de
structure et il n’est pas nécessaire de les apprendre par cceur, car il est
toujours possible de voir leur fonction. Cette maniére de procéder permet
de programmer ou de structurer le projet de maniére intuitive, ce qui
devient un jeu d’enfant avec le temps. Grace a 'organisation par couleurs,
le cerveau se fait une image des algorithmes, ce qui facilite énormément
la compréhension de la programmation non seulement pour les débu-
tants, mais aussi pour les personnes plus expérimentées. S4A étant une
extension de Scratch, dont la priorité n’était pas a l'origine de rendre plus
simple la programmation de la carte de prototypage Arduino mais de seu-
lement obtenir des résultats visuels sur un écran, les différentes catégories
etleur désignation peuvent parfois dérouter. La catégorie mouvement peut
étre comprise au sens figuré comme une catégorie d’action pour la carte
Arduino, qui déplace quelque chose sur la carte Arduino. Elle contient par
exemple toutes les actions Arduino visant a interroger des capteurs ou a
agir sur des broches analogiques ou numeériques.

il valeur du capteur Analogd

appui sur le capteur Digital2

sortie numérique 12 | on

sortie numérique 13 | off

entrée analogique ? | waleur

Dans S4A, les instructions qui doivent étre exécutées sont représentées
par des blocs fonctionnels, appelés simplement blocs, que nous pouvons
assembler comme dans un puzzle. Ces blocs sont prélevés d’une réserve
prédéfinie (de catégories ou palettes) et assemblés dans des séquences
logiques. Vous obtenez alors un organigramme facile a comprendre grace
a ces composants visuels. Le positionnement ou I’'assemblage des différents
blocs se fait par glisser-déposer, c’est-a-dire en faisant glisser le bloc avec
le bouton gauche de la souris et en le relachant a la position souhaitée. Les
blocs ne s'imbriquent que sila logique de programmation est correcte. Vous
voyez ensuite la confirmation de I'imbrication des blocs, vous indiquant
que vous étes sur la bonne voie.

Sur la figure 24-3 du haut, je fais glisser le bloc Répéter indéfiniment pris
dans la palette Controle vers la partie droite nommeée Scripts.

Sur la figure 24-3 du bas, vous voyez quelques-uns de ces blocs, qui pré-
sentent un creux et un nez permettant de les relier au bloc voisin. S4A
permet de réaliser une boucle sans fin qui met alternativement la bro-

Partie Il. Les montages

che numérique 13 au niveau HIGH ou LOW. Une pause d’une seconde est
observée entre ces actions. Le script que je vous montre ici est bien sir
tres simple et fait office d’introduction. 1l s’agit d’un script Hello World.

Mouvement [[l . rEET <« Figure 24-3
rduino
e I = ﬁ Placement et assemblage

sons Opérateurs . e T de blocs

stylo vamables

[quand on clique sur
| quand la touche | =

| quand on clique e Roritod

|atfendre £ secondes

[T —

sortie numérique 12

o e

Le script démarre lorsque vous cliquez sur le drapeau vert qui se trouve
tout en haut, comme pour donner le départ. Tous les blocs portent une
inscription qui identifie clairement leur fonction pour faciliter la program-
mation aux débutants. Tous les langages de programmation par blocs avec
une aide visuelle s’orientent sur ce schéma et méme s’il y a des différences
dans 'apparence ou la fonctionnalité des différents langages, on s’y retrouve
tres vite. Je dirais presque que si on en connait un, on les connait tous !
J’aimerais donc commencer ce montage avec S4A. Vous trouverez le site
Internet de S4A a I’adresse :

http://s4a.cat/ e

Le principe de S4A

Avant de faire vos premiers pas, permettez-moi de vous expliquer la com-
munication entre S4A et votre carte Arduino. Comment fonctionne ’en-
semble et selon quel principe ? Pour répondre a ces questions, je vais

Montage 24. Programmer Arduino avec un langage de programmation par blocs

434

Figure 24-4 »
Le transfert du sketch
sur la carte Arduino

Figure 24-5
Lenvironnement de
développement n'a plus
rien a faire apres le télé-
chargement du sketch.

tout d’abord vous rappeler le principe de la programmation Arduino avec
'environnement de développement Arduino.

Etape 1 : développer un sketch et le transférer sur la carte
Arduino

La premiére phase consiste a programmer pour une tache un sketch qui
sera ensuite transféré sur la carte Arduino.

Environnement de développement Carte Arduino

Une fois le téléchargement réussi, I'environnement de développement n’a
normalement plus rien a faire et la carte Arduino peut étre débranchée
de Pordinateur en présence d’alimentation électrique, a moins que vous
vouliez surveiller I'interface sérielle avec le moniteur série et recevoir ou
envoyer des données. Pour la recherche d’erreur, cela s’avére tres utile.

Etape 2 : la carte Arduino peut fonctionner de maniére
autonome avec son sketch téléchargé

Si maintenant vous débranchez votre carte Arduino du port USB, elle ne
sera évidemment plus sous tension et stoppera le travail.

Environnement de développement Carte Arduino

s toopt - Pas de connexion
+ ¥(1000) ; . ’
)

La prise d’alimentation électrique vous permet de garder la carte Arduino
sous tension, ce qui fait que celle-ci fonctionne de maniére absolument

autarcique et indépendamment de l'ordinateur avec lequel elle a été pro-
grammeée. Il en va autrement pour la programmation avec S4A.

Partie Il. Les montages

Lenvironnement de développement S4A fonctionne diffé-
@3 remment de Penvironnement de développement Arduino.

Il doit maintenir un contact permanent avec la carte Arduino.
Avec la méthode classique de I’'environnement de développement Arduino,
la carte est programmeée avec un sketch spécifique pour une tache spéci-
fique. Le contrdle incombe donc a la carte Arduino elle-méme. Avec S4A,
nous avons chargé pour la communication un firmware qui doit rester
disponible en permanence, indépendamment de la tache en cours. Il y a
donc une liaison permanente entre 'environnement de développement
S4A (Scratch) et le firmware installé. Le contréle n’incombe plus a la carte
mais a S4A.

Environnement de développement S&A Carte Arduino

T

Vous pouvez télécharger ici le firmware nécessaire a la version 1.6 de S4A :

http://s4a.cat/downloads/S4AFirmware16.ino

Le firmware pour la carte Arduino est :

S4AFirmwarel6.ino

Vous devez lancer ce programme avec votre environnement de développe-
ment Arduino. Lorsque vous avez transféré ce firmware comme sketch sur
votre carte Arduino et que vous lancez ensuite I'application S4A, celle-ci
doit d’abord déterminer si une carte Arduino préparée avec le firmware
requis est accessible. Vous pouvez suivre cette procédure dans le coin
supérieur droit de S4A. Vous y verrez la boite de dialogue représentée sur
la figure suivante :

<« Figure 24-6
L'environnement de
développement S4A doit
garder en permanence
le contact avec la carte
Arduino.

<« Figure 24-7
Lenvironnement de
développement S4A
cherche une carte Arduino
avec le firmware approprié.

Montage 24. Programmer Arduino avec un langage de programmation par blocs 4@

https://S4AFirmware16.ino

Les connexions de la carte

436

Une fois la carte détectée, cette boite de dialogue disparait et les entrées ana-
logiques fournissent des valeurs aléatoires qui s’affichent. Cela montre que
la communication entre S4A et votre carte Arduino fonctionne. J’ai repré-
senté sur la figure ci-apres les principaux blocs a coté de la carte Arduino
et ses broches. Le site Internet S4A fournit des détails supplémentaires.

Figure 24-8 »

Arduino et les blocs S4A
correspondants

B> Sortie
P> Entrée =
LI I1OREF

-y
=

-1
=3

LI Reser
L 3vs
Losv

L ono
L ano
L ovin

U a0
O a
O a2
O A
L as
L as

(~=ad) O1 VL1910

w ONMN oulnpay

ppoopopoDpoDpoDn

Sivous souhaitez interroger par exemple une entrée analogique, vous devez
alors employer un des blocs valeur du capteur. Pour 'entrée analogique A0,
celui-ci se présente comme indiqué ci-aprés. A I'aide du petit triangle noir
a coté de la désignation Analog0, vous pouvez ouvrir une liste contenant
tous les canaux disponibles.

Analogd
valeur du capteur Analog AnaIDgD

Analogl
Analogz
Analogs

Analog4
Analogs
Digitalz
Digital3

Pour obtenir une vue d’ensemble complete de toutes les entrées, c’est-a-
dire des entrées analogiques A0 a A5 et des entrées numeériques D2 a D3,
il vous suffit de jeter un ceil dans S4A. Cela fonctionne sans que vous ayez
besoin de démarrer un script. Par exemple :

Partie Il. Les montages

Arduino1

port: COMS <« Figure 24-9

Analog0 [ETED Vue d'ensemble des entrées
Analog! [ETTE . de la carte Arduino
Analog2 [FTTH e = 4 CEEI T

Pr— #4831 11 ollTa =
Analog3 _@ ; mtgu iﬂ) Eig % E2

an rduino

Analog+ ETEN o =% Duemilano:

Ve,
Analogs [ETZI0. 5
Digital2 THED :
— I Tt 4
Digital3 D

Un script Scratch tres simple pour afficher une entrée analogique peut se
présenter comme suit :

220
<« Figure 24-10
Affichage d'une valeur
analogique

Cliquez sur le drapeau vert pour afficher dans une bulle la valeur analo-
gique du canal AO.

Script a télécharger

Que diriez-vous d’un script qui vous fournirait I’affichage suivant et qui
vous présenterait par exemple quatre entrées analogiques sous la forme
de courbes temporelles ? Ce script est disponible a I’adresse :

https://www.editions-eyrolles.com/dl/0100583 e

Montage 24. Programmer Arduino avec un langage de programmation par blocs

Figure 24-11»
Le suivi analogique
avec quatre canaux

Figure 24-12 »
Le téléchargement
du fichier ArduBlock

[Analog e

Canal 0 Canal 1 Canal 2 Canal 3

ArduBlock - Arduino par blocs

J’aimerais vous présenter dans ce montage un autre langage de programma-
tion par blocs avec une aide visuelle : 4rduBlock. La différence avec S4A est
qu’il 1’y a pas besoin d’avoir une connexion permanente entre 'ordinateur
et Arduino, car un sketch Arduino correspondant est généré (en fonction
du script ArduBlock créé), qui est ensuite téléchargé individuellement sur la
carte Arduino. La version 2 d’ArduBlock est disponible depuis peu et offre,
une fois installée correctement, une intégration dans I’environnement de
développement Arduino. Le fichier d’exécution d’ArduBlock est un fichier
d’archives Java avec I'extension .jar. Les fichiers JAR sont principalement
utilisés pour distribuer des bibliothéques de classes et des programmes
Java. Ils sont comparables a des fichiers ZIP. Ce fichier peut étre téléchargé
a ’adresse Internet :

https://github.com/letsgoING/ArduBlock?2

Cliquez sur le bouton vert Code puis sur Download ZIP :

B3 Clone ®

HTTPS GitHub CLI
https://github.com/letsgoING/ArduBlock (5]

Use Git or checkout with SVN using the web URL.
3 Open with GitHub Desktop

[} Download ZIP

Partie Il. Les montages

Procédez comme suit pour exécuter I'intégration dans ’environnement
de développement Arduino :

Etape 1 : décompresser le fichier ZIP téléchargé

Le fichier ZIP doit étre décompressé par un programme usuel comme
7Z1P de facon a obtenir la structure de dossiers suivante dans le répertoire
correspondant (j’ai entouré en rouge les informations qui nous importent) :

+ v o » CePC » Téléchargements » ArduBlock2-master » JArduBlockTool » tool

& Montage 35 A Nom Modifié le Tpe Taille

all Maritage 37 [fardublock_letsgoing 21.jar 23/01/2022 14:53 Fichier JAR 214Ko
@, OneDrive - Personal

Etape 2 : copier la structure de dossiers dans le répertoire
d’outils Arduino

Pour que I'environnement de développement Arduino prenne connais-
sance d’ArduBlock, vous devez copier la structure de dossiers marquée
(fichier JAR inclus) ArduBlock\tool\ardublock_letsgoing 21.jar dans le
répertoire tools de I'installation Arduino. Vous obtenez :

« v A [Cepc -|05(c:) + Programmes (x88) » Arduine > tao\slsIArduE\ockToal » tou\l
& Montage 35 A Nom Medifié le Type Taille
@A Montage 57 [lfardublock letsgeing_21.jar 08/01/202112:02 Fichier JAR 814 Ko

Redémarrez impérativement I'IDE Arduino pour intégrer la prise en charge
ArduBlock.

Etape 3 : démarrer l’environnement de développement Arduino
et sélectionner ArduBlock

Ouvrez I'application ArduBlock dans 'environnement de développement
Arduino via 'option du menu Outils :

@ S4AFirmwarel6 | Arduino 1.8.18 - o x
Fichier Edition Croquis Outils| Aide

Formatage automatique CtrieT

Archiver le croquis

Réparer encodage & recharger

Gérer les bibliothéques Ctrl Maji|
Meniteur séric Ctrl+ Maj+ M
Traceur série Ctri+ Maj+L
ArduBlock

WiFi101 / WiFiNINA Firmware Updater

Type de carte: “Arduino Uno® >
Port: "COM3" >

Récupérer les informations de la carte

Programmateur: "AVRISP mkl" >

Graver la séquence d'initialisation

Montage 24. Programmer Arduino avec un langage de programmation par blocs

440

Figure 24-13 >
L'application ArduBlock

Figure 24-14 »

Le schéma

des connexions pour
interroger la luminosité
via la photorésistance

Lors de l'utilisation d’ArduBlock, veillez a sélectionner le bon port COM.
Tout est maintenant installé et vous pouvez commencer a programmer
avec ArduBlock. Lenvironnement de développement prend I'apparence
suivante :

|£] ArduBlock untitled - O X

OQutput Dateinane /Programmbezeic]

Input: * Hame oder Kuerzel

Logical Operators sxipticn | Kurzheschreibung Programmf

Math Operators program description

Variables/Constants
Communication 01.01,2019
Comments/Code 0.1

[evnarmes: | | swewnon. | zom —@——————— lwmnzn | || e | i |

Vous voyez ici aussi que la partie gauche affiche différentes catégories orga-
nisées dans des conteneurs de couleur. La partie droite affiche la zone de
script ou sont déposés et organisés les différents blocs. En guise de simple
exemple d’introduction, nous devons déterminer la valeur de luminosité
d’une photorésistance (LDR) en vue de piloter la luminosité d’une LED et
d’éditer simultanément la valeur MLI dans le moniteur série. Le schéma
des connexions correspondant se présente ainsi :

Je

=
(7]
w

. Power

- Xy

[T

[=

K 10REF
L RESET
L avs

ooDoDooDD

O v
L enD

= GND

¥3M0d

L vin

= A0
LAt
L a2
=
L oA
L as

NI DOTYNY
(~=tmd) on TwLIDIa

i 1

DI S

~
gopopoopno

» ONN oulnply

Partie Il. Les montages

Passons maintenant a la conversion avec ArduBlock, qui se présente comme

suit :
b ValeurLDR

E al riabl .

A At - {anatog anput,_mr ol o <« Figure 24-15
: — o T Le script Arduquck pour
t anal riabl y 7

se oy variable i Sk b b e e N interroger lg luminosité via

_— la photorésistance

10 Op) Stirg Luminosite glue ValeurMLT

Apres la construction du script, celui-ci doit d’abord étre enregistré dans
le systéeme de fichiers au moyen des boutons Save :

| Mew |I| Save || Save As || Open || Upload || Serial Monitor |

Vous pourrez ensuite entreprendre le téléchargement sur la carte Arduino
avec le bouton Upload :

| Mew || Save || Save As || Open || Upload || Serial Monitor |

Immeédiatement apres que vous avez cliqué sur ce bouton, vous pourrez voir
le sketch généré par ArduBlock dans I’éditeur de 'environnement de déve-
loppement Arduino, suivi par la compilation et le téléchargement. Admirez
comment s’opére la conversion de la structure par blocs en langage C++ !

Open Roberta Lab

Une initiative de I'Institut Fraunhofer a donné un autre outil intéressant :
Open Roberta Lab. Ce projet basé sur un navigateur a été développé dans
le but de permettre a des enfants et a des adolescents de controler et
de commander des systemes robotisés sans avoir de connaissances de la
programmation. Il est possible de commander en plus de la carte Arduino
la minicarte a but pédagogique micro:bit ainsi que LEGO Mindstorms et le
robot mBot du fabricant chinois Makeblock.

Le navigateur emploie un dérivé de Scratch, appelé NEPO. Comme dans S4A
ou ArduBlock, la programmation s’effectue a I'aide de composants visuels.
Vous pouvez également programmer vos propres composants NEPO et les
insérer dans vos scripts. Lintérét majeur dans I'environnement de déve-

Montage 24. Programmer Arduino avec un langage de programmation par blocs 4@

Figure 24-16 »>
Le script peut également

étre représenté dans Open

442

Roberta sous forme de
sketch Arduino.

loppement Open Roberta Lab est la prise en charge d’autres langages de
programmation. Ainsi, vous pouvez voir sous forme de sketch Arduino
le script que vous avez compilé a partir de composants. La figure 24-16
montre comment un simple script pour faire clignoter a été démarré dans
Open Roberta Lab. Vous pouvez représenter dans la fenétre de droite le
code de programmation comme il apparait sous forme de sketch Arduino:

D » @ 8 = o N B

PROGRAMME NEFOPTO] GONFIGURATION BU ROBOT ARDUINODASSS

@2 ”
Capteurs
Controle

tio
PP——

Mathématiques

T atendrems CED

Lenvironnement de développement avec le navigateur Open Roberta Lab
est accessible via le lien ci-aprés. Pour plus de commodité, un menu de
sélection s’affiche des le début, a partir duquel vous choisissez I’appareil
que vous souhaitez programmer.

https://lab.open-roberta.org/

Node-RED, langage de
programmation par blocs pour U'loT

J’en arrive maintenant a un environnement de développement qui a tout
pour plaire au sens propre du terme : Node-RED. Node-RED est un envi-
ronnement de développement graphique développé par IBM, qui permet
de réaliser des applications dans le domaine de I'Internet des objets (IoT) a
I’aide d’un principe modulaire simple, similaire a ’environnement Scratch.
Node-RED est devenu une infrastructure intéressante pour réaliser des
applications complexes qui vont bien au-dela du domaine amateur. De
nombreuses sociétés développant des produits IoT misent sur cet envi-
ronnement de développement. Il existe des interfaces pour les langages
script et les langages de programmation.

La manipulation correspond a I'approche que I'on trouve dans Scratch, ou
des blocs fonctionnels individuels sont assemblés dans un environnement
de script. Le site Internet pour Node-RED est :

https://nodered.org/

Partie Il. Les montages

Linstallation peut s’effectuer sur différentes plateformes et un Raspberry Pi
est certainement une tres bonne solution. ’aimerais pourtant commencer
ici avec une installation basée sur Windows. Vous trouverez toutes les
informations sur l'installation a I’adresse suivante :

https://nodered.org/docs/getting-started/windows#running-on-windows Q

Je vous renvoie ici au montage n° 26, dans lequel jexplique de maniere
approfondie Node-RED.

Problemes courants

Les sources d’erreurs avec les langages de programmation par blocs peuvent
étre tres variées. Si vous rencontrez des problémes pour réaliser les appli-
cations que je vous propose dans ce montage, suivez les étapes ci-dessous.

e Essayez de trouver des indices pour savoir si 'erreur se situe plutot
au niveau du logiciel ou du matériel. Essayez de délimiter ’erreur.

o Le téléchargement du firmware a-t-il été bien accepté sur la carte
Arduino ?

e Avez-vous entré le bon port COM ?

e Votre pare-feu bloque-t-il une connexion ?

Qu’avez-vous appris ?

Voila encore un montage qui n’a pas été trés amusant sur le plan manuel,
mais qui, je Pespere, vous a permis d’en apprendre davantage. Si vous
aviez du mal avec la programmation, les langages par blocs vous appor-
teront peut-étre de nouvelles et captivantes possibilités pour controler
votre carte Arduino.

e Dans ce montage, vous avez découvert les langages de programmation
par blocs S4A, ArduBlock et Open Roberta Lab, qui sont des dérivés
de Scratch.

e Vous vous étes un peu familiarisé avec la puissante infrastructure lIoT
Node-RED.

e Le principe de fonctionnement d’un langage de programmation par
blocs a été expliqué.

e Vous savez maintenant comment établir la connexion entre un langage
de programmation par blocs et votre carte Arduino.

Montage 24. Programmer Arduino avec un langage de programmation par blocs 4@

Montage

Quand Arduino 2 5

rencontre Raspberry Pi

Raspberry Pi est un ordinateur monocarte bon marché sur lequel il est
possible d’installer des systemes d’exploitation comme Linux et Microsofts
Windows 10 IoT Core. ’évolution poursuivant inlassablement sa course,
je peux aujourd’hui avancer, en I’état actuel de mes connaissances, que
plus d’une trentaine de systemes d’exploitation peuvent fonctionner avec
Raspberry Pi. A partir de la combinaison d’un Raspberry Pi comme ser-
veur et d’une carte Arduino comme dispositif de commande, de mesure
et de collecte de données, il est possible de développer des applications
surprenantes. Cest ce que nous allons voir ici.

Réveillons I’Arduino qui sommeille
dans tout Raspberry Pi

Certes, le sujet de ce livre n’est pas Raspberry Pi, mais il me parait oppor-
tun d’étudier la carte d’un peu plus pres afin d’en souligner les points
forts. Raspberry Pi est un ordinateur monocarte de la taille d’une carte
bancaire qui a été développé par la fondation britannique Raspberry Pi. Il
coute environ 35 €, ce qui est tres abordable. Mais ce n’est pas pour cette
raison que les gens manifestent de I'intérét pour ce nano-ordinateur. Cet
ordinateur - puisqu’il s’agit bien d’un ordinateur a part entiére — réunit
tout ce dont une personne a besoin pour s’aventurer dans l'univers de
'informatique et de la programmation. Il posséde un processeur Broadcom
BCM2837 de type ARM Cortex-A53 64 bits Quad Core cadencé a 1,2 GHz,
une mémoire vive de 1 024 Mo, un port Ethernet pour le raccordement a
un réseau, ainsi que quatre ports USB, Bluetooth 4.1 + LE et un port GPIO.
Comme support de mémoire, le nano-ordinateur utilise une carte SD, une
clé USB, voire un disque SSD.

445

446

Figure 25-1»
Le Raspberry Pi

Si I'on veut raccorder un clavier et une souris, il est préférable d’utiliser
un modele sans fil avec dongle USB afin que les deux périphériques n’oc-
cupent qu’un seul port USB. Comme la majorité des écrans TFT ou des
écrans plats disposent aujourd’hui d’'une connexion HDMI, vous pouvez
donc facilement les raccorder au port HDMI de type A (full size) de la
carte Raspberry Pi. Si votre écran est un modele plus ancien, sachez qu’il
existe aussi des adaptateurs HDMI-DVI pour convertir le signal envoyé
sur un port DVI. Voyons maintenant les préparatifs nécessaires en vue du
raccordement d’une carte Arduino Uno a un Raspberry Pi afin que les deux
systéemes puissent échanger des informations.

Installation de I'IDE Arduino sur le Raspberry Pi

Vous pouvez évidemment continuer a programmer votre carte Arduino
Uno dans votre environnement de développement habituel depuis
votre ordinateur sous Windows, Mac ou Linux. Mais, comme tot ou tard,
nous allons raccorder les deux cartes, je vais vous montrer ici comment
le faire directement depuis le Raspberry Pi. En effet, qu’est-ce qui vous
empéche d’utiliser 'IDE Arduino sur le Raspberry Pi ?! Ouvrez une fenétre
de terminal sur le Raspberry Pi et saisissez les deux lignes suivantes :

sudo apt-get update
sudo apt-get install arduino

Pour l'installation, nous utiliserons le gestionnaire de paquets APT
(Advanced Packaging Tool). La premiere ligne actualise les listes de paquets
et la deuxiéme installe 'IDE Arduino. Une fois linstallation réussie, une
nouvelle commande apparait dans le menu Développement : il s’agit de
I'IDE d’Arduino.

Partie Il. Les montages

®@®=E%0 D wkino

Développement
'_2 Bureautique > ﬂ BlueJ Java IDE
o
@ Internet > ‘ Greenfoot Java IDE
H Jeux > * Mathematica
n Autre > g Node-RED
@ Accessoires > eJ Python 2 (IDLE)
-'H Electronique > e; Python 3 (IDLE)
@ Help , & Scratch
@ Sonic Pi
Préférences >
@ Wolfram
ﬂ Run...
. Shutdown...
Lorsque vous démarrez I'IDE a I'aide de cette commande, la fenétre bien
connue s’ouvre apres quelques instants. Vous devez encore choisir le port
série correct. Sous Linux, il s’agit de /dev/tty4CMO0 pour la carte Uno. Les
modeles plus anciens utilisent /dev/ttyUSBO.
<« Figure 25-3

Fichier Edition Croquis Outils Aide
Fenétre 1.0.5

de l'environnement

Blink de développement

£ [A]
Blink
Turns on an LED on for one second, then off for one second, repeat

This example code is in the public domain.
iy

/f Pin 13 has an LED connected on most Arduino boards.
/f give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {

// initialize the digital pin as an output. [v]
&l

|

Vous pouvez vérifier que tout a bien fonctionné en lancant le sketch Blink
que j’ai également chargé. Revenons-en a la communication entre I'’Ar-
duino et le Raspberry Pi. Nous allons utiliser ici Firmata, un protocole de

Montage 25. Quand Arduino rencontre Raspberry Pi

447

448

Figure 25-4
Firmata sur ['Arduino
et le Raspberry Pi

communication entre ordinateurs ou programmes. Voyons maintenant
comment établir une connexion entre I’Arduino et le Raspberry Pi afin
que les deux cartes puissent échanger des données.

Firmata

Coté Arduino, nous disposons déja de tout le nécessaire. Firmata fait partie
de I'environnement de développement Arduino et il suffit de le charger en
tant que firmware sous la forme d’un sketch. Coté Raspberry Pi, ce n’est
pas tout a fait la méme chose. Le langage habituel du Raspberry Pi, Python,
fait déja partie de la distribution Linux Raspbian Jessie, que je recommande
aux débutants. Il nous faut donc uniquement installer Firmata. Le paquet
Python correspondant se nomme pyFirmata.

Firmata.h pyfirmata

Comme Firmata fait déja partie de 'environnement de développement
Arduino, il suffit de s’assurer de son bon fonctionnement en ajoutant le
fichier d’en-téte Firmata.h. Coté Raspberry Pi, nous avons quelques bricoles
a installer. Saisissez la commande suivante dans le terminal :

sudo pip install pyfirmata

Nous avons besoin d’un autre paquet pour Python qui s’intitule pySerial
et qui est chargé de la communication avec le port série. Il est déja inclus
dans la derniére version du systeme d’exploitation Raspbian Jessie. Tout est
maintenant prét pour procéder au premier essai. Nous allons dire bonjour
a Arduino et nous ferons clignoter la LED 13 du Raspberry Pi. Comment
allons-nous faire ?

Préparation de |’Arduino

Vous devez évidemment munir PArduino du firmware de Firmata en
chargeant le sketch correspondant et en le téléversant sur la carte. Activez
la commande Fichiers | Exemples | Firmata | StandardFirmata pour ouvrir
le sketch dans I'environnement de développement, puis téléversez-le sur
la carte Arduino. Vous n’avez rien de plus a faire pour Iinstant.

Partie Il. Les montages

Préparation du Raspberry Pi

Comme nous travaillerons avec le langage de programmation Python sur
le Raspberry Pi, il est conseillé d’installer un environnement de dévelop-
pement Python. Actuellement, jutilise SPE (Stani’s Python Editor) que
vous pouvez installer a I'aide des lignes suivantes :

sodo apt-get update
sudo apt-get install spe

Toutefois, cet environnement de développement ralentit le Raspberry Pi,
comme vous pourrez le constater en jetant un ceil a I'indicateur de per-
formances du processeur dans la barre des taches. Au lieu de SPE, vous
pouvez aussi utiliser le simple éditeur de texte Nano qui s’installe a I’aide
de la ligne de commande suivante :

sudo apt-get install nano

Pour ouvrir Péditeur, il suffit ensuite de saisir la commande suivante dans
le terminal :

nano

Nous allons néanmoins continuer avec SPE. Apres son installation, vous le
trouverez dans le dossier Développement du menu Démarrer de Linux :

& Bureautique > ﬂ BlueJ Java IDE
i
(ﬁ) Internet > ‘ Greenfoot Java IDE

el Jeux > 4 F K
‘Autre > * Mathematica

QaﬁAccessoires > @ Node-RED
+* Electronique > P) Python 2 (IDLE)
B tep ,) python 3 (IDLE)
@ Scratch
@ Préférences > o
Sonic Pi

q Rl 7. SPE (Stani's Python Editor)
. Shutdown... O Winpdb

@ Wolfram

@ wxGlade

<« Figure 25-5
Ouverture
de Stani's Python Editor

Montage 25. Quand Arduino rencontre Raspberry Pi

450

Vous pouvez saisir le code suivant dans I’éditeur pour faire clignoter la LED
13. Ne vous inquiétez pas, nous n’en resterons pas la ! Nous ferons aussi des
choses un peu plus compliquées. Cet exercice nous permet simplement
de nous mettre en jambes :

#!/usr/bin/python

2 # -*- encoding: utfg -*-

3 from time import sleep # import de sleep

4 from pyfirmata import Arduino, util # Import de Arduino, util
5

6 # Arduino-board communication via le port série
i arduinoboard = Arduino('/dev/ttyACMO')

8

9 #Programmation des broches Arduino

10 pinl3 = arduinocboard.get_pin('d:13:0')

13 while True:

12 pinl3.write(l) # LED allumée

13 sleep (1) # Pause de 1 seconde

14 pinl3.write(0) # LED éteinte

15 sleep (1) # Pause de 1 seconde

Examinons la signification des différentes lignes du code.

Ligne 1

Afin que le script Python soit correctement détecté par l'interpréteur, la
premiére ligne commence sur les systemes Linux par les caractéres #! suivis
du chemin d’acces absolu de I'incontournable interpréteur.

#!/usr/bin/python

Cette ligne se nomme le shebang. ’emplacement de I'interpréteur Python
varie selon les systemes Linux. Par conséquent, la ligne telle qu’elle est pré-
sentée ici n’est pas universellement valable. Il existe une meilleure variante
qui utilise le programme env.

#!/usr/bin/env python

Le code env charge les variables d’environnement standard de la confi-
guration du systeme d’exploitation qui prend aussi en charge la variable
d’environnement PATH. Sur mon ordinateur, I'interpréteur Python se trouve
sous /usr/bin/python.

Ligne 2

Pour pouvoir utiliser des caractéres accentués (méme dans les commen-
taires précédés par #), il est nécessaire de préciser 'encodage des caracteres
UTE-8 par cette ligne.

-*- encoding: utf8 -*-

Partie Il. Les montages

Ligne 3

Comme nous avons besoin de la fonction sleep pour insérer une pause,
celle-ci est importée a la ligne 3 par I'instruction from/import.

Ligne 4

Pour pouvoir utiliser la multitude de fonctions de pyFirmata apres son
installation, le paquet est inséré dans le code a la ligne 4 par I'instruction
from/import.

Ligne 7

Comme nous voulons communiquer et controler la carte Arduino via le port
série, nous devons nous y connecter. Il s’agit du méme device (appareil)
/dev/ttyACMO que celui que nous avons déja utilisé pour programmer
la carte Arduino. Pour que Python puisse avoir acces au port série, nous
avions précédemment installé le paquet python-serial pendant la phase
préparatoire.

arduinoboard =Arduino('/dev/ttyAcMe")

Par cette ligne, pyFirmata crée une instance de pyfirmata que nous avons
nommeée arduinoboard. Comme argument, nous transmettons précisément
le nom d’appareil que je viens d’indiquer.

Ligne 10

Les différentes broches de la carte peuvent étre controlées ou configu-
rées par la méthode get_pin. La configuration s’effectue par le biais d’une
séquence de caracteres au format suivant :

(a]d:<PinNr>:i|o|p|s)

Les trois informations nécessaires sont énumeérées en étant séparées par
deux-points. En voici la signification :

e Linstruction est-elle destinée a une broche analogique (a) ou numé-
rique (d) ?

e De quelle broche s’agit-il (PinNr) ?

e Quel mode faut-il utiliser (i : entrée, o : sortie, p : MLI, s : servo) ?
Cest donc ce que nous faisons a la ligne 10.

pin13 = arduinoboard.get_pin('d:13:0")

Une variable intitulée pin13 est initialisée a I'aide de la méthode get_pin
afin de nous permettre de manipuler cette broche (numeérique, 13, sortie)
conformément aux instructions transmises aux lignes 11 a 15.

Montage 25. Quand Arduino rencontre Raspberry Pi

452

Lignes 11a 15

Une boucle while permet d’exécuter en continu les instructions énoncées
dans le corps de la boucle :

while True:
pin13.write(1) # LED allumée
sleep(1) # Pause de 1 seconde
pin13.write(0) # LED éteinte
sleep(1) # Pause de 1 seconde

Pour associer différents niveaux a la LED qui est connectée a la broche 13,
nous utilisons la méthode write avec 'argument 1 pour le niveau HIGH ou
0 pour le niveau LOW. Entre les deux, nous placons la fonction sleep qui
interrompt 'exécution du programme pendant une durée d’une seconde.
La boucle while est exécutée tant que I'instruction suivante est vraie (True).
Nous n’avons pas employé de variable comme instruction, mais la constante
True, ce qui signifie que la boucle est exécutée a I'infini ou jusqu’a ce
que lutilisateur interrompe manuellement I'exécution du script a I'aide
du raccourci Ctrl+C. Si, apres avoir téléversé le sketch firmata depuis les
exemples de I'IDE, vous avez démarré le script depuis le Raspberry Pi,
observez la LED RX de la carte Arduino. Elle s’allume et s’éteint avec un
intervalle d’une seconde. On peut donc en conclure que des informations
sont transmises depuis le Raspberry Pi a 'Arduino via le port série avec le
méme intervalle pour controler la LED.

Commande par MLI

Nous allons maintenant voir comment commander une LED raccordée a
'une des broches MLI a I'aide d’un signal MLI. Nous en avons déja vu le
principe dans le montage n° 1. Je voudrais ouvrir une interface graphique
sur le Raspberry Pi afin d’envoyer le signal MLI a la carte Arduino a l’aide
d’un potentiometre linéaire comme celui illustré ci-dessous.

Ll Contréle PWM = =
Valeur PWM j '
50
[I i

Le potentiomeétre linéaire permet de choisir des valeurs comprises entre
0 et 100 qui correspondent aux pourcentages de MLI. Attention toutefois,
car la fonction write de pyFirmata, qui s’occupe de générer le signal MLI
accepte des valeurs comprises entre 0,0 et 1,0. J’ai donc intentionnellement
employé des valeurs a virgule flottante, car la fonction attend des valeurs de
type float. Examinons le script Python de plus pres. Python ne peut afficher
de but en blanc des éléments graphiques, comme des boutons, étiquettes,

Partie Il. Les montages

des potentiomeétres linéaires ou autres. Pour ce faire, nous utilisons une
bibliotheque nommée Tkinter. Qu’est-ce donc ? Il s’agit de la premiére
boite a outils d’interface graphique pour Python. Elle permet de créer
sous Python des programmes ayant une interface graphique. La boite a
outils Tk a initialement été développée pour le langage Tcl (Tool Command
Language), mais entre temps, elle a pris place dans la bibliothéque stan-
dard de Python. Le module Tkinter (Tk-Interface) permet a I'utilisateur de
programmer tres facilement des applications Tk sans devoir installer au
préalable des logiciels ou des bibliotheques supplémentaires. Examinons
le script Python que jai divisé en blocs pour une meilleure lisibilité.

Initialisation

Pendant la phase d’initialisation, nous importerons aussi bien pyfirmata
que Tkinter. Nous utilisons encore arduinoboard, comme dans I'exemple
précédent. La broche 3, sur laquelle la diode est raccordée, doit étre ini-
tialisée en tant que sortie MLI, ce que nous faisons a I'aide du mode p.

#!usr/bin/env ﬁychon

§# *—* encoding: utf8 *-*
import pyfirmata

from Tkinter import *

arduinoboard = pyfirmata.Arduino('/dev/ttyACHMO")

M < ;bW N

pin3 = arduinoboard.get_pin('d:3:p') # Broche 3 en MLI

Fonctions requises

Les fonctions cleanup et setPWM sont utilisées lors de 'exécution du script :
on s’en serait douté. La fonction cleanup est exécutée au moment ou vous
fermez l'interface graphique en cliquant sur la croix dans le coin supérieur
droit. Elle fait en sorte que la LED soit éteinte au moyen de la fonction
write. La fonction setPWM commande la LED et elle est exécutée tant que
vous modifiez la position du curseur du potentiomeétre.

def cleanup():
LED 3 eteinte

pin3.write (0)
arduinoboard.exit ()

O

LED 3 pilotée en PWM
§# Les valeurs comprises entre 0 et 1 sont acceptées

Tdef seTPWM (pwm) :

) o
[T T I S

pin3.write (float (pwm) /100.0)

La fonction write de la commande par MLI attend des valeurs comprises
entre 0 et 1, ce qui signifie que I’'argument doit étre de type float. Comme
le potentiomeétre transmettra par la suite, en réponse au déplacement du
curseur, une valeur de parametre pwm comprise entre 0 et 100, cette valeur
doit donc étre divisée par 100.

Montage 25. Quand Arduino rencontre Raspberry Pi

453

454

Préparation de linterface graphique GUI
et du potentiométre linéaire

Linterface graphique est initialisée a la ligne 20, qui prépare plus précisé-
ment I'instance master de la boite de dialogue wm_protocol, ferme la fenétre
en effacant son contenu, opération qui s’acheéve par I'exécution de la fonc-
tion cleanup qui éteint la diode. A la ligne 22, wn_title permet de nommer
I'application, nom qui sera affiché dans la barre de titre. Le potentiométre
estinitialisé avec les valeurs correspondantes et son exécution démarre a la
ligne 24. from_ et to définissent la plage de valeurs transmises par le poten-
tiometre. Quand le curseur est actionné, il faut afficher immédiatement
le résultat, ce qui est assuré par l'instruction command suivie de la fonction
exécutée. Lorientation est définie par orient ; ici, elle est horizontale.
Ensuite, nous précisons encore la longueur (length) et nous affichons le
nom du potentiometre au moyen d’une étiquette (label).

J
o

#GUI Interface graphique

master = Tk()

master.wm protocol ("W} DELETE_WINDOW", cleanup)
master.wm title('Contréle PWM')

NN NN

Initialisation du potentiométre linéaire
scale = Scale (master,

from = 0,

to = 100,

command = setPWM,

orient HORIZONTAL,

length 400,

label = 'Valeur PWM')
scale.set (50) # Curseur au centre

O W m-J o ”b WwN

0wWwwNNND NN

W N e

Démarrage du programme

Le gestionnaire d’interface se sert de pack pour centrer le potentiometre a
I'intérieur de la boite de dialogue. I’activation de mainloop affiche la boite de
dialogue et maintient le programme dans une boucle sans fin, en attendant
que se produisent des événements intéressants comme le déplacement du
curseur qui déclenche I'action programmeée.

35 scale.pack (anchor
36 master.mainloop()

CENTER) # Placer au milieu
Démarrage de la boucle d'interrogation Tk

el

Il n’y a pas grand-chose a ajouter sur ce script assez simple. Tkinter est
bien plus performant que ce que j’ai pu montrer dans ces quelques pages
et je ne peux que vous conseiller la lecture d’ouvrages spécialisés ou la
consultation de ressources sur Internet. Comme vous vous étes maintenant
familiarisé avec le fonctionnement d’une broche MLI, vous allez pouvoir
commander un servomoteur au moyen d’un potentiometre.

Partie Il. Les montages

Avec la version 3 de Python, vérifiez que vous écrivez bien tkinter (avec un t
minuscule) lors de son importation. La bibliotheque a été renommée.

Commande d’un servomoteur

Nous avons vu précédemment comment commander un servomoteur.
Ici, vous apprendrez a régler précisément I'angle du servomoteur a I'aide
d’un potentiomeétre.

L) servo-control =
Angle

94

Pour en savoir davantage sur le brochage d’un servomoteur, je vous invite
a relire le montage n°16, « Le moteur pas-a-pas ». J’aimerais commander
le moteur au moyen de la broche MLI 3, mais il est aussi possible d’utiliser
une broche qui ne soit pas dotée de cette fonctionnalité de modulation,
comme la broche 7. Examinons le code Python qui est trés proche de celui
de 'exemple précédent. Comme vous pourrez le constater, une fois que
'on a compris le principe de base, il suffit parfois de modifier un détail
pour accéder a d’autres fonctionnalités.

k!usr/bin/env python

§ *-* encoding: utf§ w-=*
import pyfirmata

from Tkinter import *

arduinoboard = pyfirmata.Arduino('/dev/cTyACHMO")

it = pyfirmata.util.Iterator (arduinoboard)
it.start

O Wm0 b Wk

o
o

pin3 = arduinoboard.get_pin('d:3:s') # Broche 3 en mode servo

La seule différence dans ce segment de code réside dans le changement
de mode qui passe a s pour la commande d’un servomoteur. Les deux
fonctions suivantes restent quasiment inchangées :

i3 def cleanup():

14 # Broche 3 désactivée
15 pin3.write (0)

16 arduinoboard.exit ()

La broche 3 est en mode Servo

18 Tdef moveServo (a) :
pin3.write(a)

Montage 25. Quand Arduino rencontre Raspberry Pi

455

456

La valeur du potentiomeétre est ici aussi transmise au parametre de la fonc-
tion moveServo pour commander le moteur a I'aide de la méthode write.
Linterface du programme est créée de la méme facon que précédemment
et je me suis contenté d’en changer le nom :

22 # GUI Interface graphique
23 master = Tk()
24 master.wm protocol ("WM_ , Cleanup)

25 master.wm title('servo-cor

Nous en arrivons a linitialisation du potentiomeétre qui doit transmettre
des valeurs comprises entre 0 et 179 a la fonction moveServo. Ensuite, le
script démarre avec mainloop.

27 # Initialisation du potentiométre linéaire

28 scale = Scale (master,

29 from =0,

30 to = 179,

1 command = moveServo,

32 orient = HORIZONTAL,

33 length = 400,

34 label = 'Angle')

35

36 scale.pack(anchor = CENTER) # Placer au milieun
37 mainloop() # Démarrage de la boucle d'interrogation Tk

Interrogation d’un bouton-poussoir

Jusqu’ici, nous avons toujours transmis des informations a la carte Arduino.
Nous allons maintenant faire 'inverse en interrogeant un bouton-poussoir
qui est raccordé a la broche 8. Comme procéde-t-on avec pyFirmata ? Le
code est assez évident :

#!/usr/bin/env pytﬂon

2 § *—* encoding: utfg *-*

3 import pyfirmata

4 arduinoboard = pyfirmata.Arduino('/dev/ttyACHMO')
S

3} pin8 = arduinoboard.get_pin('d:S:1i') # Broche digitale 8 en mode INPUT
7

-] it = pyfirmata.util.Iterator(arduinoboard)

9 ict.scarc()
10 ping.enable_reporting()

11
12 while True:

i3 ping8_state = pin8.read() # Lecture de l'état

4 if pin8_state = True:

S print 'Poussoir appuyé’
16 if pin8_state = False:

7 print 'poussoir relaché®

8 arduinoboard.pass_time(0.5) # Pause

Partie Il. Les montages

Ligne 6

Pour pouvoir interroger ’état d’'un bouton-poussoir connecté sur une
broche, nous devons évidemment la programmer en tant qu’entrée, ce
que nous faisons de ce pas avec d:8:1 (i correspond a input ou a entrée).

Lignes 8et 9

Pour lire une broche d’entrée sous pyFirmata, vous ne pouvez pas tout
simplement activer une fonction read, comme nous le ferons a la ligne 13.
Il faut implémenter un Iterator Thread qui veille a ce que les broches de la
carte Arduino communiquent la valeur courante lors de leur interrogation.
Cela évite aussi que ne se produise un buffer overflow qui bloquerait toute
la communication sur le port série.

Ligne 10

Par enable_reporting, vous indiquez a pyFirmata que vous voulez surveiller
la broche.

Lignes 12et 13

La boucle while interroge I’état de la broche 8 en continu en utilisant la
méthode read.

Lignes 14a 17

Les instructions if interrogent I’état True qui correspond au bouton enfoncé
et 'état False qui correspond au bouton non enfoncé et affichent le résultat
par linstruction print.

Ligne 18

La méthode pass_time prévoit une pause d’une demi-seconde apres chaque
affichage.

Vous constaterez qu’au démarrage du script, rien n’indique que le bouton
n’est pas enfoncé. Pourquoi le message correspondant ne s’affiche-t-il pas ?
En fait, quand le bouton n’a pas encore été enfoncé, I’état correspond a
None. Libre a vous de compléter le code afin que cet état soit aussi interrogé
et qu’un message s’affiche.

Montage 25. Quand Arduino rencontre Raspberry Pi

457

458

Interrogation d’un port analogique

Pour finir, nous allons voir comment interroger une entrée analogique et les
aspects a prendre en considération. La encore, le script est assez évident :

1 #!/usr/bin/env python

2 # *-* encoding: utfg *-*

3 import pyfirmata

4 from time import sleep # import de sleep
arduinoboard = pyfirmata.Arduino('/dev/ttyACM0')

5
6
7 pin0 = arduinoboard.get_pin('a:0:1i') # Broche 0 en entrée analogique
8
9 it = pyfirmata.util.Iterator (arduinoboard)

10 it.starc()
11 pin0.enable_reporting()

13 while True:

14 value = pinO.read() # Lire la valeur analogique
15 print value § Affichage de la valeur

16 sleep(l) # Pause 1 seconde

Ligne 7

La broche analogique 0 est désignée par un a (pour analogique) et elle est
programmeée en tant qu’entrée par le biais du mode i.

Lignes 13a 16

La valeur analogique est lue sur la broche 0 a I'intérieur de la boucle while
au moyen de la méthode read. Le résultat est compris entre 0,0 et 1,0.
Ensuite, le programme marque une courte pause d’1 seconde.

Lorsque vous faites lentement tourner le potentiometre de la gauche vers
la droite, il se peut que vous obteniez les valeurs suivantes :

pi@raspberryp1JB:~ $ python analog@.py
None

0.0

0.7019

0.829

0.8563

0.914

1.0

Au tout début de Iaffichage, on peut lire None, ce qui signifie qu’aucune
valeur valide n’a pu étre lue. Cela se produit de temps en temps au début
de I'interrogation. Voici comment Iéviter :

i3 while True:

14 value = pin0.read() # Lire la valeur analogique
15 if value != None:

16 print 'Valeur: $f' % value $# Affichage de la valeur

17 sleep (1) § Pause 1 seconde

Partie Il. Les montages

Ala ligne 15, j’ai placé une instruction if qui intercepte la valeur None, le
cas échéant. Pour améliorer la présentation, vous pouvez aussi précéder
Iaffichage d’un texte ou de la mention du type de données, comme a la
ligne 16. Vous obtenez alors le code suivant :

pi@raspberryp1JB:~ § python analog.py
Valeur 0.000000
valeur 0.012700
Vvaleur 0.326500
valeur 0.770300
Vvaleur 0.849500
valeur 1.000000

Liaison série entre le Raspberry Pi
et I'’Arduino

Jusqu’ici, les informations échangées entre le Raspberry Pi et I'’Arduino
ont transité par la liaison USB qui a servi a 'acheminement des données
série. Mais il est aussi possible d’établir directement une liaison TTL série a
condition de respecter la précaution suivante : le Raspberry Pi fonctionne
avec une tension d’alimentation maximale sur ses entrées et sorties GPIO
de 3,3V, tandis que I’Arduino utilise une tension de 5 V. Si vous raccordez
les deux cartes 'une a I’autre sans prendre de précautions, c’est la loi du
plus fort qui prévaut et 'un des protagonistes restera sur le carreau. Le
Raspberry Pi recevra une tension trop élevée. Et comme ses broches GPIO
sont directement reliées au processeur, sans protection, celui-ci grillera et
la carte sera bonne a jeter. Ce n’est donc pas une bonne idée ! Comment
Iéviter ? Nous pourrions utiliser un diviseur de tension afin de nous assurer
que le Raspberry Pi recoit bien une tension de 3,3 V. J’ai préféré employer
un composant meilleur marché qui s’appelle un convertisseur logique ou
levelshifter, comme le modele proposé par Adafruit.

<« Figure 25-6
Convertisseur logique
Adafruit

Montage 25. Quand Arduino rencontre Raspberry Pi

460

Figure 25-7 >

Le convertisseur logique
sert d'intermédiaire
entre le Raspberry Pi

et ['Arduino.

Figure 25-8

Le Raspberry Pi commande
['Arduino via les liaisons
RX/TX.

Ce composant permet non seulement de convertir la tension pour les liai-
sons RX/TX, mais aussi pour les bus I?C et SPI. Sur le coté gauche se trouvent
les broches de raccordement en basse tension (LV ou LOW Voltage) et sur
le coté droit, il y a les broches haute tension (HV ou HIGH Voltage). Voyons
maintenant comment raccorder correctement le Raspberry Pi et 'Arduino
pour que les deux cartes réussissent a communiquer via les ports série.

RaspberyPi

Il va sans dire que les lignes émettrices et réceptrices des deux cartes
doivent étre croisées, car si vous voulez que la liaison TX verte, par laquelle
le Raspberry Pi transmet des données, réussisse a se faire entendre par
I’Arduino, cette derniere doit étre connectée a sa liaison réceptrice RX
bleue, et inversement. Le montage suivant permet de faire clignoter une
LED connectée a la broche 8 par le biais des deux liaisons RX/TX.

Partie Il. Les montages

Vous pouvez constater qu’il n’y a pas de connexion USB entre les deux
cartes et que la communication passe exclusivement par l'interface UART.
Lalimentation électrique de ’Arduino s’effectue au moyen d’une pile de
9 V. Quelles conditions doivent étre remplies pour que cette forme de
communication fonctionne ? Tout d’abord, je dois vous en dire davantage
sur le port série du Raspberry Pi. Par défaut, le Raspberry Pi utilise le port
série en tant qu’interface de console par 'intermédiaire duquel vous pouvez
accéder au systeme depuis ’extérieur, méme si vous n’y avez pas raccordé
de moniteur, de souris ou de clavier — quasi headless. Mais ce moyen d’ac-
ces dont nous n’avons pas absolument besoin pour le moment bloque les
broches RX/TX et nous empéche de poursuivre notre expérience. Nous
devons donc couper ce lien. La solution réside dans la configuration du port
série. Ouvrez la configuration du Raspberry Pi et affichez 'onglet Interfaces.

Systéme Interfaces |Perf0nnanceLLocalisatjon [

Caméra: O Activé () Désactivé
SSH: @® Activé © Désactivé
VNC: e 5D

SPI: O Activé © Désactivé
12C: @ Activé © Désactivé

| Série: @ Activé © Désactivé |

1-Wire: © Activé @ Désactivé
Remote GPIO: O Activé) Désactivé

Annuler || Valider

Activez le port série a I’aide de 'option correspondante de la boite de
dialogue, puis redémarrez le systeme. Ensuite, il ne vous reste plus qu’a
apporter quelques modifications au fameux script Blink.

1 #!/usr/bin/env python

2 # —-*— encoding: utfs -*-

3 from time import sleep # import de sleep
4 from pyfirmata import Arduino, util # Import des utilitaires
S

3 # Adressage de la carte Arduino via le port série

7 arduinoboard = Arduino('/dev/ttyS0')

8

El # Programmation des broches Arduino

10 pinl3 = arduinoboard.get_pin('d:13:0')

11 while True:

12 pinl3.write (1) # LED allumée

13 sleep (1) # Pause de 1 seconde

14 pinl3.write(0) # LED éteinte

15 sleep (1) # Pause 1 secondd

Montage 25. Quand Arduino rencontre Raspberry Pi

<« Figure 25-9
Configuration du port série
du Raspberry Pi

461

462

A premiére vue, le code ne semble pas avoir changé. Pourtant, il y a une
différence majeure. Regardez attentivement la ligne 7 a laquelle le port
série est initialisé.

Avant :

arduinoboard = Arduino('/dev/ttyACMe')
Apres :

arduinoboard = Arduino('/dev/ttySe’)

Le device que nous avions utilisé précédemment se rapportait a I'interface
USB. Apreés la correction, le device accéde a I'interface UART.

Qu’avez-vous appris ?

e Vous avez vu comment programmer votre Arduino Uno avec le
Raspberry Pi au moyen de I'IDE Arduino qui y est installé.

e Vous vous étes servi de Firmata pour établir et commander la com-
munication entre le Raspberry Pi et ’Arduino Uno.

e Par ailleurs, vous avez constaté a quel point il est facile de créer des
éléments d’interface utilisateur graphiques avec Tkinter afin de contro-
ler les saisies sans passer par des lignes de commande. Cela vous a
permis d’envoyer des signaux MLI a ’Arduino Uno, de commander un
servomoteur et d’interroger le port analogique.

e Enfin, vous avez raccordé votre carte Arduino et Raspberry Pi au moyen
des broches du port série.

Partie Il. Les montages

Montage

Programmer pour 2 6
l’Internet des objets

avec Node-RED

LInternet des objets (Internet of Things en anglais, ou loT) est I'inter-
connexion entre des objets (Things) du monde réel et des objets du monde
virtuel (Internet). Il s’agit en somme de tout interconnecter pour nous
simplifier la vie grace a une communication qui permet d’échanger des
données de toute sorte. Voila pour la théorie. Imaginez que des capteurs
disposés dans votre réfrigérateur détectent la quantité de produits qui s’y
trouvent et a quel moment vous pourriez peut-étre bientot manquer de
quelque chose. Autre exemple : votre systeme de surveillance prend alors
les devants, commande sur Internet chez votre marchand en ligne préféré
la quantité suffisante de produit avant qu’il ne vienne a manquer, et le
produit est ensuite livré chez vous. Votre véhicule dispose d’un ordinateur
de bord, qui prend rendez-vous automatiquement a I’avance dans votre
concession lorsqu’une révision arrive a échéance ou qu’un quelconque
probléme survient. Il est aussi en mesure de commander le cas échéant les
pieces de rechange nécessaires. Ce genre d’infrastructure interconnectée
va évidemment de pair avec le risque d’une surveillance globale. En effet,
les données ne sont pas soumises a I’heure d’aujourd’hui aux réglemen-
tations strictes sur la protection des données personnelles que I'on est
en droit d’espérer en tant que personne privée. Nous n’approfondirons
pas ici ce sujet explosif méme s’il devient de plus en plus épineux avec
I'Internet des objets.

Dans ce montage, vous allez découvrir le framework Node-RED, qui vous
permettra de représenter des données que vous aurez générées a I'aide d’un
capteur de température et d’humidité intégré a votre carte Arduino. Vous
pourrez afficher les données de maniere attrayante dans Node-RED via un

463

tableau de bord avant d’y accéder par une URL. Vous apprendrez égale-
ment comment générer et envoyer automatiquement des e-mails a partir
du framework. Enfin, vous verrez ce qu’est le format de fichiers JSON et
a quoi il va nous servir.

Comment fonctionne Node-RED ?

J’aimerais vous présenter plus en détail dans ce montage I'outil de dévelop-
pement Node-RED concu par IBM, dont nous avons déja fait connaissance
dans le montage n° 24 sur les langages de programmation par blocs. Au
moyen d’une interface graphique, il est possible de créer en un rien de
temps des connexions entre différents périphériques matériels ou instances
via ce qu’on appellera des Flows (flux en francais) en vue de réaliser un
flux ou un échange d’informations.

Comme le langage de programmation Scratch, Node-RED fournit des blocs
prédéfinis contenant des fonctions spécifiques, qui peuvent étre combinés
tres facilement entre eux a partir d’un stock. Ces blocs, aussi appelés Nodes
(nceuds en francais), remplissent certaines taches et constituent ensemble
les flux précédemment mentionnés. La figure ci-aprés nous montre un
flux simple, qui permet de faire clignoter une LED connectée a votre carte
Arduino.

Figure 26-1) —ET— 3 £ " : :
Un flux Node-RED simple |__l - Timerﬂ.,.5 S % Inversion entree-sortie e

@ connected

Voyons maintenant en détail comme tout cela fonctionne. Les Nodes sont
organisés en différentes palettes et peuvent, comme avec Scratch, étre
placés sur I'espace de travail par un simple glisser-déposer. Node-RED
s’appuie sur JavaScript et, coté serveur, sur la plateforme Node.js, qui sert
a développer des logiciels pour des applications réseau. Comme Node-RED
fonctionne au sein d’un navigateur web, I’application n’est pas tributaire
d’une plateforme. Je n’ai constaté aucun probléme lié a l'utilisation de
Firefox, Opera, Chrome ou Internet Explorer. La figure ci-aprés montre
les palettes de base. J’en ai ajouté déja une nouvelle pour la commande
de la carte Arduino. Nous verrons plus loin comment ajouter des palettes.

Partie Il. Les montages

Node-RED

» common

w

function

> network

w

sequence
> parser
> storage

> social

w

dashboard

> Arduino

La page de démarrage de Node-RED se trouve a I’adresse Internet suivante :

https://nodered.org/

Vous y trouverez également toutes les informations utiles.

Installation de Node-RED

Node-RED peut étre installé localement sur un ordinateur ainsi que sur
divers autres ordinateurs qui fonctionnent alors comme des serveurs
Node-RED. Comme il s’agit d’une application de navigateur, il est trés
simple d’entrer 'URL correspondante suivie du port 1880 (par exemple :
192.168.178.58:1880) pour établir la connexion. Si vous devez utiliser
I'extension Arduino, vous devez impérativement raccorder la carte Arduino
au serveur et non a l'ordinateur qui fonctionne comme client. Tout utilisa-
teur qui posséde un Raspberry Pi peut donc y installer Node-RED tres faci-
lement. Les possibilités d’installation étant toujours susceptibles d’évoluer
rapidement, mes explications sur le sujet risquent d’étre dépassées. C’est
pourquoi j’'indique ici les sources, ou sont tres bien décrites les différentes
étapes de l'installation. Je suis tout a fait conscient que tous les liens que
je mentionne risquent un jour ou l'autre d’étre obsolétes et de renvoyer a
une page vide. Mais recourir a un moteur de recherche ne devrait pas poser
trop de problemes et devrait méme permettre de franchir élégamment
ce genre d’obstacle.

Montage 26. Programmer pour l'Internet des objets avec Node-RED

<« Figure 26-2
Les différentes palettes
de Node-RED

)

("Ml APERCU RAPIDE AVEC FRED

@

Figure 26-3 »
Démarrage de Node-RED
sous Windows — ouvrir
la ligne de commande

466

Pour avoir un apercu rapide et simple de Node-RED, nul besoin de linstaller
sur votre ordinateur pour débuter et faire vos premiers pas. Il vous suffit
d'utiliser FRED (Frontend pour Node-RED). Rendez-vous simplement sur la
page Internet de FRED :

https://fred.sensetecnic.com/

Vous vous connectez, choisissez la version gratuite et quelques instants apres,
vous pouvez commencer a utiliser Node-RED. Il existe toutefois une restriction
quant au nombre de nceuds pouvant étre créés, restriction qui ne devrait pas

constituer un gros probléme. A vous de jouer. Amusez-vous bien !

Installation de Node-RED sur Windows

Linstallation sur un ordinateur Windows est décrite a I’adresse Internet
suivante :

https://nodered.org/docs/getting-started/windows

Installation de Node-RED sur un Raspberry Pi

Linstallation sur un Raspberry Pi est décrite a I'adresse Internet suivante :

https://nodered.org/docs/getting-started/raspberrypi

Démarrage de Node-RED

Pour démarrer Node-RED sous Windows, allez dans le menu de démarrage
et sélectionnez le programme Node.js command prompt, lequel ouvre la
ligne de commande :

Install Additional Tools for Node.js

Nodejs

Node.js command prompt
Nodejs documentation
Node,js website

ji Uninstall Nodejs

Notepad ++

dapaoar f croba

po) h’aper ici pour rechercher

Partie Il. Les montages

Une fois la ligne de commande ouverte, entrez la commande node-red et
confirmez a l’aide de la touche Entrée :

BE¥ Node,js command prompt — [m] X

Un certain nombre de messages se déroulent ensuite. Le message le plus
important pour vous se situe vers la fin :

BH node-red =3 O x

La derniére ligne indique que le serveur fonctionne localement sur votre
ordinateur. Vous devez ensuite entrer 'adresse

http://127.0.0.1:1880

sous la forme d’une URL dans un navigateur. Cadresse IP 127.0.0.1 renvoie
au localhost, autrement dit a Pordinateur local. Le nombre 1880 a la fin de
I’adresse IP indique le port ; il est séparé de I’adresse IP par deux points.
Alternativement, vous pouvez également saisir 'adresse IP attribuée par le
routeur, qui a été affectée a votre ordinateur dans votre réseau domestique.

Vous pouvez trouver celle-ci a I'aide de la commande ipconfig dans la ligne
de commande :

B Nodejs command prompt

Dans mon cas, I’adresse IP est 192.168.178.21. Elle peut étre adressée non
seulement localement, mais aussi par tous les autres ordinateurs preé-
sents dans le réseau correspondant grace a I'indication supplémentaire
du port 1880. Le démarrage de Node-RED sur un Raspberry Pi s’opere de
maniere similaire. Vous devez aussi saisir dans une fenétre de terminal la

<« Figure 26-4
Démarrage de Node-RED
sous Windows — entrer
une commande

< Figure 26-5
Messages de Node-RED
apreés le démarrage

< Figure 26-6
Trouver votre adresse IP

Montage 26. Programmer pour l'Internet des objets avec Node-RED

467

Figure 26-7 »
Démarrage de Node-RED

sur un Raspberry Pi — entrer

468

une commande

commande node-red. Veillez a respecter les majuscules et les minuscules.
J’ai résumeé l’extrait suivant aux lignes les plus importantes :

‘@ pi@raspberrypi: ~ = m} X
pifraspberrypi:~ £ node-red ~
15 Feb 18:02:19 - [info]

Welcome to Node—RED

15 Feb 18:02:19 - [info] Node-RED version: v2.2.0

15 Feb 18:02:19 — [info] Node.js version: wl2.22.5

15 Feb 18:02:19 - [info] Linux 5.15.21-v7+ arm LE

15 Feb 18:02:24 - [info] Loading palette nodes

15 Feb 18:02:31 — [info] Settings file : /home/pi/.node-red/settings.js
15 Feb 18:02:31 — [info] Context store : 'default' [module=memory]

15 Feb 18:02:31 - [info] User directory : fhome/pi/.node-red

15 Feb 18:02:31 - [warn] Projects disabled : editorTheme.projects.enabled=false
15 Feb 18:02:31 - [info] Flows file : /home/pi/.node-red/flows.json
15 Feb 18:02:31 - [info] Creating new flow file

15 Feb 18:02:31 - [info] Starting flows

15 Feb 18:02:31 - [info] Started flows

15 Feb 18:02:31 - [info] Server now running at http://127.0.0.1:1880/

La encore, vous pouvez trouver I’adresse IP réelle dans le réseau, mais
ici la commande est ifconfig et vous devrez la lancer dans une fenétre de
terminal. Dans tous les cas, n’'oubliez pas de laisser ouvertes les fenétres de
terminal aprés le démarrage de Node-RED, aussi bien sous Windows que
Linux, et de ne pas les fermer tant que Node-RED doit rester opérationnel !

Installation de Nodes ou de Flows
supplémentaires

La carte Arduino n’étant pas disponible par défaut sur Node-RED, il vous
faudra l'installer en ajoutant un nouveau Node a la palette. 1l est possible
de procéder de différentes manieres. L’installation directe a partir de Node-
RED est naturellement un trés bon choix. Nous I’avons abordé dans le
montage n° 24 sur les langages de programmation par blocs, lorsque nous
avons ajouté le Node Arduino. ’autre variante consiste a se rendre sur un
site Internet spécifique puis a exécuter manuellement une ou plusieurs
commandes dans la ligne de commande. Je vais vous montrer les deux
méthodes.

Installation d’extensions
a partir de Node-RED

Pour que linstallation de Nodes supplémentaires a partir de Node-RED
puisse fonctionner, il faut, bien stir, avoir démarré Node-RED. Ouvrez Node-
RED dans votre navigateur et cliquez sur les trois lignes horizontales en
haut a droite pour ouvrir la configuration et sélectionnez I'option de menu
Manage palette :

Partie Il. Les montages

Une boite de dialogue s’ouvre. Allez dans l'onglet Install et saisissez le
terme de votre choix dans la barre de recherche. J’ai ainsi obtenu une liste
de résultats apres avoir entré le terme arduino. Vous pouvez maintenant
installer 'extension souhaitée sous la forme d’un Node supplémentaire en
cliquant sur le bouton Install.

View Noces

Palette

X | sort| I | az | recent =

Q arduino ¥rE X

Keyboard A
& @arduino/node-red-contrib-arduino-iot-cloud &

ED nodes to talk to

&) node-red-node-arduino =
A Mode-RED to talk to an Arduino running firmata
» 031

Installation d’extension a l’aide de la ligne
de commande

Pour installer manuellement le Node que vous souhaitez, rendez-vous sur
la page Internet suivante :

http://flows.nodered.org/

Montage 26. Programmer pour l'Internet des objets avec Node-RED

<« Figure 26-8
Gestion de la palette
de Node-RED

469

470

Figure 26-10 »
Recherche d'extensions
pour Node-RED sur

la page Internet

Figure 26-11 »
Extensions Arduino
pour Node-RED sur

la page Internet

Vous pouvez restreindre I'affichage des Nodes ou des Flows dans la
recherche. Entrez simplement le terme 4rduino dans la barre de recherche.
Quelques résultats sont déja mis en évidence pendant la saisie :

Arduino

ProyectoloT m

Industrial Automation using the Node-RED and raspberry pi

B

t

Arduino Microcontroller

node-red-contrib-gpio @

e

Raspberry BMW

SPORTY - Nextion Screen w/ Pi4 & Arduino Control - RGB
Matrix - Turn Signals, ETC.

see more (42) »

9

Vous pouvez voir sous la fenétre de recherche trois boutons qui vous per-
mettent de limiter la recherche aux Nodes, aux Flows ou aux Collections :

o [- [

Lextension souhaitée s’affiche dans un encadré de couleur rose :

node-red-node-arduino
A Node-RED node to talk to an Arduino running
firmata

v0.31 & 473

Cliquez dessus pour faire apparaitre sur une nouvelle page web des infor-
mations supplémentaires expliquant comment installer extension que
vous avez sélectionnée. Pour communiquer avec la carte Arduino, on uti-
lise firmata (déja vu dans le montage n° 25), qui est un firmware fourni
d’office dans chaque environnement de développement Arduino. Une fois
I'installation réussie, arrétez et redémarrez le serveur Node-RED. Avec le
Raspberry Pj, cela s’effectue a I'aide des commandes que vous connaissez
déja, dans l'ordre suivant :

node-red-stop
node-red-start

Partie Il. Les montages

Sur un systeme Windows, terminez le traitement par lots en appuyant
sur Ctrl+C, confirmez avec O et relancez la commande pour démarrer
Node-RED :

node-red -v

Une fois le navigateur reconnecté, qui naturellement perd briévement la
connexion au serveur suite a cette action, vous voyez s’afficher une nouvelle
palette portant le nom Arduino avec deux Nodes :

v Arduino

Maintenant, tout est prét pour établir la communication entre Node-RED
et votre carte Arduino.

Préparation de la carte Arduino Uno

Pour que la communication fonctionne entre votre carte Arduino Uno et
votre serveur Node-RED (I'ordinateur local ou le Raspberry Pi), vous devez
télécharger sur votre carte Arduino Uno le sketch StandardFirmata en tant
que firmware a partir du répertoire d’exemples.

Si vous n’avez pas encore installé Penvironnement de développement
Arduino sur votre Raspberry Pi (nous I’avons fait dans le montage n° 25
sur I'interaction entre Arduino et Raspberry), exécutez les lignes suivantes
dans une fenétre de terminal de votre Raspberry Pi :

sudo apt-get update
sudo apt-get install arduino

Le sketch StandardFirmata se trouve dans Fichiers | Exemples | Firmata.

Node-RED dans le navigateur

Avant de commencer, voici un petit apercu de la facon dont se présente
Node-RED dans le navigateur et comment il est organisé. Une fois que vous
avez entré dans le navigateur I'adresse IP attribuée, Node-RED s’affiche
comme suit. Vous pouvez voir que j’y ai déja ajouté un Flow simple :

<« Figure 26-12
Nodes Arduino

Montage 26. Programmer pour l'Internet des objets avec Node-RED

471

m—

Figure 26-13 A
Node-RED dans
le navigateur

472

fihier Edbon AMichage Htorque Muque-piges Gubls Aidg

B Flowa

Flow TACBATABA1TDATA1™

Les différentes palettes sont représentées dans la partie gauche 1. Pour
le moment, c’est la palette common qui est ouverte et les Nodes quelle
contient sont affichés. La partie centrale 2 est un grand espace ou peuvent
étre créés les Flows, organisés en différents onglets. Cliquez sur la case +
en haut a droite pour ajouter un nouveau Flow dans la barre d’onglets.
Pour activer un Flow, cliquez sur le bouton Deploy 3. Pour configurer
Node-RED, il vous suffit d’ouvrir un menu 4. Des informations détaillées 5
sur le Node sélectionné s’affichent dans 'onglet Info, des informations sur
le Flow apres son activation dans I'onglet Debug.

Il est maintenant temps de démarrer un Flow.

Le Flow du clignotant

Nous commencerons (pourrait-il en étre autrement ?) avec un exemple
clignotant. Nous allons construire ce Flow pas a pas et je vais vous expli-
quer tous les détails importants. De quels Nodes avons-nous besoin ? Nous
les trouverons dans la partie gauche du Node inject, situé dans la palette
common.

v common

P
L

inject

Le Node inject vous permet d’injecter un message dans le Flow, manuelle-
ment en cliquant sur le bouton Node ou a intervalle régulier via le minuteur.

Partie Il. Les montages

Pour obtenir des informations sur le Node sélectionné, ouvrez le volet
d’informations en appuyant sur Ctrl+barre d’espace. Cette fenétre reste
ouverte. Si vous cliquez sur un autre Node, vous obtenez immédiatement
les informations correspondantes. Le nom et le type de Node inject sont
indiqués sur la figure ci-apres :

i & % |8 - <« Figure 26-14

i info i
o § Informations sur
le Node inject
» Flows &
> B Flow 1
> Subflows

> Global Configuration Nodes

[:] Timer 0,5 5. &|a
Node "2df6acbalccdefdg” 8
Type inject

D’autres indications utiles sur le Node sélectionné s’affichent aussi sous
ces informations. Jetez-y un coup d’ceil. Cette fenétre ne nous permet
cependant pas de modifier la configuration. Mais alors, comment chan-
ger la configuration du Node inject ? Double-cliquez sur le Node pour le
configurer (cela s’applique aussi a tous les autres Nodes). Une boite de
dialogue s’ouvre et vous pouvez alors modifier les parametres importants

de ce Node.
- <« Figure 26-15
Edit inject node 2 1. .
Editer le Node inject
Delete Cancel
£+ Properties & B =
¥ Name
msg. payload = | = timestamp x
msg. topic =|w 3 x
+30d inject naw
O Inject once afier seconds, then
C Repeat none v

Montage 26. Programmer pour l'Internet des objets avec Node-RED 473

474

Payload est ce qu’on pourrait appeler la charge utile qui doit étre trans-
portée. Dans le cas présent, nous transmettons I’horodatage (Timestamp)
quiindique a quel moment quelque chose s’est passé. Il s’agit d’'une longue
succession de chiffres, par exemple :

1610897445122

Cette succession de chiffres cache la date et ’heure. Vous pouvez ensuite,
a 'aide d’un convertisseur d’horodatage, convertir cette valeur dans un
format lisible. Il vous suffit de vous rendre sur le site Internet suivant :

https://www.epochconverter.com/
Sur le site, entrez I’horodatage puis cliquez sur le bouton Timestamp to

Human date, vous obtiendrez alors le résultat suivant :

Convert epoch to human-readable date and vice versa

| 1643306774 | Timestamp to Human date | [batch convert]

Supports Unix timestamps in seconds, milliseconds, microseconds and nanoseconds.

Day Mon ¥Yr Hr Min Sec

;HD -| 2022 @ : E| : E| Local time ~ ‘;ﬂuman date to Tlmestampg

!

Epoch timestamp: 1643306774

Timestamp in milliseconds: 1643306774000

Date and time (GMT): Thursday 27 January 2022 18:06:14

Date and time (your time zone): jeudi 27 janvier 2022 19:06:14 GMT+01:00

Comment faire pour afficher cet horodatage ? Bon, je vais anticiper un peu.
Sivous voulez « mettre au point » un Flow pour le rendre actif, cliquez sur
le bouton Deploy, qui se trouve en haut a droite de la fenétre Node-RED.
Deploy signifie « Mettre en place » et active ainsi le Flow que vous avez
créé sur le serveur.

== Deploy ~

Si vous voulez envoyer quelque chose une seule fois avec le Node inject,
ne sélectionnez pas dans la case Repeat 'option interval mais laisser plutot
'option none :

C' Repeat | none v|

Vous pouvez maintenant entreprendre une action inject unique en cliquant
sur le petit carré situé a gauche de l'onglet :

N

_| inject >

Partie Il. Les montages

Tout est en place. La présence du Node inject ne constitue pas pour autant
un Flow correct et si vous voulez visualiser la sortie, c’est-a-dire la Payload
d’un Node, il faut se servir du Node debug. Celui-ci se trouve dans la palette
common :

v o common

Lorsque vous créez le Flow ci-apres, quelque chose va se passer dans le
volet d’informations de 'onglet debug. Les deux Nodes vont se relier aux
deux petits points de liaison carrés que vous voyez sur les Nodes. Cliquez
sur le petit carré du Node de gauche qui représente la source du Flow, puis
tracez un trait de liaison en appuyant sur le bouton gauche de la souris vers
le Node de droite qui fonctionne comme la cible du Flow :

Lorsque vous tracez le trait avec la souris, une ligne de liaison apparait avec
une croix marquant la cible, en rouge ici. Relachez le bouton de la souris
lorsque la croix parvient au-dessus du petit carré du Node cible. Vous venez
de créer la liaison, c’est-a-dire le Flow. Il est possible de repositionner les
Nodes dans I’espace de travail en maintenant le bouton gauche de la sou-
ris appuyé sans supprimer les lignes de liaison. Pour supprimer un Node,
sélectionnez-le et appuyez sur la touche Suppr de votre clavier :

Vous devez configurer le Node inject pour qu’il puisse envoyer un message
toutes les 0,5 s. Pour cela, je régle 'option Repeat (répéter) sur interval
(intervalle) et j’ajoute la valeur 0.5 comme intervalle en secondes. Je nomme
le Node inject Timer 0,5 s :

C Repeat interval v

EVery 0.5 : seconds v

Montage 26. Programmer pour l'Internet des objets avec Node-RED

475

476

Figure 26-16 »
Fenétre Debug

Figure 26-17 »
Informations Debug

Pour accéder a la fenétre debug, cliquez en haut a droite sur le triangle
pointant vers le bas et sélectionnez Debug messages :

i Information

& Help

¥ Debug messages q.j
& Configuration nodes

£ Context Data

Dans mon cas, les messages suivants, dont vous ne voyez ici qu'un petit
extrait, ont défilé apres le déploiement (Deploy) dans la fenétre debug :

i¥ debug i & % & -
Talnodes »| Wal «

01/02/2022, 17:48:14 node: Sortie msg

msg.payload : number

1643733074127

01i02/2022, 17:46:14 node: Sortie meg

msg.payload : number

1643733974634

01i02/2022, 17:48:15 node: Sortie msg

msg.payload : number

1643733975137

Pour le Flow suivant, vous pouvez encore utiliser le Node debug. 1l rend
bien service lorsque vous recherchez des erreurs. Mais a quoi sert un de ces
Nodes inject et quelles sont leurs fonctions ? Ce Node sert de minuteur, il
envoie toutes les 0,5 secondes un message au Node suivant. "horodatage
ici est en fait secondaire et ne sert qu’a indiquer que quelque chose a été
réellement transmis. Comme je I’ai déja mentionné, nous devons injecter
quelque chose a un certain endroit du Flow et c’est ce a quoi va nous servir
le Node inject ; celui-ci fonctionne quasiment comme un déclencheur et
injecte un message dans le Flow a l'intervalle indiqué. Vous vous demandez
certainement pourquoi il faut transmettre des informations d’'un Node a
un autre ou si cela fonctionne en arriere-plan sans que I'on s’en apercoive.
1l s’agit la d’un point essentiel a Node-RED, comparable au paradigme du
langage de programmation C++ pour ce qui est de la programmation orien-
tée objets (POO). Node-RED fonctionne de maniére comparable. Comme
des messages sont échangés entre les Nodes, il existe un objet qui porte
le nom msg (message). Cet objet possede différentes propriétés (properties
en anglais). La propriété qui nous importe le plus est Payload, la charge
utile qui est transportée. Vous trouverez des informations détaillées sur
les propriétés possibles a I'adresse Internet suivante :

https://github.com/node-red/node-red/wiki/Node-msg-Conventions

Partie Il. Les montages

Pour accéder a la Payload, utilisez ’écriture suivante :
msg. payload

Nous allons voir tout cela dans I’exemple qui suit. Notre objectif est de
faire clignoter sur la carte Arduino une certaine broche, de préférence la
broche 13 (toujours elle). Pour cela, nous devons transmettre alternative-
ment les valeurs false et true :

T — 0

Vous pouvez voir sur la figure ci-aprés comment les Nodes fonctionnent
entre eux et comment ils envoient leurs messages au Node suivant :

N

”_ AN

5 % Wy o

&
P

2O M
; !/gl,@‘)/ N:F_B /,TJ:TZ}

Regardons cela de plus pres. Je double-clique sur le Node pour afficher
ses propriétés.

Le Node inject

Le Node inject nous permet de générer a I’aide des parameétres indiqués
un minuteur, qui envoie un message sous la forme d’un horodatage toutes
les 0,5 secondes :

1 Properties o3| =
% Name Timer 0.5 s
A
= msg. payload = v timestamp x
= | msg. topic =lvsg *
v
+oad S—
O Inject once after seconds, then
C Repeat interval B
every 0.5 7| seconds v

O Enabled

Montage 26. Programmer pour l'Internet des objets avec Node-RED

477

478

Le Node Fonction

Le Node Fonction qui se trouve dans la palette function permet de créer
une fonction que nous allons doter d’un code pour clarifier ce qui doit se
passer lorsque la fonction est activée. Le code doit étre ajouté dans I'onglet
On Message :

£ Setup On Start On Message ©On Stop

- e
Fonction 1 context.level - !context.level false;
2 msg.payload = context.level ;

3 return msg;

Le contenu, également appelé body, nécessite une explication. Chaque
Node posséde un objet prédéfini qui lui est propre et qui porte le nom
context. Nous pouvons maintenant insérer des propriétés (properties) a
Iaide de 'opérateur point (.). J’ai ajouté pour le niveau broche de la carte
Arduino la propriété level. Vous trouverez des informations détaillées sur
l'objet context a ’'adresse Internet suivante :

https://nodered.org/docs/creating-nodes/context
Ala ligne 1 de la fonction, je nie la valeur a chaque ouverture de celle-ci
en utilisant 'opérateur NOT, accessible par le point d’exclamation (!). Sila

propriété n’est pas encore initialisée au départ, ce qui devrait étre le cas,
|| false entreprend une initialisation.

Alaligne 2, le context.level de la propriété payload est affecté a I'objet msg
et défini a la ligne 3 comme valeur de retour. Le Node suivant recoit donc
l'objet msg complet comme entrée. Dans notre cas, il s’agit du Node debug.

Le Node debug

Le Node debug va nous permettre d’indiquer la sortie (I’édition) de la
fonction :

1 Properties 8 B =
iE Output = mMsg. payload

X To debug window

 sotem [l> Disystem console

[node status (32 characiers)

¥ Name Sortie msg
Dans mon exemple, vous voyez que I’édition (Output) est la propriété

Payload, qui est éditée dans 'onglet debug. Regardons de plus prés cette
édition en allant faire un petit tour sur 'onglet debug correspondant :

Partie Il. Les montages

J¥ debug i & = & -
Yallnodes = | | @all =

0140212022, 18:13:43 node: Sortie msg ~

mzg.paylead : boolean

true

01/02/2022, 18:13:44 node: Sortie msg

mzg.paylead ; boolean

false

01/02/2022, 18:13:44 node: Sortie msg

mzg.paylead : boolean

true

Vous voyez que la propriété payload alterne entre les valeurs false et true.
Parfait ! Vous pouvez maintenant attacher le Node A4rduino au Node func-
tion sans que le Node debug ne géne ni qu’il disparaisse. Votre Flow prend
I’apparence suivante et se divise aprés le Node function. ’édition (Output)
est dirigée vers les deux Nodes ajoutés (Payload et Arduino) :

o E N s o
\:

@ connected

La configuration du Node Arduino (Arduino-Out) qui se cache dans la
palette Arduino que nous avons ajoutée se présente comme suit :

1 Properties o B =
= Arduino com3 a4
rtie digitale ' # Type Digital (0/1) v
B connecled
@ Pin 13
W Name Sortie digitale 13

Les ports COM sont disponibles sur un ordinateur Windows. En revanche,
sous Linux avec un Raspberry Pi, le port est /dev/ttyACMO. Dans Type,
sélectionnez la commande des broches numériques et indiquez ensuite le
bon numéro de broche. Le champ Name peut rester vide, vous pouvez
aussi donner un autre nom si Pin 13 ne vous plait pas. Une fois que vous
avez cliqué sur le bouton Deploy, la LED Onboard (Broche 13) doit clignoter
sur votre carte Arduino Uno. Vous trouverez des informations détaillées
sur les fonctions Node-RED a I’adresse Internet suivante :

https://nodered.org/docs/writing-functions

Montage 26. Programmer pour l'Internet des objets avec Node-RED

479

480

Figure 26-18 »
Capteur de température
et d'humidité DHT11

La communication entre votre carte Arduino et le serveur Node-RED s’opé-
rait jusqu’ici par le biais du sketch firmata. Peut-on faire autrement ?

Montage avec le capteur de
température et d’humidité DHT11

Il existe un capteur trés intéressant, qui peut mesurer aussi bien la tem-
pérature que ’humidité. Il s’agit du capteur DHT11 (vu briévement dans
la fin du montage n° 22) et celui-ci est tout a fait approprié pour faire la
démonstration de la communication entre la carte Arduino et Node-RED.
Mais vous pouvez aussi utiliser n’importe quel autre capteur que vous aurez
raccordé a votre carte Arduino.

'

E'L §
o> “10q0y 40 "NN
Josuas [11HO

P

¥
S ON9 O

i

1=

Al l
|V
I

| w

Il ne présente que trois ports et le mieux est de le connecter a la carte Arduino
via une petite carte porteuse, sur laquelle se trouve déja la résistance sup-
plémentaire dont vous avez besoin. Rappel des caractéristiques du DHT11:

e tension d’alimentation 3,3Va5V;

e plage de mesure de ’humidité relative de ’air 20 % a 95 % ;

tolérance de la plage de mesure pour ’humidité relative de I'air +5 % ;

plage de mesure de la température 0 °C a 60 °C;

tolérance de la plage de mesure pour la température +2 %.

Composants nécessaires

Pour ce montage, nous avons besoin des composants suivants :

Partie Il. Les montages

Liste des composants

1 capteur DHT11

1 résistance de 10 kQ (si elle n'est
pas déja sur la carte porteuse)

Schéema

Le schéma des connexions est simple et consiste uniquement a alimenter
le capteur en tension et a raccorder la broche véhiculant les signaux.

<« Figure 26-19
Schéma des connexions
pour l'interrogation

. Power du DHT1

-

=4

L IoReF
L REser
L 3vs

= sV

= GND
L enp
L vin
L Ao
K a1
L Az
L a3

L as
L as

¥3Mod

=

NIDOTVNY

w» ONN oulnply
WMd) O/ VL1910

Si le capteur DTHI11 n’est pas sur une carte porteuse, vous devrez alors le
raccorder comme suit :

<« Figure 26-20
Raccordement externe
du DHT11

DHT11

GND

Montage 26. Programmer pour l'Internet des objets avec Node-RED

481

482

@ JAVASCRIPT OBJECT NOTATION-FORMAT (JSON)

Je voudrais vous faire découvrir un format de données appelé JSON. Il s'agit
de l'abréviation de JavaScript Object Notation. Ce format est trés compact et
facile a lire pour les humains, il a été développé pour échanger des données
entre différentes applications. Il est maintenant largement utilisé dans les
applications web et s'est également établi depuis longtemps dans le monde
des développeurs amateurs. Ce format de données ne devrait donc pas avoir
de secrets pour vous. Vous trouverez des informations détaillées sur ce théeme
a l'adresse Internet suivante :

https://fr.wikipedia.org/wiki/JavaScript_Object_Notation

Je vais vous montrer comment se présente ce format a l'aide d'un exemple
concret que nous allons aussi mettre en pratique pour ce montage. La structure
suivante nous montre un format JSON typique :

{

“Type” : "11”,
“Status” : “0K",
“Humidity” : 13.0,
“Temperature” : 20.0
}

On trouve toujours une paire nom/valeur reliés par deux points. Le nom est
toujours une chaine de caractéres, par exemple Type, et la valeur peut étre :

e unobjet;

e un tableau;

e une chaine de caracteres ;
e unnombre;

e true, false ou null.

Les paires nom/valeur sont séparées les unes des autres par des virgules
et sont encapsulées par des accolades. Si nous programmons le sketch
Arduino de sorte qu'il fournisse les valeurs a envoyer sous cette forme vers
une interface sérielle, nous pourrons alors évaluer le flux de données dans
Node-RED. Notre objectif est de procéder ensuite a une évaluation et de
générer des messages adéquats par e-mails et/ou via Twitter.

Sketch Arduino

Voici a quoi ressemble le sketch Arduino. Vous devez préalablement avoir
installé la bibliothéque DHT11. Pour commencer, je vais vous montrer
encore une fois le sketch Arduino servant a afficher les valeurs mesurées
de la température et de I’humidité dans le moniteur série :

Partie Il. Les montages

#include <DHT.h> // Inclure la bibliotheque
#define DHTPIN 8 // Broche numérique

#define DHTTYPE DHT11 // DHT11

DHT dht(DHTPIN, DHTTYPE); // Initialisation de 1'objet

void setup() {
Serial.begin(9600);
Serial.println(“DHT11 Test!"”);
dht.begin();
randomSeed(analogRead(@));

}

void loop() {

// Mesurer 1'humidité

float h= dht.readHumidity();

// Mesurer la température en degrés Celsius

float t= dht.readTemperature();t=11.0;

h=random(30.0,40.0);

t=random(20.0,30.0);

// Vérifier les mesures

if(isnan(h) || isnan(t)) {
Serial.println(«Erreur lors de la lecture du capteur DHT!»);
return; // Exit

}

Serial.print(“{");

Serial.print(“\"Type\” : \"");

Serial.print(DHTTYPE);

Serial.print(«\», «);

Serial.print(«\»Etat\» : \»»);

Serial.print(“0K");

Serial.print(“\", “);

Serial.print(“\"Humidité\"” : “);

Serial.print(h, 1);

Serial.print(«, «);

Serial.print(«\»Température\» : «);

Serial.print(t, 1); Serial.println(,}");

delay(60000); // Pause de 1 minute

[’édition sur le moniteur série se présente comme suit :

@ com3 - m] hed
! e |
DHT11 Test!

{"Type” : "11", "Etat” : "OK", "Humidité" : 30.0, "Température" : 28.0}

["Type" : 36.0, "Température™ : 24.0}

{"Type™ 33.0, "Température™ : 29.0}

["Type™ : 35.0, "Température™ : 27.0}

{"Type" : A : 33.0, "Température” : 29.0}

["Type™ : "11", "Etat™ : "OK", "Humidité™ : 35.0, "Température” : 22.0}

{"TIype™ : "11", "Etat™ : "OK", "Humidité" : 36.0, "Température™ : 28.0}

{"TIype” : 711", "Etat” : "OK", "Humidité™ : 30.0, "Température” : 22.0}

{"Type™ : "11", "Etat” : "OK", "Humidité™ : 32.0, "Température” : 22.0}

{"TIype™ : "11", "Etat™ : "OK", "Humidité™ : 33.0, "Température” : 24.0}

{"Type™ : "11", "Etat™ : "OK", "Humidité™ : 36.0, "Température” : 26.0]

{"Type™ : "11", "Etat™ : "OK", "Humidité™ : 33.0, "Température" : 25.0}

["Type™ : "11", "Etat" : "OK", "Humidité™ : 35.0, "Température” : 23.0}

[] Déflement automatique [] Afficher Mhorodatage | nouvelle ligne | [ss00baud | | Effacerla sortie

<« Figure 26-21

Edition des valeurs de
mesure au format JSON
du capteur DHT11 sur
le moniteur série

Montage 26. Programmer pour l'Internet des objets avec Node-RED

483

484

Figure 26-22 »
Installation du
Node Serial

Vous voyez ici que cela n’a rien a voir avec le sketch firmata mais qu’il s’agit
d’un sketch visant a interroger le capteur DHT11, qui envoie les valeurs
mesurées vers une interface sérielle. Est-il possible avec Node-RED d’in-
terroger directement I'interface sérielle sans passer par le Node Arduino
installé au préalable ? Bien str que oui. Si le Node Serial n’est pas encore
installé sur votre serveur Node-RED, vous pourrez le faire ultérieurement.
Je I’ai fait dans Node-RED a I’aide de la gestion de la palette en recherchant
le terme serial puis en cliquant sur Install.

Nodes Install

X | sort: | IF | a-z | recent =

| & serial 13388 X

& node-red-node-serialport &
Node-RED nodes to talk to serial ports
N 0150 B 2monthsago

ATTENTION AU PORT COM

La carte Arduino et Node-RED utilisent le méme port COM. Il est donc
important de ne plus bloquer ce port COM sur votre carte Arduino Uno par
l'environnement de développement Arduino une fois que le sketch a été
chargé. Dans le sens inverse, Node-RED bloque le port COM en cas d'accés a
celui-ci et exclut l'environnement de développement Arduino. N'oubliez pas
ce facteur trés important ! En cas d'urgence, débranchez la carte Arduino de
l'ordinateur puis rebranchez-la ensuite.

Nous recommencons depuis le début en créant le Flow ci-aprés. Dans la
palette networlk, vous trouverez apres I'installation trois nouveaux Nodes,
parmi lesquels le Node serial in dont vous allez avoir besoin.

v network

I [e g
_sermiout [T

.m serial request)

Partie Il. Les montages

Déplacez ce Node dans le Flow et ajoutez un Node Debug pour afficher le
flux de données sériel. Vous obtenez :

oo - s

® connected

Vous devez configurer le Node serial avec les bons parameétres, qui se
présentent chez moi comme indiqués ci-apres. Le débit en bauds doit
correspondre a celui de la carte Arduino. Apres avoir double-cliqué sur le
Node serial in, cliquez sur le symbole du crayon encadré en rouge, car il
n’y a pas encore de port COM sélectionné pour la configuration :

Edit serial in node

Delete Ccancel
D 1+ Properties o B H
¢ Serial Port | Add new serial-port... V|

% Name Name

Les parametres de la connexion devront ensuite étre réglés de facon a ce
que la communication avec votre carte Arduino s’opére sans encombre :

Properties - BANE|
3 Serial Port COM3 Q
/& Settings Baud Rate Data Bits Parity ~ Stop Bits
~ 9600 8 | None v‘ 1 v‘
DTR RTS TS DSR

|
auto V} auto v auto v auto V‘

=) Input
Optionally wait for a start character of , then
Splitinput on the character :’: \n
and deliver ascii strinas Y

Montage 26. Programmer pour l'Internet des objets avec Node-RED

Aprés un déploiement (Deploy), les messages suivants défilent dans la
fenétre debug :

_ Figure 26-23 - ¥ debug i &) || & -
Edition des valeurs
mesurées par le

T all nodes = mal «
capteur DHT11 dans S g

la fenétre debug msg.payload : string[73]
U {"Type” : "11", "Etat” : "OK",
"Humidité™ : 37.@, "Température”

25.0}-"
02/02/2022, 15:12:19 node: 51df78a0e0dd172

mzg.payload ; string[73]

P Type™ @ "11", "Etat" - oK,
"Humidité" : 35.@, "Température”
24.0}="

Cette édition est la méme que celle qui s’affiche dans le moniteur série.
Les valeurs sont des valeurs nues, sans aucune évaluation. Il nous reste a
procéder a celle-ci. Nous modifions le Flow de facon a soumettre les don-
nées brutes a une évaluation et a générer des messages correspondants.
Ces messages devront ensuite étre envoyés par e-mail.

Envoi par e-mail

Sile Node E-Mail n’est pas encore installé sur votre serveur Node-RED, vous
pourrez 'installer plus tard. Je I'ai fait dans Node-RED a I’aide de la gestion
de la palette en recherchant le terme email puis en cliquant sur Install :

Figure 26-24 » Nodes Install
Installation du Node
E-Mail X | sort| IF | az | recent =
~
& node-red-node-email &
Node-RED nodes to send and receive simple emails
N 1140 By 1 monthago install

Apres l'installation, trois nouveaux Nodes apparaissent dans la palette
sous social :

v social

e
“ email MTA I.T‘

" i 4
\ emai .

o email

486 Partie Il. Les montages

Vous pouvez maintenant structurer le Flow ci-apres en suivant mes expli-
cations pas a pas. Vous pouvez voir que le flux de données se divise apres
le Node Evaluation et que les deux Nodes suivants recoivent les mémes
informations :

nr B SranE l
.|_C_OM3 1'— Evaluation e — dhifisensor@gmail. com]

@ connected

Passons en revue les différents Nodes. Vous connaissez déja le Node Serial
et vous voyez grace au voyant vert avec la mention connected qu’une
connexion sérielle est établie entre Node-RED et votre carte Arduino Uno.
’évaluation complete s’effectue dans le Node Fonction qui porte ici le
nom Evaluation.

Examinons de plus pres le code, car il est un peu complexe. On crée au
début une nouvelle variable avec le nom var qui vérifie et apparie la Payload
al’aide de la classe JSON et de la méthode parse. Un objet vide msg. env est
ensuite créé, servant a recueillir les informations qui seront fournies par
la carte Arduino via l'interface sérielle, en 'occurrence le type de capteur,
Iétat, ’humidité et la température.

Aux lignes suivantes, ces valeurs sont affectées a 'objet msg. env, dans lequel
les propriétés du format JSON sont appliquées.

[Analyse par JSON
var raw = JSON.parse(msg.payload);

msg.env = {}; // Nouvel objet
var returnMsg = ""; // Message de retour
[Affectation des wvaleurs JS0N
msg.env.Type = raw.Type; // Type de capteur
msg.env.Status = raw.Etat; // Etat du capteur
msg.env.Humidity = raw.Humidité; // Humidité du cpateur
msg.env.Temperature = raw.Température; // Température du capteur

La figure ci-apres montre sur le c6té droit les données quasi brutes qui
entrent dans Node-RED sous la forme d’une chaine de caractéres JSON :

5> < Figure 26-25

U U Affectation des données
brutes a partir du format
msg.env.Type = raw.Type; < "Type" : "DHT11" JSON & l'objet msg.env
msg.env.Status = raw.Etat; < "Etat" : "OK"
msg.env.Humidity = raw.Humidité; < "Humidité" : "8o"
msg.env.Temperature = raw.Température; < "Température” : "31"

Montage 26. Programmer pour l'Internet des objets avec Node-RED

487

488

Ces données brutes enregistrées dans 'objet raw peuvent étre adressées a
partir du flux de données JSON via les noms enregistrés. Elles sont affec-
tées a l'objet msg.env avec les noms en anglais que j’ai conservés lors de
I’affectation. La variable returnMsg va alors recueillir aussitot le message qui
devra étre envoyé a ’adresse mail. J’ai cependant programmé une petite
évaluation qui s’effectue via les instructions if de sorte qu’un message
soit ajouté lorsque les valeurs seuils que j’ai définies sont dépassées, en
'occurrence lorsque la température ou I’humidité est trop élevée. Le code
suivant doit étre également ajouté pour compléter le Node Evaluation :

// Type de capteur
returnMsg = "Type de capteur: " + msg.env.Type + "\n";

// Evaluation de 1’
if (msg.env.Status
returnMsg += "L’état du capteur est OK\n";
// Type de capt
returnMsg = "Type de capteur: " + msg.env.Type + "\n";

/ Evaluation de 1’
if (msg.env.Status
returnMsg += "
else
returnMsg += "L’état du capteur n’est pas OK\n";

// Evaluation de 1’hu
returnMsg += "L?humidit
if (msg.env.Humidity >)

returnMsg += "I1 fait trés humide!\n";

nasy m

a: + msg.env.Humidity + "%\n";

/ Evaluation de

returnMsg += "La températu "+ msg.env.Temperature + " H
if (msg.env.Temperature >
returnMsg += "I1 fait trés chaud!'n";

msg = {payload : returnMsg};
return msg;

La syntaxe utilisée se base sur le langage de programmation JavaScript. Il
existe de nombreux tutoriels sur Internet qui proposent une introduction
facile a ce langage de programmation. Enfin et surtout, nous envoyons le
message créé a ’aide du Node E-Mail de la palette social. La figure ci-apres
montre la configuration dans laquelle jai utilisé un compte e-mail test.
Inscrivez ici les données de connexion du compte personnel que vous
souhaitez utiliser pour envoyer les valeurs de mesure :

% Properties @ 3 |=
=To
dht11.sensor@gmail.com .
@ @ Server smtp.gmail3.com
L dhi11.sensor@gmail.com
X Port 465 Use secure connection
& Userid dhi11.sensor@gmail.com
& Password ssssssss

Lorsque vous chargez le Flow sur le serveur, les valeurs du capteur DHT11
seront envoyées par e-mail a I'intervalle que vous avez défini dans le sketch

Partie Il. Les montages

Arduino. Pour le moment, une pause de 60 secondes est fixée entre les
envois. Vous pouvez la modifier ou bien envoyer un message dans Node-
RED seulement lorsque certaines valeurs seuils sont dépassées ou ne sont
pas atteintes. Je vois alors dans ma boite de messagerie électronique le
message suivant qui a été envoye.

Cet e-mail affiche le contenu suivant :

“/ Message from Node-RED
De dhtll.sensor@gmail.com Date Aujourd'hui 20:02

Iype de capteur: 11

L'étet du capteur est O

L'humidité s'&léwve &: 35%

La température 3'éléve &: 23 degrés Celaiua
I1 fait tréa chaud!

Vous souhaitez peut-étre afficher ces informations sous une autre forme
que de simples valeurs numériques, avec une présentation graphique par
exemple. Dans ce cas, Node-RED est un outil aussi simple que formidable.

e Dashboard

Le Dashboard, ou tableau de bord en francais, offre une grande variété de
graphiques sous la forme par exemple de tachymetres, de diagrammes a
poutres ou de camemberts. Pour les utiliser dans Node-RED, vous devez
ajouter les Nodes Dashboard dans la palette :

Nodes Install

Q dashboard

X | sort| IF | az | recent 5

E i

& dashboard-evi @
A set of dashboard nodes for Node-RED

N 102 B 5monthsago install

<« Figure 26-26
Installation du
Node Dashboard

ENVOI D’E-MAILS A PARTIR D’APPLICATIONS @

Presque tous les fournisseurs de messagerie électronique ont mis en place des
mesures de sécurité qui ne permettent pas facilement d'envoyer des e-mails a
partir de programmes, les fameuses applications. Cette fonctionnalité doit étre
débloguée dans les paramétres du compte de messagerie électronique et/ou
un mot de passe spécifique doit étre créé pour autoriser cette fonctionnalité.
L'envoi d'e-mails ne doit pas non plus s'effectuer dans un intervalle trop
rapproché sinon une attaque de spam est suspectée, pouvant étre a lorigine
de problémes.

Montage 26. Programmer pour l'Internet des objets avec Node-RED

489

490

Apreés linstallation, de trés nombreux Nodes apparaissent dans la palette
sous Dashboard :

v dashboard

t button gj lfL text input §) n
Cf[‘l. ‘ dropdown é) (5; date picker gj
{J switch @) ({) colour p'ic«erq)

() slider ;3 (E form !)
(ﬁ, - numeric aj

Avant de commencer, vous devez adapter le sketch Arduino de facon a
régler une pause d’une seconde environ (au lieu des 60 secondes) entre
I’envoi des valeurs mesurées. Les valeurs mesurées seront ainsi représen-
tées presque en temps réel ! Vous pouvez maintenant structurer le Flow
suivant en reprenant mes explications pas a pas :

® connecled

Immédiatement apres le Node COM de la carte Arduino se trouve le Node
json, prélevé de la palette dans la catégorie parser :

v parser

Procédez a la configuration de ce Node comme indiqué ci-apres. Notez
que la conversion d’une chaine de caracteres en un objet JavaScript et
vice versa est :

‘ i Properties & 3| =
© Action Convert between JSON String & Object ™
= Property | msg. payload
% Name Analyse JSON

Object to JSON options

[Format JSON string

Partie Il. Les montages

Le Node function ci-apres a pour tache d’extraire les valeurs mesurées de
I'objet JavaScript. Le code se présente comme suit :

msg.env = {};

msg.env.Humidity msg.payload.Humidité;
msg.env.Temperature = msg.payload.Température;
return msg;

Les informations des deux valeurs mesurées pour la température et ’hu-
midité sont donc enregistrées dans msg.Temperature et msg.Humidity et
seront aussitot utilisées pour 'affichage dans les graphiques correspon-
dants. Nous utiliserons a cet effet le Node gauge dans le tableau de bord
que nous venons d’installer.

)

En premier lieu, il vous faudra affecter ce Node a un groupe Ul que vous
devez d’abord créer. Ul est ’abréviation de User Interface (interface utilisa-
teur en francais) et recouvre la présentation que nous allons obtenir dans
le navigateur. Double-cliquez sur le Node, cliquez sur le crayon et entrez
un nom pour le décrire :

(EI gauge

& Properties % 3B =

B8 Group Add new dashboard group... v &

Edit gauge node = Edit dashboard group node

Delete Cancel

£+ Properties - MARE
W Name Chambre

B Tab Maison v | #

+— Width 6

Display group name

[Allow group to be collapsed

Montage 26. Programmer pour l'Internet des objets avec Node-RED

La configuration du Node Gauge est un peu complexe et se présente comme
suit. J’ai numéroté sur la figure les parametres importants :

4 Properties & B =
= Size auto
= Type Gauge ~
o
g D 1 value format e
0
(5}

Range min IU I maxl 100 I

Colour gradient

) 4

100

®

Sectors

1al

1. Affectation du groupe UI qui vient d’étre créé
. Inscription de I'affichage

. Valeur a afficher, ici msg.env.Temperature

N W DN

. Indication de I'unité de mesure devant s’afficher sous la valeur de
mesure

(3.}

. Plage a I'intérieur de laquelle la valeur de mesure peut varier

6. Nom de la mesure

Mais comment voir I'interface utilisateur aprés un déploiement ? Ce n’est
pas possible a ce stade. Vous avez besoin pour cela d’une extension de
votre URL, qui est, pour l'ordinateur local :

http://127.0.0.1:1880/ui/.

1l vous suffit par conséquent d’ajouter /ui/ a la fin de I’adresse que vous
connaissez. Le mieux est d’ouvrir une autre fenétre de navigateur pour ne
pas fermer 'environnement de développement Node-RED. Dans 'exemple
indiqué, il reste a afficher Humidity, ’humidité, par le biais du Node Gauge
en dessous. Je vous laisse faire tout seul. Pour ma part, jobtiens par exemple
le résultat suivant apres avoir soufflé sur le capteur DHT11 :

492 Partie Il. Les montages

<« Figure 26-27

Température Humidité
Valeurs de mesure
\ dans ['Ul de Node-RED
'\ 27 [T
o Degres Cessis 100 [~ 100

Affichage des valeurs de mesure
sur un smartphone

Vous pouvez aussi afficher I'interface utilisateur sur un smartphone ou une
tablette en indiquant I’adresse IP (et non l'ordinateur local !). Dans mon
cas, PURL a entrer est celle-ci :

http://192.168.178.70:1880/ui/

Mon smartphone montre immédiatement la page suivante :

wosea seaae | <« Figure 26-28
0 (@ 19216817870 0/ @ © Valeurs de mesure
Home sur un smartphone

Temperatur

Feuchtigkeit

o
RN
X \
57

Montage 26. Programmer pour l'Internet des objets avec Node-RED

493

494

Figure 26-29 >
Nodes sélectionnés

Figure 26-30 »-
Préparer ['exportation

Exporter le code
a partir de Node-RED

Lorsque vous créez un Flow, celui-ci est enregistré au format JSON indi-
qué. Vous pouvez donc exporter votre Flow et le mettre le cas échéant a
la disposition d’autres utilisateurs. Pour cela, encadrez tous les Nodes en
maintenant le bouton gauche de la souris enfoncé :

/'MB

coms Analyse json <
® connected b‘\

\

Te— ' Humidité

Allez ensuite dans le menu en cliquant sur les trois traits horizontaux blancs
pres du bouton Deploy en haut a droite et sélectionnez Export :

Export

Vous voyez alors la fenétre ci-apres avec le code JSON correspondant. Vous
pouvez choisir de télécharger le code ou de le copier dans le presse-papier :

Partie Il. Les montages

Export nodes R | Figure 26-31
Télécharger les Nodes

Export | selected nodes | current flow | all flows ou les EXporter dans
le presse-papier
Clipboard Export nodes JSON
Local [~
{

"92dc21b3328e48bb",
"serial in",
a2a65702c86eee8”,

: "coma”,

"serial”: "fB75cd396e55a42c”,
"Xz 238,

26@,

"id": "5ldff78a@eddd172",
: "debug”,

compact | formatted

Cancel Download Copy to clipboard

Vous pouvez lire dans Node-RED un code téléchargé via 'option de menu

Import, soit en le copiant a partir du presse-papier, soit en sélectionnant
un fichier correspondant :

Import nodes < Figure 26-32
Importation de Nodes
i dans Node-RED
Clipboard Paste flow json or | & select afile to import
Local
Examples

Importto | current flow = new flow

Cancel

Cliquez enfin sur le bouton Import. Les Nodes s’affichent et peuvent étre
positionnés a I’aide de la souris.

Montage 26. Programmer pour l'Internet des objets avec Node-RED

495

496

Probléemes courants

Sila connexion entre Node-RED et la carte Arduino ne fonctionne pas ou si
elle est interrompue aprées un déploiement, débranchez la carte Arduino de
ordinateur et rebranchez-la. Stoppez I'environnement de développement
Arduino, notamment le moniteur série. Sile probléeme persiste, supprimez
le port série dans le menu Configuration nodes de Node-RED.

Qu’avez-vous appris ?

e Vous avez découvert les bases de Node-RED et réalisé une installa-
tion pour que Node-RED fasse office de serveur. Cest possible sur un
Raspberry Pi, un ordinateur sous Windows ou un Mac.

e Vous avez créé et affiché des messages.

e Vous avez raccordé le capteur DHT11 a votre carte Arduino Uno puis
envoyé des messages au serveur Node-RED via 'interface sérielle. Ces
valeurs ont ensuite été transmises par e-mail.

e Vous avez visualisé ces valeurs de mesure a I’'aide d’un tableau de
bord via une page web, que vous avez pu ouvrir sur un smartphone
ou une tablette.

Partie Il. Les montages

Montage

MQTT 27

Je vais utiliser dans ce montage le Raspberry Pi comme serveur pour un
logiciel nommé MQTT. Ce dernier est un protocole de messagerie client-
serveur. Apres |’établissement d’une connexion, des clients envoient des
messages au serveur, un Raspberry dans le cas présent. Le serveur MQTT
collecte et prépare les messages recus sous la forme d’une base de données.
L’architecture client-serveur de cette application apporte de la clarté et
de l'ordre dans vos projets. Cest pourquoi nous allons aborder ce theme
dans ce montage.

Communication M2M avec MQTT

MQTT est I'abréviation de Message Queue Telemetry Transport. Ce protocole
de messagerie (Publishing & Subscribe) a été créé pour la communication
de machine a machine (M2M). Il constitue un précieux outil lorsqu’il s’agit
d’envoyer des informations dans des réseaux avec une bande passante limi-
tée et une latence (temps de réaction) élevée pour commander par exemple
des actionneurs ou extraire des données par I'intermédiaire de capteurs.
1l a été développé en 1999 par la société IBM pour la communication par
satellite et s’est standardisé depuis 2013 comme protocole pour I'Internet
des objets, I'loT. Les ports 1883 et 8883 sont officiellement réservés a la
transmission au sein d’un réseau. Le site Internet officiel est disponible a
I’adresse suivante :

https://maqtt.org/ Q

Dans les architectures client-serveur, qui sont aujourd’hui un composant
essentiel de presque tous les réseaux, des données sont échangées entre
les deux instances. Pour ce montage, je vais utiliser le Raspberry Pi comme
serveur MQTT, bien qu’il existe aussi des installations pour tous les systémes
d’exploitation usuels comme Windows ou macOS. Mais me direz-vous,
MQTT, c’est quoi exactement et a quoi ca sert ?

497

498

Figure 27-1»
L'architecture MQTT
de base

De plus en plus d’appareils sont qualifiés de smart. Cela peut étre des
réfrigérateurs, des lave-linges, des grille-pains ou des appareils plus banals
comme des brosses a dents électriques ou des montres-bracelets. S’il est
possible d’introduire des circuits électroniques dans ’appareil, celui-ci
devient alors un Smart Device, capable de recevoir et d’envoyer des don-
nées. D’autres domaines d’application plus indispensables ont fait leur
apparition, comme les appareils implantés qui mesurent le taux de glycémie
ou les stimulateurs cardiaques qui transmettent des données biologiques.

Cestjustement en cas de liaisons sur de grandes distances dans des réseaux
instables que le protocole MQTT léger s’est établi comme protocole stan-
dard. MQTT est fondé sur le TCP (Transmission Control Protocol) comme
protocole de transport, garantissant la transmission des messages lorsque
la connexion est établie.

Conventions de nommage
dans MOTT

Avec MQTT, ’ensemble fonctionne de manieére similaire, avec toutefois
une différence pour ce qui est de la dénomination. Mais est-ce vraiment
un probleme pour nous dans la mesure ou le résultat est le méme ? Nous
avons un expéditeur, le Publisher (Péditeur) et un destinataire, le Subscriber
(’abonné). Entre ces deux instances intervient un serveur, qui fait office
d’intermédiaire, il est appelé Broker. J’ai résumeé sur la figure ci-apres ces
relations pour les rendre plus claires :

Qrdinateg,
Serveur
Capteur ®roker) @ Fixe
e w
5 wartphop,
18°C ‘
’ Mobile
Jeac
Publier S’abonner
(Publish) (Subscribe)

Partie Il. Les montages

Le capteur de température représenté ici envoie (ou publie) sa valeur de
mesure au Serveur (Broker), qui la recoit et 'enregistre. Le Broker envoie a
son tour cette valeur de mesure a d’autres appareils, aussi appelés nceuds,
par exemple a un ordinateur fixe ou un terminal mobile (un smartphone)
qui travaille avec les informations recues et qui les évalue. Ces terminaux
se sont abonnés aux données.

Structure de messagerie MQTT

Pour garantir un certain ordre au sein de toute cette communication,
I’échange de messages s’opere par le biais de Topics sous la forme d’une
chaine de caracteéres. La structure utilisée rappelle une URL servant a ouvrir
une adresse Internet sur un navigateur web. Un Topic sert a filtrer les
différents messages sur le Broker MQTT. Un Topic peut étre par exemple :

Séparateur
de niveau Séparateur

\Y) \Y)
Maison H/H Grenier Il/ﬂ Bureau

Niveau de base (racine) Niveau Niveau

Vous trouverez ci-apreés une liste d’exemples pratiques de Topics relatifs a
la présence de capteurs dans une maison :

e maison/cave/chaufferie/température ;

e maison/rez-de-chaussée/salon/lumiére ;

e maison/rez-de-chaussée/cuisine/réfrigérateur/température ;
e maison/grenier/interrupteur de lucarne de toit ;

e garage/lumiere.

Chacun des Topics utilisés doit se composer d’au moins un caractere,
les espaces vides étant autorisées, de méme que les majuscules et les
minuscules.

Métacaracteres MQTT

Il est possible d’utiliser des métacaracteres pour interroger simultanément
plusieurs capteurs. On distingue métacaracteres simple et multiple.

<« Figure 27-2
Topic possible

Montage 27. MQTT

499

Figure 27-3 »
Le métacaractére
Single Level

Figure 27-4 »
Le métacaractere Single
Level et ses effets

Figure 27-5 »
Le métacaractere
Multi Level

Métacaractere Single Level (joker) : +

Comme son nom I'indique, ce métacaractere sous la forme du signe plus
(+) renvoie a un seul niveau (Single Level).

Joker niveau unique
(Single Level)

Maison [/ Grenier /[+/Température

Voici quelques exemples expliquant quels sont les effets du métacaractére
Single Level utilisé précédemment :

Maison [Grenier / | Température v
Maison [Grenier 7 : | Température v
Maison [Grenier / / Lumiére 2
Maison /[Rez-de-chaussée []/ Température x

Métacaractere Multi Level : #
Le métacaractere ci-apres sous la forme d’un diése (#) est un métacaractere

Multi Level qui filtre plusieurs niveaux. Il figure toujours a la fin d’un Topic :

Joker multi-niveaux
(Multi Level)

V
Maison [/ Grenier [#

Voici quelques exemples expliquant quels sont les effets du métacaractére
Multi Level utilisé précédemment :

Maison / Grenier / [Température v
Maison / Grenier / /Température v
Maison [Grenier / / Lumiére v
Maison [Rez-de-chaussée [|/ Température %

Grace a un filtrage intelligent et des structures logiques, vous pouvez inter-
roger (ou vous abonner a) certains nceuds de fagon tres simple.

Partie Il. Les montages

Installation de MQTT

Linstallation de MQTT peut s’effectuer sur les systemes d’exploitation
connus. Dans ce montage, je décris I'installation sur un Raspberry Pi. Si
vous souhaitez cependant installer le Broker MQTT sur votre systéme
Windows, rendez-vous sur le site Internet suivant :

https://mosquitto.org/download/

Vous y trouverez sous la rubrique Windows deux installations binaires,
permettant l'utilisation pour 32 bits ou 64 bits. Le tout s’installe tres vite
etvous pourrez ensuite entreprendre sous Windows avec la ligne d’instruc-
tions les exemples MQTT montrés ici. Pour mener a bien ce montage, vous
aurez besoin d’un Raspberry Pi. Il sera question plus bas de commander
une LED située sur le Raspberry Pi.

Examinons maintenant des exemples concrets sur le Raspberry Pi. Pour
installer le logiciel, entrez les instructions suivantes dans une fenétre de
terminal :

sudo apt-get update
sudo apt-get install mosquitto mosquitto-clients

Pour permettre la réalisation de la connexion de ’'ESP32 au serveur MQTT
du Raspberry Pij, il est nécessaire de créer le fichier /etc/mosquitto/conf.d/
mosquitto.conf et d’y ajouter les parametres de configuration suivants puis
de redémarrer mosquitto :

EP pi@raspberypi: /etc/mosquitto/conf.d - O X

[pi@raspberrypi:/etc/mosquitto/conf.d $ cat mosguitto.conf ~
listener 1883

allow anonymous true
pi@raspberrypi:/etc/mosquitto/cont.d
[pi@raspberrypi:/etc/mosquitto/cont.d

sudo systemctl restart mosquitto

A

Aussitot apres I'installation, vous pouvez démarrer un premier test sur votre
Raspberry Pi et vous assurer que MQTT fonctionne correctement. MQTT est
immeédiatement opérationnel. Nous devons d’abord expliquer dans MQTT
quel Topic suivre a ’'aide d’un abonnement. Linstruction mosquitto_sub
permet de définir le Topic souhaité a I’aide de la clé -t :

P jean@raspberrypi: ~ - m} X

jean@raspberrypi:~ § mosquitto_subk -t "/maison/grenier™

Linstruction donnée est simplement acquittée en placant le curseur sans
invite a la ligne suivante. Vous devez ensuite ouvrir une deuxiéme fenétre

Montage 27. MQTT

501

Figure 27-7 »
Flow MQTT

Figure 27-8 »
Node MQTT connecté
au Broker MQTT

de terminal (Ctrl+Alt+F2) pour publier un message a I’aide de I'instruction
mosquitto_pub et de la clé -m:

P jean@raspberrypi: ~ =2 m] s
jean@raspberrypi:~ § mosguitto pub -t "/maison/gremier™ 7m

jean@raspberrypi:~ 2

P jean@raspberrypi: ~ i O X

jean@raspberrypi:~ $ mosquitto sub -t "/maison/grenier™
Premier message !

MT 2022 armv7l

Une fois la commande confirmée avec la touche Entrée, le message qui
vient d’étre saisi s’affiche dans la premiére fenétre de terminal (Ctrl+Alt+F1).
Vous venez de tester avec succes le Broker MQTT. Vous voudrez sans doute
savoir ensuite si Node-RED est aussi en mesure d’échanger avec le Broker
MQTT et si celui-ci peut recevoir en message envoyé. Node-RED fournit
d’office un Node mqtt-out que vous trouverez dans la palette network :

v network
I, matt in ¢\
\b mqtt out ‘

1l est alors trés simple d’envoyer un message au Broker MQTT a I’aide d’un
Node Inject. Cest ce que nous allons justement faire avec le Flow suivant :

Message q:—:: /maison/grenier |

® connected

La coche verte nous indique que la liaison du Node MQTT au Broker
MQTT est établie :

Node-RED

maison/grenier G} oroke,
_. connected =

4 v—s

Liaison établie

Partie Il. Les montages

Cliquez sur le Node inject pour envoyer le message « Bonjour, ici Node-
RED ». La configuration du Node MQTT est aisée et se présente sous la
forme suivante :

& Properties ¢ B =
@ Server localhost:1883 vi| &
. Imaison/grenier D = Topic /maison/grenier
8 connected
@ Qos - 9 Retain ~
% Name Name

Comme le Broker MQTT et Node-RED fonctionnent sur le Raspberry, vous
pouvez utiliser ici localhost au lieu de I’adresse IP du Raspberry Pi. N'oubliez
pas d’ajouter le port 1883. Toutefois, si le Broker doit étre adressé de I'ex-
térieur, vous devrez indiquer obligatoirement une adresse IP unique. Nous
reviendrons sur ce point. Le Topic inséré ici doit évidemment correspondre
au Topic que nous avons utilisé pour 'abonnement. Clest effectivement
le cas. Le message est envoyé apres le déploiement du Flow et un clic sur
le Node inject. Voyons voir quelle est la réaction dans notre fenétre de
terminal :

@ jean@raspberrypi: ~ — m} X

jean@raspberry

i:~ $ mosquitto sub -t "/maison/grenier™

"Bonjour, ici Node-RED"

Cest précisément le message que nous souhaitions envoyer. Vous pouvez
ainsi publier différents messages avec différents Topics ; ceux-ci appa-
raissent dans les fenétres de terminal en fonction de ’'abonnement corres-
pondant. Faites donc le test suivant avec trois messages/Topics différents :

EP jean@Graspbemypi: ~

jeanBrasphersypi:
Message 1

‘ Message 1 P /maison/grenier |

@ connected y
P pran@raspbenyp -

jeanBraspberrypli-

) = =
Message 2 | —— /maison/rez-de-chaussée _] —> i’
@ connected [

.. | Message 3 ; — i /maison/sous-sol]

<« Figure 27-9
Configuration
du Node mqtt

< Figure 27-10
Message de Node-RED
confirmé par le Broker
MQTT

V Figure 27-11
Différents messages
envoyés de Node-RED

7 mosquitto sub -t "/maison/grenies™

¢ mosquitto_sub -t "/maison/rez-de-chaussée®

AP jeen@raspbemypi ~
|:A.'|:'.E:Asrh—::'-,1’u -
[Hessage 3
n

@ connecled

§ mosquitto sub -t "/maizon/scus-sol”

Montage 27. MQTT

503

Figure 27-12 »

Le Broker MQTT commande
la LED sur le Raspberry Pi.

504

Figure 27-13 »
Commande d'une
broche GPIO sur le
Raspberry Pi via MQTT

Un test rudimentaire

Mon objectif est de vous montrer avec ce petit test comment commander
facilement une LED raccordée a une broche du GPIO sur le Raspberry Pi.
Cela ne se fait pas directement, mais par I'intermédiaire de MQTT. Le
signal de commande de la LED ne va pas directement a la LED mais est
envoyé en direction de MQTT. Une fois sa réception validée, le message
est ensuite dirigé de MQTT a la broche concernée. Le Broker MQTT sert
donc d’instance de transfert entre le Node inject et la commande de la
LED. Examinez le schéma suivant :

GPIO
Pin: 7
@ 0K

Injection
] .

'L.

MQTT

La mise en pratique de ce genre de Flow est trés simple et se présente avec
le schéma suivant. En plus du Node MQTT Output déja vu, nous utilisons
maintenant le Node MQTT Input, que vous trouverez également dans la
palette network :

maqtt

Ce Node sert a transférer les messages recus.

Pour commander les broches GPIO du Raspberry, nous devons disposer
de Nodes GPIO pour le Raspberry Pi qui doivent étre installés a partir de la
palette de Node-RED (menu Manage palette, onglet Install) en recherchant
node-red-node-pi-gpio.

IMaison/Grenier/Bureau/Raspi/Pin?

v

R ' connected
[. Sett
ares ; ¢
Maison/Grenier/Bureau/RaspiiPing | = PIN: 7
'@ connected LN

Partie Il. Les montages

Le Node GPIO pour le Raspberry Pi est fourni d’office dans le Node épo-
nyme. Pour ce test, utilisons le Node gpio out :

v Raspberry Pi

rpi gpio in ‘;‘

[— |
() rpi gpio out ‘

Pour commander le Node gpio out, nous ne pouvons pas recourir aux
valeurs logiques false ou true mais aux valeurs numériques 0 ou 1. Pour ce
test, j'utilise la broche 7 qui se cache sous la désignation GPI004 dans le
Raspberry Pi. La configuration du Node est facile a entreprendre, il existe
en effet une vue d’ensemble de la disposition des différentes broches dans
Iinterface GPIO :

3.3V Power - 1 2 - 5V Power
SDA1 - GPIO02 -3 O [4 - 5V Power
SCL1 - GPIO03 -5 O | 6 - Ground
GPIO04 -7 © | O 8 - GPIO14 - TxD
Ground -9 ' | © 10 - GPIO15 - RxD
GPIO17 - 11 O | © 12 - GPIO18
GPI1027 -13 O | " 14 - Ground
GPI1022 - 15 © | O 16 - GPI023
3.3V Power - 17 - [© 18 - GPIO24
MOSI - GPIO10 - 19 © | - 20 - Ground
MISO - GPIO09 - 21 O | © 22 - GPI025
SCLK - GPIO11 -23 O | O 24 - GPIO8 - CEO
Ground - 25 - | © 26 - GPIO7 - CE1
SD - 27 28 -SC
GPIO05 - 29 O [30 - Ground
GPIO06 - 31 © | O 32 - GPIO12
GPIO13-33 O | ' 34 - Ground
GPIO19-35 O [O 36 - GPIO16

La connexion de la LED sur I'interface GPIO est facile. Vous devez pour
autant veiller avec la plus grande attention a éviter les courts-circuits qui
pourraient détruire le Raspberry Pi : les broches GPIO sont en effet reliées
directement au processeur et ne tolérent aucune négligence ! En plus du
Raspberry Pi, vous aurez besoin des composants suivants :

Montage 27. MQTT

<« Figure 27-14
Broches GPIO
sur le Raspberry Pi

505

506

Tableau 27-1 » Composants
Liste des composants

1 LED rouge
orange/orange/braun
1 résistance de 330 Q) === iﬂ ” I
330Q

Le cablage se présente comme suit :

Figure 27-15» || s]

Cablage pour commander B DST (DISPLAY)
la LED sur le Raspberry Pi
ST
T
Selon I'injection, vous voyez la réaction de la LED connectée a la broche 7.
Mais on peut aussi afficher les messages dans une fenétre de terminal :
Figure 27-16 » #P pi@raspberrypi: ~ — O %
Messages de Node-RED pi@raspberrypi:~ § mosquitto_sub -t "/Maison/Grenier/Bureau/Raspi/Pin7"
pour commander la LED g
i
Essayez maintenant de réaliser avec la configuration d’un Node inject un
clignotement via MQTT.
Partie Il. Les montages

e module ESP32

Vous connaissez le module ESP32 du montage n° 22. Ce module est parfait
pour établir des liaisons radio via Bluetooth ou Wi-Fi. Nous allons ici opter
pour le Wi-Fi. Vous pouvez prendre n’importe quel ESP32 (pas forcément
celui-ci). Cimportant est la broche Out. J'utilise pour ma part ’ESP32-Pico-
Board avec la disposition de broches suivante :

mmmmmm

EEEENEEEE

SPI

[o4
z
3

——

ESP32 Pico v4

J'utilise aussi ’'ESP32 Discoveryboard que j’ai construit et que je vous ai
déja présenté. Lintégration du support ESP32 dans I’environnement de
développement Arduino a déja été menée dans le montage ESP32 (montage
n° 22). Si vous avez besoin de rafraichir vos connaissances, n’hésitez pas
aretourner jeter un coup d’ceil.

bl
o
2z
s
o

—_—

Power

—

ESP32 communique avec MQTT

Pour que votre ESP32-Pico-Board puisse communiquer avec MQTT, vous
aurez besoin d’un client correspondant. Il se nomme PubSubClient. La
bibliotheque associée peut étre téléchargée a 'adresse Internet suivante :

https://github.com/knolleary/pubsubclient/archive/master.zip
Ajoutez ce fichier comprimé, sans extraire les fichiers, a 'environnement

de développement Arduino a I’aide de l'option de menu Sketch | Copier
bibliotheque | Ajouter ZIP-Bibliothéque. Une fois cette bibliotheque ins-

< Figure 27-17
L'ESP32-Pico-Board

Montage 27. MQTT

507

Figure 27-18 p-
Exemples de bibliotheque
PubSubClient

tallée, vous devriez voir les exemples ci-apres en sélectionnant le menu
Fichier | Exemples | PubSubClient :

Exemples depuis les bibliothéques personnalisées ‘

Adafruit Circuit Playground mgtt_auth
Adafruit Unified Sensor mgtt_basic
DallasTemperature matt_esp8266
DHT sensor library matt_large_message
HttpClient mqtt_publish_in_callback
OneWire mat_recannect_nonblocking
PubSubClient mgtt_stream
SparkFun Micro OLED Breakout »

W

Je souhaite développer avec vous mon propre sketch, bien que les exemples
de la bibliotheque soient aussi instructifs. Le test de fonctionnement de la
connexion Wi-Fi vers votre routeur est le sketch que nous avons déja vu
dans le montage ESP32 (montage n° 22). Nous allons compléter le sketch
avec la fonctionnalité MQTT en ajoutant I’adresse IP du Raspberry Pi et
en intégrant la bibliothéque MQTT que nous venons de télécharger. Vous
obtenez :

#include <WiFi.h> // WiFi client
#include <PubSub{lient.h> // MOTT-PubSub-Client

char* ssid = "EriksWifi";

r* password = "SehrGeheim™;
r¥ mgtt_ server = "192.168.0.26"; // IP du Raspberry Fi

1
char msg[50]; // Message & envoyer
int value = 0; // Compteur de messages

WiFiClient espClient; /f WiFi-Client
PubSubClient client (espClient): // MOTT-Client

void setup() {
Serial.begin(115200);

WiFi.bkegin(ssid, password):
Serial.println(™Connection WiFi...™):

while (WiFi.status() != WL CONNECTED) |

delay (500) // Courte pause

Serial.princ("."); // Bfficher des points en attente de connexion
13

Serial.println{"\nConnecté au réseau WiFi");

Serial.print("Adresse IP: ");

Serial.println(WiFi.localIP()):

client.setServer (mgtt server, 1883); // Initialisation du serveur MOTT
client.setCallback (callback) ; // Fonction pour messages entrant
client.subscribe ("/inTopic™); /4 Topic pour les messages d'entrée

La méthode setCallback fait référence a une fonction qui s’active a I'arrivée
de messages. Vous pouvez définir avec la méthode subscribe quel Topic
vous suivez. Dans notre cas, il s’agit du Topic inTopic.

Partie Il. Les montages

void loop() {

if (!client.comnected()) |
reconnect () s

1

client.loop():

long now = millis();

if (now — lastMsg > 2000) |
lastMsg = now; ++value;
snprintf {msg, 75, "Message #%1d envoyé par la carte ESP32", wvalue):
Serial.print("Publication du message: ")
Serial.println(msg): // Edition vers le moniteur série
client.pubklish("outTopic™, msg); // Publication du message dans MQTT

Voici la définition de la fonction callback qui est activée a I'arrivée de

messages relatifs au Topic indiqué :

voild callback{char® topic, byte* pavload, unsigned int length) |

Serial.print("Message recu dans topic: ");

Serial.println({topic);

Serial.print ("Message:");

for{int i = 0; i < length; i++) {
Serial.print({char)payload[i]):

}

Serial.println();

Eerial.privtIn (™ ————— .

La fonction reconnect s’active toujours en cas de problemes de connexion.

Elle permet de renouveler les initialisations de base :

roid reconnect() [
while(!client.connectad()) {
Serial.println{™Tentative de connexion & MQTT...");
// Creation d'un identificateur client al&atoire
String clientId = "ESBE32-Client-";
clientId += String(random(0xffff), HEX):
// Tentative de connexion
if{client.connect {clientld.c str())) {
Serial.println{"connecté”);
// Pubiler un message apres connexion...
client.publish{™outTopic™, "hello world™);
[/ ... et resouscription
client,subscribe ("inTopic™);
else {
Serial.print("&chec, rc="};
Serial.print(client.state()):
Serial.println{™ nouvel essai dans 5 secondes™);
delay (500); // Pause de 5 secondes
Serial.println{™"):
delay (4500) ;

Montage 27. MQTT

509

Figure 27-19 »
Message de ['ESP32-
Pico-Board dans le
moniteur série

Figure 27-20 »

Le message de
l'ESP32-Pico-Board arrive
sur le Raspberry Pi.

Figure 27-21 »
Workflow de messages
du Node MCU-Board
vers le Raspberry Pi

Le sketch utilise le Topic appelé outTopic, a qui un message est envoyé
toutes les deux secondes. Ouvrez le moniteur série apres le télécharge-
ment du firmware pour voir si ’ESP32-Pico-Board s’est bien identifié sur
votre routeur. Assurez-vous que la vitesse de transmission est réglée sur
115 200 bauds.

@ com4 - o X

Envoyer

Connexion Wifi
..... Connecté au réseaan WiFi

Adresse 12: 192.168.0.29

Tentative de connexion & MOTT...Comnecté

Publication du message: Message 41 envoyé par la carte ESP32
Publication du message: Message 2 envoyé par la carte ESP32
Publication du message: Message #3 envoyé par la carte ESP32
Publication du message: Message £4 envoyé par la carte ESP32
Message recu dans topic: inTopic

Message :Hello ici Node-RED

Publication du message: Message #5 envové par la carte ESP32
Publication du message: Message #6 envoyé par la carte ESP32
Publication du message: Message #7 envoyé par la carte ESP32

Cela se présente bien et j’ai pu dans la foulée établir une connexion au
routeur. L’adresse IP affichée n’est pas celle du serveur MQTT mais ’adresse
[P attribuée a PESP32-Pico-Board par le routeur via le protocole DHCP. Coté
Raspberry Pi, nous nous abonnons évidemment au Topic appelé outTopic
avec l'instruction suivante :

@ jean@raspberrypi: ~ = m} X

jean@raspberrypi:~ § mosquitto sub -t "/outTopic"
hello world
Messsage #1 envoyé par la carte ESP32

Messsage #2 envoyé par la carte ESP32
Messsage #3 envoyé par la carte ESP32
Messsage #4 envoyé par la carte ESP32
Messsage #5 envoyé par la carte ESP32
Messsage #6 envoyé par la carte ESP32
Messsage #7 envoye par la carte ESP32
Messsage #8 envoyeé par la carte ESP32
Messsage #9 envoyé par la carte ESP32

Etvous voyez que les messages de ’ESP32-Pico-Board arrivent ici aussi. ’ai
représenté sur 'image suivante les différentes instances de la transmission :

Carte ESP32 Routeur _ Raspberry i

Publication
[> (Publish)

Vous pouvez aussi raccorder votre Raspberry Pi au routeur par un cable
LAN. Le Wi-Fi vous donnera un peu plus de flexibilité, méme si les dis-
tances sont plus limitées. Il en va de méme dans la direction opposée, car

Partie Il. Les montages

un PubSubcClient est installé sur PESP32-Pico-Board et, comme son nom
I'indique, celui-ci peut donc non seulement publier mais aussi souscrire un
abonnement. Le firmware que nous avons téléchargé permet de déterminer
I'outTopic ainsi qu’un inTopic. Vous étes alors en mesure de recevoir des
messages sur le Node MCU-Board provenant du Raspberry Pi. Pour cela,
ouvrez le moniteur série de 'environnement de développement Arduino
et donnez l'instruction suivante dans une fenétre de terminal de votre
Raspberry Pi :

@ pi@raspberrypi: ~ — m} X

lpi@raspbe
pi@raspberr

$ mosguitto pub -t "inTopic" -m "Message du Rapsberry"”

Le moniteur série indique paralléelement aux messages publiés le message
du Raspberry Pi recu :

@ coma - m] ped

Envoyer

Publication du message: Message #3 envoyé par la carte ESP32
Publication du message: Message #4 envoyé par la carte ESP32
Publication du message: Message #5 envoyé par la carte ESP32
Bublication du message: Message #€ envoyé par la carte ESP32
Publication du message: Message #7 envoyé par la carte ESP32
Publication du message: Message #8 envoyé par la carte ESP32
Publication du message: Message #9 envoyé par la carte ESP32
Message recu dans topic: inTopic

Message :Message du Raspberry

Publication du message: Message #10 envoyé par la carte ESP32
Publication du message: Message #11 envoy par la carte ESP3Z
Publication du message: Message #12 envoyé par la carte ESP3Z
v

[Défilement automatique [] Afficher Thorodatage [Nouvelleigne | [115200baud | | Effacer lasortie

Vous voyez que le message a été recu. Mettons maintenant tout cela en pra-
tique dans Node-RED. Jusqu’a présent, nous n’avons utilisé qu’une fenétre
de terminal et le moniteur série comme instances d’entrée et d’affichage.
Le Flow suivant nous permet d’afficher les messages d’outTopic dans la
fenétre Debug :

® connected

Montage 27. MQTT

<« Figure 27-22
Message sur le Node
MCU-Board provenant
du Raspberry Pi

< Figure 27-23
Message sur ['ESP32-
Pico-Board dans le
moniteur série de la carte
Arduino-IDE

<« Figure 27-24
Flow MQTT pour la
réception de messages

511

512

La fenétre debug se présente comme suit :

Figure 27-265 »> i debug i| &2\ % & -
Flow MQTT pour la -
, . Tallnodes »| | @all ~
receptlon de messages
14/02/2022, 15:07:29 node: f56cE7e500f15f41 ~
outTopic | msg.payload : string[11]
"hello world™
14/02/2022, 15:10:48 node: f56c8Te55015f4f
oufTopic : msg.payioad : string[36]

Message #1 envoyé par la carte ESP32"
14/02/2022, 15:11:00 node: f56cH7e500115F4F
outTopic : msg.payload : string[36]

"Message #2 envoyé par la carte ESP32”

Vous devez saisir dans le Node MQTT-In les parameétres suivants pour le

serveur et le Topic :

1l faudra faire la méme chose dans la direction opposée. A vous de jouer !
Essayez de réaliser le Flow ci-aprés pour qu’un message provenant de
Node-RED s’affiche sur le moniteur série Arduino. Le Flow est représenté

. %+ Properties E- NN
Figure 27-26 » —
Configuration du @ server Iocalnost 1883 v | e

Node MQTT-In
Action Subscribe to single topic v
== Topic outTopic
@ QoS 2 ~
& Output auto-detect (string or buffer) v
W Name Name
ci-aprés. A votre tour de le configurer !
Figure 27-27 b : e,
Envoi d'un message [lci Node-RED y

a partir de Node-RED -' @ connected

Vous voyez ci-apres une représentation possible dans le moniteur série.
Le message en provenance de Node-RED apparait au milieu des messages

a envoyer :

Partie Il. Les montages

@ coma - m] hed

Envoyer

Connexion Wifi
..... Connecté au réseasu WiFi

Adresse IP: 192.168.0.29

Tentative de connexion & MQTT...Connecté

Publication du message: Message #1 envoyé par la carte ESP32
Publication du message: Message $2 envoyé par la carte ESP32
Publication du message: Message #3 envoyé par la carte ESP32
Publication du message: Message recu dans topic: inTopic
Message :Message du Raspberry

Message #4 envoy: par la carte ESP32
Publication du message: Message #5 envoyé par la carte ESP32

Publication du message: Message #6€ envoyé par la carte ESP32
v

Défilement automatique [] Afficher lhorodatage | Nouvelle ligne v | |115200baud ~ Effacer la sortie

Voila pour les bases de MQTT et Node-RED.

Problemes courants

Ce montage ne devrait pas poser de probléemes sur le plan matériel.
Cependant, si quelque chose ne devait pas fonctionner, passez en revue
les étapes de I'installation et de la configuration décrites dans ce montage.
Cela devrait résoudre le probléme.

Qu’avez-vous appris ?

Dans ce montage, vous avez découvert les bases MQTT et appris comment
utiliser votre Raspberry Pi comme serveur MQTT. Vous avez suivi 'organi-
sation des messages en Topics, vous savez maintenant comment publier
des messages et s’y abonner. Linstance centrale pour gérer les messages
est le Broker MQTT, situé entre les capteurs et les appareils terminaux.
Node-RED fournit des Nodes « préts a 'emploi » pour communiquer avec
MQTT et nous avons envoyé des messages de Node-RED a une fenétre
de terminal dans le Raspberry Pi. Dans le sens opposé, des messages ont
été envoyés du Raspberry Pi a Node-RED via une fenétre de terminal.
Vous avez également fait connaissance du module Wi-Fi ESP32 et appris
a programmer avec I’environnement de développement Arduino a I’aide
de l’extension correspondante.

Montage 27. MQTT

< Figure 27-28
Affichage du message
provenant de Node-RED
sur le moniteur série

513

Index

Symboles auto-induction 324
<< (opérateur de décalage) 135

== (opérateur d’égalité) 105 B

= (opérateur d’affectation) 105 bascule 114

>> (opérateur de décalage) 135 baud 233

74HC595 142
brochage 142
1208 (moteur pas-a-pas) 310
#define 185,200
#ifndef 173
(commentaires) 176
& (opérateur ET) 139
? (opérateur conditionnel) 197

begin 132
bibliotheques 161
importer 179
bit 134
de poids faible 157
de poids fort 157
bitRead 251

. (opérateur point) 132 Bluetooth

(signe diese) 185 adap,tateur 365

& (opérateur de référence) 389 portée 364

* (touche spéciale) 269 boucleﬁ 126
en-téte 129

(touche spéciale) 269
variable de controle 129

boucles imbriquées 210

A bouton-poussoir 97, 107, 117
adresse IP 380 bouton-poussoir miniature 100
adresse MAC 381 schéma de raccordement 100
afficheur bus I*C 306

7 segments 239 buzzer piézoélectrique

a cristaux liquides 289 symbole 336

LCD 289 byte 112, 134

pilote 289
alias 227, 266
anode 326 C

commune 241 C++ 164

type SA 39-11 GE 242 carte de circuit imprimé perforée 284
API (Application Programming Interface) 163 casting 305
APT (Advanced Packaging Tool) 446 cathode 326
Aref 423 changement de niveau 110, 143
array 124, 126, 127 chronogramme 110

atome 255 circuit 141

circuit intégré 141

classe 166

clavier a film 270, 283

clavier numérique 269

client-serveur 382

CNA (convertisseur numérique analogique) 417
code de jumelage 368

commande de moteur 311

commandes AT 367

communication unidirectionnelle 232
communication radio 363

concaténation 303

constructeur 170, 279

controle par front montant d’horloge 143
controle par un front d’horloge montant 159
convertisseur logique 459

convertisseur numérique/analogique (CNA) 227
corps de fonction 150

cristaux liquides 289

D
DAC (Digital-Analog-Converter) 417
dataArray 153
DDR (Data Direction Register) 424
débordement 112, 135
define 185
delay 107, 115
digitalRead 149
diode
a effet tunnel 328
de roue libre 323
symbole 326
Zener 328
directive de prétraitement 185
displayPips 211
diviseur de tension 229, 374
Dot-Matrix 289, 291
DP (Decimal Point) 242

E

éclairement 224

élément piézoélectrique 335
émetteur 232

encapsulation 167

état d’agrégation 255
Ethernet 379

516

F
fichier de classe 173
fichier d’en-téte 168, 172, 277
filtre passe-bas 359
Firmata 447, 448
flipflop 145
fonction 148
signature 149
systémique 149
fréquence de coupure 361

G

gateway 381

germanium 325

gestion des intervalles 111
GND (Ground) 229

H

HC-06 373

HD44780 289, 297

hertz 338

Hitachi HDD44780 (Display) 292
Hypertext Markup Language (HTML) 383
Hypertext Transfer Protocol (HTTP) 386
hystérésis 331

I?C-Bus 306
IC (Integrated Circuit) 141
IDE Arduino
traceur série 263
index 124
indicateur de distance de décalage 136
instructions de prétraitement 173
integer 149
intégrateur 360
Internet Protocol (IP) 380

J

Java 236

K

keypad 270

Index

L opérateur d’affectation 105
opérateur de décalage 135

langage orienté objet 132
opérateur d’égalité 105

langage Tcl 453

LCD (Liquid Cristal Display) 289 Opérateur d’irTcrémentation 135

LDR (Light Dependent Resistor) 223 opérateur logique ET 139
éclairement 224 opérateur logique not 114
symbole 224 opérateur logique OU 138

Least Significant-Bit (LSB) 136, 157 opérateur modulo 218

LED 123 opérateur point 179

LM35 (capteur de température) 258 opérateurs de bits 135

Local Area Network 379
Lookup-Tables (LUT) 426 P
LSB (Least Significant Bit) 136, 157

passerelle 381
Lux 224

photorésistance 223
piézo électrique 335
M pilote
afficheur 289
pilote HD44780 289
pinMode 99
platine 284

magic numbers 153
manipulation de bit 134
manipulation des registres 133

map 228 ! 2
masque de réseau 380 point décimal 242

masse 229 port analogique 458

matrice de points 291 potentiometre 455

méthodes 132 préprocesseur 185

millis 112 println 132, 249

modulation PWM 352 Processing 231, 263

modulo (opérateur) 218 programmation orientée objet (POO) 164
moniteur série 130 protocole 380 o

Most Significant Bit (MSB) 157 protocole de transmission 352

moteur pas-a-pas 309 Proto Shield 284

bipolaire 310 prototypage 205
MSB 157 PTC (Positive Temperature Coefficient) 257
MSBFIRST 157 putPins 153

multiplexage 271 PuTTY 365
PyCharm 358

pyFirmata 448

N pySerial 358,448
nano 449 Python 358, 449
nibble 292

niveau d’entrée défini 98 R
nombre entier 112

NTC (Negative Temperature Coefficient) 256 R2R 417
Raspberry Pi 445

Raspbian Jessie 448

o rebond 117

octet 134 récepteur 232
opérateur % 218 redondance de code 151
opérateur conditionnel ? 175, 197 registre a décalage 141

Index

réseau 377
routeur 378
réseau en échelle de résistances 417
réseau R2R 417
résistance
pull-up 97
résistance a coefficient de température négatif 256
résistance R2R 429
réutilisation 163
RJ45 378

S

semi-conducteurs 325
sens de transmission des bits 157
séquence des couleurs 340
séquenceur de lumiere 123
Serial Plotter (Traceur série) 263
serveur 383
servomoteur 309, 455
shebang 450
shield 205, 281, 422
shield Bluetooth

configuration 367
shield Ethernet 379
shiftOut 156, 157
Shift Register 143
signal d’horloge 141
signature 169
signature de la fonction 149
silicium 325
slash 384
son 335
SPE (Stani’s Python Editor) 449
Storage Register 143

surcharge 171, 315
systeme binaire 134, 156

T
tableau 126
bidimensionnel 207, 208
unidimensionnel 207
Tag 383
Tcl (Tool Command Language) 452, 453
TCP/IP 380
température 255
thermistance LM 35 258
thermistance PTC 257
Thermistor NTC 4K7 256
touches spéciales 269
Traceur série 263
Transfer Control Protocol (TCP) 380
transistor Darlington 322

U

unsigned 277
unsigned long 112

\'}

variable
de controle 129
locale 129, 199

w
WLAN 363
wrapper 163

Index

	Le grand livre d’arduino
	Préface
	Table des matières
	Avant-propos
	Arduino pour tous
	Une erreur de conception qui fait date
	Les bienfaits du copier-coller et ses limites
	Structure de l’ouvrage
	Structure des montages
	Mon site Internet
	Prérequis
	Composants nécessaires
	Règles de conduite

	Partie I : Les bases
	Chapitre 1 - Arduino : le matériel
	Les différentes cartes Arduino
	La carte Arduino Uno

	Chapitre 2 - Arduino : le logiciel
	IDE Arduino ou Arduino Create ?
	Présentation de l’environnement
	Raccordement de la carte Arduino
	Testons la communication entre l’ordinateur et Arduino
	La gestion des bibliothèques
	La gestion des cartes
	Le code du sketch dans l’environnement de développement
	Problèmes courants
	De l’idée jusqu’au téléchargement dans le microcontrôleur

	Chapitre 3 - N’ayons pas peur de la programmation : les bases du codage
	Qu’est-ce qu’un programme, ou sketch ?
	Que sont les structures de contrôle ?

	Chapitre 4 - La carte Arduino Discoveryboard
	Composants nécessaires
	Schéma des connexions
	L’afficheur sept segments

	Partie 2 : Les montages
	Montage 1 - Hello World – faire clignoter une LED
	« Hello World » clignote
	Problèmes courants
	Qu’avez-vous appris ?
	Workshop pour faire clignoter une LED

	Montage 2 - Programmation Arduino de bas niveau
	Les accès du microcontrôleur
	Programmation d’un port
	Registres et instructions C++
	La résistance pull-up
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 3 - Interrogation d’un bouton-poussoir
	Manipulation d’une résistance pull-up interne
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Qu’avez-vous appris ?

	Montage 4 - Clignotement avec gestion des intervalles
	Appuyez sur le bouton-poussoir et il réagit
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 5 - Le bouton-poussoir récalcitrant
	Une histoire de rebond
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 6 - Le séquenceur de lumière
	C’est chacun son tour
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Manipulation des registres
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 7 - Extension de port
	Le registre à décalage
	Registre à décalage conventionnel
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Extension du sketch : première partie
	Extension du sketch : deuxième partie
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 8 - Comment créer une bibliothèque ?
	Les bibliothèques
	Qu’est-ce qu’une bibliothèque exactement ?
	En quoi les bibliothèques sont-elles utiles ?
	Que signifie programmation orientée objet ?
	La bibliothèque-dé
	Qu’avez-vous appris ?

	Montage 9 - Les feux de circulation
	Composants nécessaires
	Phases de signalisation
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Des feux de circulation interactifs
	Problèmes courants
	Qu’avez-vous appris ?
	Cadeau !

	Montage 10 - Le dé électronique
	Qu’est-ce qu’un dé électronique ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Code du sketch
	Revue de code
	Problèmes courants
	Montage du dé électronique sur une platine
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 11 - Des détecteurs de lumière
	La résistance variable
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Devenons communicatifs
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 12 - L’afficheur sept segments
	Qu’est-ce qu’un afficheur sept segments ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 13 - La température
	Chaud ou froid ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Affichage de valeurs analogiques sur l’IDE Arduino
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 14 - Le clavier numérique
	Qu’est-ce qu’un clavier numérique ?
	Composants nécessaires
	Réflexions préliminaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Réalisation du shield
	Construction d’un shield Arduino
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 15 - Un afficheur alphanumérique
	Qu’est-ce qu’un afficheur LCD ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Revue de code
	Jeu : deviner un nombre
	Définir des caractères personnels
	Un afficheur LCD multiligne
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 16 - Le moteur pas-à-pas
	Encore plus de mouvement
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Revue de code
	Construire un shield pour moteur
	Commande de servomoteurs
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 17 - Commande d’un ventilateur
	Un peu de pratique
	Composants nécessaires
	Schéma d’un circuit de commande de moteur
	Schéma d’un circuit de commande du ventilateur
	Réalisation du circuit
	Revue de code
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 18 - Faire de la musique avec Arduino
	Y a pas le son ?
	Composant nécessaire
	Schéma
	Réalisation du circuit
	Revue de code
	Jeu de la séquence des couleurs
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 19 - L’Arduino-Talker
	Communiquer avec l’Arduino
	Composants nécessaires
	Schéma
	Comprendre le code, étape par étape
	Problèmes courants
	Utilisation d’un filtre passe-bas
	Qu’avez-vous appris?

	Montage 20 - Communication sans fil par Bluetooth
	Qu’est-ce que la communication radio ?
	Composants nécessaires
	Utilisation d’un adaptateur Bluetooth
	Ajout d’un nouveau shield BT
	Réalisation du circuit
	Le module Bluetooth HC-06
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 21 - Communication réseau
	Qu’est-ce qu’un réseau ?
	Composants nécessaires
	Sketch Arduino
	Revue de code
	Exercice complémentaire
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 22 - La carte ESP32
	Présentation de la carte ESP32
	Faire clignoter avec le module ESP32
	Montage : le log de températures
	Réalisation du circuit
	Problèmes courants
	Qu’avez-vous appris ?
	Workshop sur le log de températures

	Montage 23 - Numérique appelle analogique
	Comment convertir des signaux numériques en signaux analogiques ?
	Composants nécessaires
	Schéma
	Réalisation du circuit
	Sketch Arduino
	Revue de code
	Réalisation du shield
	Commande du registre de port
	Problèmes courants
	Exercice complémentaire
	Qu’avez-vous appris ?

	Montage 24 - Programmer Arduino avec un langage de programmation par blocs
	S4A – Scratch for Arduino
	ArduBlock – Arduino par blocs
	Open Roberta Lab
	Node-RED, langage de programmation par blocs pour l’IoT
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 25 - Quand Arduino rencontre Raspberry Pi
	Réveillons l’Arduino qui sommeille dans tout Raspberry Pi
	Liaison série entre le Raspberry Pi et l’Arduino
	Qu’avez-vous appris ?

	Montage 26 - Programmer pour l’Internet des objets avec Node-RED
	Comment fonctionne Node-RED ?
	Installation de Node-RED
	Démarrage de Node-RED
	Installation de Nodes ou de Flows supplémentaires
	Préparation de la carte Arduino Uno
	Node-RED dans le navigateur
	Le Flow du clignotant
	Montage avec le capteur de température et d’humidité DHT11
	Composants nécessaires
	Schéma
	Sketch Arduino
	Envoi par e-mail
	Le Dashboard
	Affichage des valeurs de mesure sur un smartphone
	Exporter le code à partir de Node-RED
	Problèmes courants
	Qu’avez-vous appris ?

	Montage 27 - MQTT
	Communication M2M avec MQTT
	Conventions de nommage dans MQTT
	Structure de messagerie MQTT
	Métacaractères MQTT
	Installation de MQTT
	Un test rudimentaire
	Le module ESP32
	Problèmes courants
	Qu’avez-vous appris ?

	Index

